ABDK
CONSULTING

SMART CONTRACT
AUDIT

Uniswap V3

abdk.consulting

SMART CONTRACT AUDIT CONCLUSION

by Mikhail Vladimirov and Dmitry Khovratovich
26th April 2021

We've been asked to review Uniswap V3 smart contracts given in separate files in the
Uniswap GitHub repo. We found two critical bugs, which were fixed later, and one another

major but non-critical flaw.

) W Critical
1 B Major
B Minor

26

Findings

CVF-1 Minor Suboptimal Opened
CVF-2 Minor Procedural Opened
CVF-3 Minor Bad datatype Opened
CVF-4 Minor Suboptimal Opened
CVF-5 Minor Suboptimal Opened
CVF-6 Minor Bad naming Opened
CVF-7 Critical Flaw Fixed

CVF-8 Minor Suboptimal Opened
CVF-9 Minor Suboptimal Opened
CVF-10 Minor Procedural Opened
CVF-11 Minor Procedural Opened
CVF-12 Minor Procedural Opened
CVF-13 Minor Bad datatype Opened
CVF-14 Minor Bad datatype Opened
CVF-15 Minor Bad datatype Opened
CVF-16 Minor Bad datatype Opened
CVF-17 Minor Bad datatype Opened
CVF-18 Minor Bad naming Opened
CVF-19 Minor Procedural Opened
CVF-20 Minor Bad datatype Opened
CVF-21 Minor Suboptimal Opened
CVF-22 Minor Overflow/Underflow Opened
CVF-23 Minor Bad naming Opened
CVF-24 Major Flaw Opened
CVF-25 Minor Suboptimal Opened
CVF-26 Critical Flaw Fixed

CVF-27 Minor Suboptimal Opened

CVF-28 Minor Suboptimal Opened
CVF-29 Minor Suboptimal Opened

Peripheral Partl

Review

Contents

1 Document properties 6

2 Introduction 7
2.1 About ABDK 7
2.2 Disclaimer 7
2.3 Methodology 7

3 Detailed Results 9
3.1 CVE-1 . 9
3.2 CVE-2 . 9
3.3 CVF-3 9
3.4 CVF-4 . . 10
3.5 CVFE-b . 10
3.6 CVF-6 10
3.7 CVE-T . 11
3.8 CVF-8 . . 11
3.9 CVF-9 . . 11
3.10 CVF-10 12
3.11 CVE-11 . 12
3.12 CVE-12 13
3.13 CVE-13 . . 13
3.14 CVF-14 13
3.15 CVF-15 14
3.16 CVF-16 14
3.17 CVE-17 . o 14
3.18 CVF-18 15
3.19 CVF-19 . . 15
3.20 CVE-20 15
3.21 CVE-21 . 16
3.22 CVE-22 16
3.23 CVE-23 . . 16
3.24 CVE-24 . . . 17
3.25 CVE-25 . 18
3.26 CVF-26 19
3.27 CVE-27 . 19
3.28 CVF-28 . . . 19
3.20 CVF-29 . . 20

Peripheral Partl
Review

1 Document properties

Version

0.1 Apr. 25,
2021
0.2 Apr. 25,
2021
1.0 Apr. 26,
2021
1.1 May o4,
2021
Contact

D. Khovratovich

khovratovich@gmail.com

D. Khovratovich

D. Khovratovich

D. Khovratovich

D. Khovratovich

Initial Draft

Minor revision

Release

Fixes update

Peripheral Partl
Review ABDK

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting at
the customer request. The audit goal is a general review of the smart contracts structure,
critical/major bugs detection and issuing the general recommendations.

We have audited the Uniswap Github repository with tag v1.0.0-beta.3. Concretely, the
following files were audited:

e NonfungiblePositionManager.sol;
e SwapRouter.sol.

Fixes were applied in these two commits.

2.1 About ABDK

ABDK Consulting, established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-authored
some widely known blockchain primitives like Poseidon hash function. The ABDK Audit
Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has conducted over 40 audits of
blockchain projects in Solidity, Rust, Circom, C++, JavaScript, and other languages.

2.2 Disclaimer

Note that the performed audit represents current best practices and smart contract standards
which are relevant at the date of publication. After fixing the indicated issues the smart
contracts should be re-audited.

