forked from tornado-packages/archive-monorepo
218 lines
7.0 KiB
JavaScript
218 lines
7.0 KiB
JavaScript
|
/*
|
||
|
Copyright 2018 0kims association.
|
||
|
|
||
|
This file is part of zksnark JavaScript library.
|
||
|
|
||
|
zksnark JavaScript library is a free software: you can redistribute it and/or
|
||
|
modify it under the terms of the GNU General Public License as published by the
|
||
|
Free Software Foundation, either version 3 of the License, or (at your option)
|
||
|
any later version.
|
||
|
|
||
|
zksnark JavaScript library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License along with
|
||
|
zksnark JavaScript library. If not, see <https://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
const chai = require("chai");
|
||
|
|
||
|
const bigInt = require("../src/bigint.js");
|
||
|
const PolField = require("../src/polfield.js");
|
||
|
const ZqField = require("../src/zqfield");
|
||
|
|
||
|
const assert = chai.assert;
|
||
|
|
||
|
const r = bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617");
|
||
|
|
||
|
describe("Polynomial field", () => {
|
||
|
it("Should compute a multiplication", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
const a = [bigInt(1), bigInt(2), bigInt(3)];
|
||
|
const b = [bigInt(1), bigInt(2), bigInt(3)];
|
||
|
const res = PF.mul(a,b);
|
||
|
|
||
|
assert(PF.equals(res, [bigInt(1), bigInt(4), bigInt(10), bigInt(12), bigInt(9)]));
|
||
|
});
|
||
|
it("Should compute a multiplication 2", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
const a = [bigInt(5), bigInt(1)];
|
||
|
const b = [bigInt(-5), bigInt(1)];
|
||
|
const res = PF.mul(a,b);
|
||
|
|
||
|
assert(PF.equals(res, [bigInt(-25), bigInt(0), bigInt(1)]));
|
||
|
});
|
||
|
it("Should compute an addition", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
const a = [bigInt(5), bigInt(1)];
|
||
|
const b = [bigInt(-5), bigInt(1)];
|
||
|
const res = PF.add(a,b);
|
||
|
|
||
|
assert(PF.equals(res, [bigInt(0), bigInt(2)]));
|
||
|
});
|
||
|
it("Should compute a substraction", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
const a = [bigInt(5), bigInt(3), bigInt(4)];
|
||
|
const b = [bigInt(5), bigInt(1)];
|
||
|
const res = PF.sub(a,b);
|
||
|
|
||
|
assert(PF.equals(res, [bigInt(0), bigInt(2), bigInt(4)]));
|
||
|
});
|
||
|
it("Should compute reciprocal", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
const a = [bigInt(4), bigInt(1), bigInt(-3), bigInt(-1), bigInt(2),bigInt(1), bigInt(-1), bigInt(1)];
|
||
|
const res = PF._reciprocal(a, 3, 0);
|
||
|
|
||
|
assert(PF.equals(res, [bigInt(12), bigInt(15), bigInt(3), bigInt(-4), bigInt(-3), bigInt(0), bigInt(1), bigInt(1)]));
|
||
|
});
|
||
|
it("Should div2", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
// x^6
|
||
|
const a = [bigInt(0), bigInt(0), bigInt(0), bigInt(0), bigInt(0),bigInt(0), bigInt(1)];
|
||
|
// x^5
|
||
|
const b = [bigInt(0), bigInt(0), bigInt(0), bigInt(0), bigInt(0), bigInt(1)];
|
||
|
|
||
|
const res = PF._div2(6, b);
|
||
|
assert(PF.equals(res, [bigInt(0), bigInt(1)]));
|
||
|
|
||
|
const res2 = PF.div(a,b);
|
||
|
assert(PF.equals(res2, [bigInt(0), bigInt(1)]));
|
||
|
});
|
||
|
it("Should div", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
const a = [bigInt(1), bigInt(2), bigInt(3), bigInt(4), bigInt(5),bigInt(6), bigInt(7)];
|
||
|
const b = [bigInt(8), bigInt(9), bigInt(10), bigInt(11), bigInt(12), bigInt(13)];
|
||
|
|
||
|
const c = PF.mul(a,b);
|
||
|
const d = PF.div(c,b);
|
||
|
|
||
|
assert(PF.equals(a, d));
|
||
|
});
|
||
|
