160 lines
5.1 KiB
Solidity
160 lines
5.1 KiB
Solidity
|
// SPDX-License-Identifier: MIT
|
||
|
|
||
|
pragma solidity ^0.6.0;
|
||
|
|
||
|
/**
|
||
|
* @dev Wrappers over Solidity's arithmetic operations with added overflow
|
||
|
* checks.
|
||
|
*
|
||
|
* Arithmetic operations in Solidity wrap on overflow. This can easily result
|
||
|
* in bugs, because programmers usually assume that an overflow raises an
|
||
|
* error, which is the standard behavior in high level programming languages.
|
||
|
* `SafeMath` restores this intuition by reverting the transaction when an
|
||
|
* operation overflows.
|
||
|
*
|
||
|
* Using this library instead of the unchecked operations eliminates an entire
|
||
|
* class of bugs, so it's recommended to use it always.
|
||
|
*/
|
||
|
library SafeMath {
|
||
|
/**
|
||
|
* @dev Returns the addition of two unsigned integers, reverting on
|
||
|
* overflow.
|
||
|
*
|
||
|
* Counterpart to Solidity's `+` operator.
|
||
|
*
|
||
|
* Requirements:
|
||
|
*
|
||
|
* - Addition cannot overflow.
|
||
|
*/
|
||
|
function add(uint256 a, uint256 b) internal pure returns (uint256) {
|
||
|
uint256 c = a + b;
|
||
|
require(c >= a, "SafeMath: addition overflow");
|
||
|
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @dev Returns the subtraction of two unsigned integers, reverting on
|
||
|
* overflow (when the result is negative).
|
||
|
*
|
||
|
* Counterpart to Solidity's `-` operator.
|
||
|
*
|
||
|
* Requirements:
|
||
|
*
|
||
|
* - Subtraction cannot overflow.
|
||
|
*/
|
||
|
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
|
||
|
return sub(a, b, "SafeMath: subtraction overflow");
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
|
||
|
* overflow (when the result is negative).
|
||
|
*
|
||
|
* Counterpart to Solidity's `-` operator.
|
||
|
*
|
||
|
* Requirements:
|
||
|
*
|
||
|
* - Subtraction cannot overflow.
|
||
|
*/
|
||
|
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
|
||
|
require(b <= a, errorMessage);
|
||
|
uint256 c = a - b;
|
||
|
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @dev Returns the multiplication of two unsigned integers, reverting on
|
||
|
* overflow.
|
||
|
*
|
||
|
* Counterpart to Solidity's `*` operator.
|
||
|
*
|
||
|
* Requirements:
|
||
|
*
|
||
|
* - Multiplication cannot overflow.
|
||
|
*/
|
||
|
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
|
||
|
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
|
||
|
// benefit is lost if 'b' is also tested.
|
||
|
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
|
||
|
if (a == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
uint256 c = a * b;
|
||
|
require(c / a == b, "SafeMath: multiplication overflow");
|
||
|
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @dev Returns the integer division of two unsigned integers. Reverts on
|
||
|
* division by zero. The result is rounded towards zero.
|
||
|
*
|
||
|
* Counterpart to Solidity's `/` operator. Note: this function uses a
|
||
|
* `revert` opcode (which leaves remaining gas untouched) while Solidity
|
||
|
* uses an invalid opcode to revert (consuming all remaining gas).
|
||
|
*
|
||
|
* Requirements:
|
||
|
*
|
||
|
* - The divisor cannot be zero.
|
||
|
*/
|
||
|
function div(uint256 a, uint256 b) internal pure returns (uint256) {
|
||
|
return div(a, b, "SafeMath: division by zero");
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
|
||
|
* division by zero. The result is rounded towards zero.
|
||
|
*
|
||
|
* Counterpart to Solidity's `/` operator. Note: this function uses a
|
||
|
* `revert` opcode (which leaves remaining gas untouched) while Solidity
|
||
|
* uses an invalid opcode to revert (consuming all remaining gas).
|
||
|
*
|
||
|
* Requirements:
|
||
|
*
|
||
|
* - The divisor cannot be zero.
|
||
|
*/
|
||
|
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
|
||
|
require(b > 0, errorMessage);
|
||
|
uint256 c = a / b;
|
||
|
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
|
||
|
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
|
||
|
* Reverts when dividing by zero.
|
||
|
*
|
||
|
* Counterpart to Solidity's `%` operator. This function uses a `revert`
|
||
|
* opcode (which leaves remaining gas untouched) while Solidity uses an
|
||
|
* invalid opcode to revert (consuming all remaining gas).
|
||
|
*
|
||
|
* Requirements:
|
||
|
*
|
||
|
* - The divisor cannot be zero.
|
||
|
*/
|
||
|
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
|
||
|
return mod(a, b, "SafeMath: modulo by zero");
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
|
||
|
* Reverts with custom message when dividing by zero.
|
||
|
*
|
||
|
* Counterpart to Solidity's `%` operator. This function uses a `revert`
|
||
|
* opcode (which leaves remaining gas untouched) while Solidity uses an
|
||
|
* invalid opcode to revert (consuming all remaining gas).
|
||
|
*
|
||
|
* Requirements:
|
||
|
*
|
||
|
* - The divisor cannot be zero.
|
||
|
*/
|
||
|
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
|
||
|
require(b != 0, errorMessage);
|
||
|
return a % b;
|
||
|
}
|
||
|
}
|