2.3 Methodology

The methodology is not a strict formal procedure, but rather a collection of methods and
tactics that combined differently and tuned for every particular project, depending on the
project structure and and used technologies, as well as on what the client is expecting from
the audit. In current audit we use:

e General Code Assessment. The code is reviewed for clarity, consistency, style, and
for whether it follows code best practices applicable to the particular programming lan-
guage used. We check indentation, naming convention, commented code blocks, code
duplication, confusing names, confusing, irrelevant, or missing comments etc. At this
phase we also understand overall code structure.

e Entity Usage Analysis. Usages of various entities defined in the code are analysed.
This includes both: internal usages from other parts of the code as well as potential
external usages. We check that entities are defined in proper places and that their
visibility scopes and access levels are relevant. At this phase we understand overall
system architecture and how different parts of the code are related to each other.

https://github.com/Uniswap/uniswap-v3-core
https://github.com/Uniswap/uniswap-v3-core/tree/v1.0.0-beta.3
https://github.com/Uniswap/uniswap-v3-periphery/commit/987842552ede76d428e60116672fb0ff67fe551e
https://github.com/Uniswap/uniswap-v3-periphery/commit/2353765fe799b987ac5236971398fcb0be2bc5c0
https://abdk.consulting
https://poseidon-hash.info

Peripheral Partl
Review ABDK

e Access Control Analysis. For those entities, that could be accessed externally, access
control measures are analysed. We check that access control is relevant and is done
properly. At this phase we understand user roles and permissions, as well as what assets
the system ought to protect.

e Code Logic Analysis. The code logic of particular functions is analysed for correctness
and efficiency. We check that code actually does what it is supposed to do, that
algorithms are optimal and correct, and that proper data types are used. We also check
that external libraries used in the code are up to date and relevant to the tasks they solve
in the code. At this phase we also understand data structures used and the purposes
they are used for.

40

Peripheral Partl
Review ABDK

3 Detailed Results

3.1 CVF-1
e Severity Minor e Status Opened
e Category Suboptimal e Source SwapRouter.sol

Recommendation Should be "0.7.0" according to a common best practice.

solidity =0.7.6;
3.2 CVF-2
e Severity Minor e Status Opened
e Category Procedural e Source SwapRouter.sol

Description We didn't review these files.

"./interfaces/ISwapRouter.sol ’;
'"./base/PeripherylmmutableState.sol ';
'./base/PeripheryValidation.sol ';
"./base/PeripheryPayments.sol ';
"./base/Multicall .sol ';
'"./base/SelfPermit.sol ';
"./libraries/Path.sol ';
"./libraries/PoolAddress.sol ';
"./libraries/CallbackValidation.sol’
"./interfaces/external /IWETH9.sol ';
3.3 CVF-3
e Severity Minor e Status Opened
e Category Bad datatype e Source SwapRouter.sol

Recommendation The type of this argument should be "IUniswapV3Factory", the type of
this argument should be IWETH9.

constructor (address _ factory, address WETH9)
< PeripherylmmutableState(factory, WETHI9) {}

79

102

178

136

Peripheral Partl

Review ABDK
3.4 CVF-4

e Severity Minor e Status Opened

e Category Suboptimal e Source SwapRouter.sol

Description The comment is confusing, as the in/out amounts are not swapped, but rather
made equal. Also, this assignment is redundant, just use "tokenOut" instead of "tokenIn" in
the next line.

tokenln = tokenOut; // swap in/out because exact output swaps
< are reversed

3.5 CVF-5
e Severity Minor e Status Opened
e Category Suboptimal e Source SwapRouter.sol

Recommendation If the "MIN SQRT_RATIO" and "MAX_ SQRT_RATIO" contracts
contain the minimum and the maximum valid sqrt price, then adding/subtracting one from
them seems redundant.

Listing 5:

7 (zeroForOne 7 TickMath .MIN SQRT_RATIO + 1 : TickMath.
— MAX_SQRT_RATIO — 1)

? (zeroForOne 7 TickMath .MIN_SQRT_ RATIO + 1 : TickMath.
— MAX_ SQRT_RATIO — 1)

3.6 CVF-6
e Severity Minor e Status Opened
e Category Bad naming e Source SwapRouter.sol

Description This line is confusing, as it is not obvious that the path is different on every
iteration.

Recommendation Probably, renaming the variable to something like "stillHasMultiplePools"
would help.