it("Should div big/small", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
const a = [bigInt(1), bigInt(2), bigInt(3), bigInt(4), bigInt(5),bigInt(6), bigInt(7)];
|
||
|
const b = [bigInt(8), bigInt(9)];
|
||
|
|
||
|
const c = PF.mul(a,b);
|
||
|
const d = PF.div(c,b);
|
||
|
|
||
|
assert(PF.equals(a, d));
|
||
|
});
|
||
|
it("Should div random big", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
const a = [];
|
||
|
const b = [];
|
||
|
for (let i=0; i<1000; i++) a.push(bigInt(Math.floor(Math.random()*100000) -500000));
|
||
|
for (let i=0; i<900; i++) b.push(bigInt(Math.floor(Math.random()*100000) -500000));
|
||
|
|
||
|
const c = PF.mul(a,b);
|
||
|
|
||
|
const d = PF.div(c,b);
|
||
|
|
||
|
assert(PF.equals(a, d));
|
||
|
}).timeout(10000);
|
||
|
it("Should evaluate and zero", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
const p = [PF.F.neg(bigInt(2)), bigInt(1)];
|
||
|
const v = PF.eval(p, bigInt(2));
|
||
|
assert(PF.F.equals(v, bigInt(0)));
|
||
|
});
|
||
|
it("Should evaluate bigger number", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
const p = [bigInt(1), bigInt(2), bigInt(3)];
|
||
|
const v = PF.eval(p, bigInt(2));
|
||
|
assert(PF.F.equals(v, bigInt(17)));
|
||
|
});
|
||
|
it("Should create lagrange polynomial minmal", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
const points=[];
|
||
|
points.push([bigInt(1), bigInt(1)]);
|
||
|
points.push([bigInt(2), bigInt(2)]);
|
||
|
points.push([bigInt(3), bigInt(5)]);
|
||
|
|
||
|
const p=PF.lagrange(points);
|
||
|
|
||
|
for (let i=0; i<points.length; i++) {
|
||
|
const v = PF.eval(p, points[i][0]);
|
||
|
assert(PF.F.equals(v, points[i][1]));
|
||
|
}
|
||
|
});
|
||
|
it("Should create lagrange polynomial", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
|
||
|
const points=[];
|
||
|
points.push([bigInt(1), bigInt(2)]);
|
||
|
points.push([bigInt(2), bigInt(-2)]);
|
||
|
points.push([bigInt(3), bigInt(0)]);
|
||
|
points.push([bigInt(4), bigInt(453345)]);
|
||
|
|
||
|
const p=PF.lagrange(points);
|
||
|
|
||
|
for (let i=0; i<points.length; i++) {
|
||
|
const v = PF.eval(p, points[i][0]);
|
||
|
assert(PF.F.equals(v, points[i][1]));
|
||
|
}
|
||
|
});
|
||
|
it("Should test ruffini", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
const a = [bigInt(1), bigInt(2), bigInt(3), bigInt(4), bigInt(5),bigInt(6), bigInt(7)];
|
||
|
|
||
|
const b = PF.mul(a, [bigInt(-7), bigInt(1)]);
|
||
|
const c = PF.ruffini(b, bigInt(7));
|
||
|
|
||
|
assert(PF.equals(a, c));
|
||
|
});
|
||
|
it("Should test roots", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
let rt;
|
||
|
|
||
|
|
||
|
rt = PF.oneRoot(256, 16);
|
||
|
for (let i=0; i<8; i++) {
|
||
|
rt = PF.F.mul(rt, rt);
|
||
|
}
|
||
|
assert(rt.equals(PF.F.one));
|
||
|
|
||
|
rt = PF.oneRoot(256, 15);
|
||
|
for (let i=0; i<8; i++) {
|
||
|
rt = PF.F.mul(rt, rt);
|
||
|
}
|
||
|
assert(rt.equals(PF.F.one));
|
||
|
|
||
|
rt = PF.oneRoot(8, 3);
|
||
|
for (let i=0; i<3; i++) {
|
||
|
rt = PF.F.mul(rt, rt);
|
||
|
}
|
||
|
assert(rt.equals(PF.F.one));
|
||
|
|
||
|
rt = PF.oneRoot(8, 0);
|
||
|
assert(rt.equals(PF.F.one));
|
||
|
|
||
|
});
|
||
|
it("Should create a polynomial with values at roots with fft", () => {
|
||
|
const PF = new PolField(new ZqField(r));
|
||
|
const a = [bigInt(1), bigInt(2), bigInt(3), bigInt(4), bigInt(5),bigInt(6), bigInt(7)];
|
||
|
|
||
|
const p = PF.ifft(a);
|
||
|
|
||
|
for (let i=0; i<a.length; i++) {
|
||
|
const s = PF.F.affine(PF.eval(p, PF.oneRoot(8,i)));
|
||
|
assert(s.equals(a[i]));
|
||
|
}
|
||
|
|
||
|
});
|
||
|
|
||
|
});
|