Listing 6:
bool hasMultiplePools = params.path.hasMultiplePools();

145

209

210

230

Peripheral Partl

Review ABDK
3.7 CVF-7

e Severity Critical e Status Opened

e Category Flaw e Source SwapRouter.sol

Recommendation This should be address(this) for all but the first swap.

Listing 7:

payer: msg.sender
3.8 CVF-8
e Severity Minor e Status Opened
e Category Suboptimal e Source SwapRouter.sol

Recommendation Why is it necessary to reset? In case the value is non-zero, reset is just
waste of gas. Also, it is possible to add a flag to the "SwapCallbackData" structure, that
would indicate that the last swap is the only one, and thus there is no need to cache the input
amount.

Listing 8:

// has to be reset even though we don't use it in the single hop

< case
amountlnCached = DEFAULT AMOUNT IN_ CACHED;

3.9 CVF-9
e Severity Minor e Status Opened
e Category Suboptimal e Source SwapRouter.sol

Recommendation Why is it necessary to reset the "amountInCached" storage variable? In
case this variable is non-zero, the set looks like waste of gas.

Listing O:
amountIinCached = DEFAULT AMOUNT IN CACHED;

9
10

Peripheral Partl

Review ABDK
3.10 CVF-10

e Severity Minor e Status Opened

e Category Procedural e Source

NonfungiblePositionManager.sol

Recommendation Should be "0.7.0" according to a common best practice.

Listing 10:

solidity =0.7.6;

3.11 CVF-11
e Severity Minor e Status Opened
e Category Procedural e Source

NonfungiblePositionManager.sol

Description We didn't review these files.

Listing 11:

"./interfaces/INonfungiblePositionManager.sol ’;
"./interfaces/INonfungibleTokenPositionDescriptor.sol ';
"./libraries/PositionKey.sol ';
"./libraries/PoolAddress.sol ';
'./base/LiquidityManagement.sol ';
"./base/PeripherylmmutableState.sol ’;
"./base/Multicall .sol ';

"./ base/ERC721Permit.sol ;
'./base/PeripheryValidation.sol ';
"./base/SelfPermit.sol ';

53

56

59

67

62

67

Peripheral Partl

Review ABDK
3.12 CVF-12

e Severity Minor e Status Opened

e Category Procedural e Source

NonfungiblePositionManager.sol

Description Underscore (" ") prefix is commonly used for local variable to distinguish them
from storage variables, however here this prefix is used for storage variable. This could confuse
people.

Recommendation Consider following the common practice.

Listing 12:

mapping(address => uint80) private _ poollds;
mapping(uint80 => PoolAddress.PoolKey) private _poolldToPoolKey;
mapping(uint256 => Position) private _ positions;

address private immutable tokenDescriptor;

3.13 CVF-13
e Severity Minor e Status Opened
e Category Bad datatype e Source

NonfungiblePositionManager.sol

Recommendation Why the type is uint1767 It should be uint256 to minimize gas costs.

Listing 13:

uintl76 private nextld = 1;

3.14 CVF-14
e Severity Minor e Status Opened
e Category Bad datatype e Source

NonfungiblePositionManager.sol

Recommendation The type of this storage variable should be "INonfungible TokenPosition-
Descriptor".

Listing 14:

address private immutable tokenDescriptor;

70

71

72

Peripheral Partl

Review

3.15 CVF-15
e Severity Minor e Status Opened
e Category Bad datatype e Source

NonfungiblePositionManager.sol

Recommendation The type of this argument should be "IUniswapV3Factory".

Listing 15:

address _ factory,

3.16 CVF-16
e Severity Minor e Status Opened
e Category Bad datatype e Source

NonfungiblePositionManager.sol

Recommendation The type of this argument should be IWETH9.

Listing 16:
address WETH9,

3.17 CVF-17
e Severity Minor e Status Opened
e Category Bad datatype e Source

NonfungiblePositionManager.sol

Recommendation The type of this argument should be "INonfungibleTokenPositionDescrip-
tor".

Listing 17:

address tokenDescriptor

78

117

122

Peripheral Partl

Review ABDK
3.18 CVF-18

e Severity Minor e Status Opened

e Category Bad naming e Source

NonfungiblePositionManager.sol

Description The name is confusing, as one could think that this functions deals with multiple
positions, while it actually returns only one position.

Recommendation Consider renaming to "position", "getPosition", "getTokenPosition", or
something like this.

Listing 18:

function positions(uint256 tokenld)

3.19 CVF-19
e Severity Minor e Status Opened
e Category Procedural e Source

NonfungiblePositionManager.sol

Recommendation This utility function doesn't do anything with the non-fungible positions.
It should not be in this smart contract.

Listing 19:

function createAndlnitializePoollfNecessary (

3.20 CVF-20
e Severity Minor e Status Opened
e Category Bad datatype e Source

NonfungiblePositionManager.sol

Recommendation The type of the returned value should be "IUniswapV3Pool".

Listing 20:

) external payable override returns (address pool) {

127

131

140

174

400

199

Peripheral Partl

Review ABDK
3.21 CVF-21

e Severity Minor e Status Opened

e Category Suboptimal e Source

NonfungiblePositionManager.sol

Recommendation This code duplication could be avoided by moving the pool initialization
to the very end of the function, and returning preliminary in case the initialization is not
necessary: pool = factory.getPool(...); if (pool == 0) pool = factory.createPool (...); else if
(/* pool is initialized /*) return; pool.initialize (...);

Listing 21:

IUniswapV3Pool(pool).initialize (sqrtPriceX96);

IUniswapV3Pool(pool).initialize (sqrtPriceX96);

3.22 CVF-22
e Severity Minor e Status Opened
e Category Overflow/Underflow ¢ Source

NonfungiblePositionManager.sol

Description Overflow is possible here in theory. Probably not an issue.

Listing 22:
__poollds[pool] = (poolld = _nextPoolld++);

__mint(params.recipient , (tokenld = nextld++));

return uint256(positions|[tokenld]. nonce++);

3.23 CVF-23
e Severity Minor e Status Opened
e Category Bad naming e Source

NonfungiblePositionManager.sol

Description A function named "mint" emits an event named "IncreaseLiquidity". This is
confusing and makes it harder to map emitted events with the code.
Recommendation Consider renaming the event.

Listing 23:

emit Increaseliquidity (tokenld, liquidity , amount0, amountl);

234

297

343

393

400

Peripheral Partl

Review ABDK
3.24 CVF-24

e Severity Major e Status Opened

e Category Flaw e Source

NonfungiblePositionManager.sol

Description There is no explicit check for whether the token with such Id does exist.
Recommendation Consider adding the check.

Position storage position = _positions|[tokenld];
Position storage position = _positions|[tokenld];
Position storage position = _positions|[tokenld];
Position storage position = _positions|[tokenld];

return uint256(positions[tokenld].nonce++);

17

260

263

267

270

312

315

321

324

358

361

365

368

Peripheral Partl

Review ABDK
3.25 CVF-25

e Severity Minor e Status Opened

e Category Suboptimal e Source

NonfungiblePositionManager.sol

Recommendation These calculations may be done much more efficiently as fullMull + shift,
taking into account that the denominators are powers of two known at the compile time.

Listing 25:

FullMath . mulDiv (
FixedPoint128.Q128
FullMath . mulDiv (
FixedPoint128.Q128
FullMath . mulDiv (
FixedPoint128.Q128
FullMath . mulDiv (
FixedPoint128.Q128
FullMath . mulDiv(
FixedPoint128.Q128
FullMath . mulDiv (

FixedPoint128.Q128

18

284

330

342

400

Peripheral Partl

Review ABDK
3.26 CVF-26

e Severity Critical e Status Opened

e Category Flaw e Source

NonfungiblePositionManager.sol

Recommendation It is not checked that the value of the "liquidity" argument doesn't exceed
the current liquidity of the token. Combined with unsafe subtraction in the end of the function,
this allows a token holder to steal liquidity from the owners of those other tokens whose
"tickLower" and "tickUpper" are the same.

Listing 26:

uintl28 liquidity ,

position. liquidity —= liquidity ;

3.27 CVF-27
e Severity Minor e Status Opened
e Category Suboptimal ¢ Source

NonfungiblePositionManager.sol

Recommendation This check is redundant. It saves gas on very unlikely case when someone
would try to collect zero amount, but makes more expensive all the normal invocations of the
"collect" function.

Listing 27:

require (amountOMax > 0 || amountlMax > 0);

3.28 CVF-28
e Severity Minor e Status Opened
e Category Suboptimal e Source

NonfungiblePositionManager.sol

Recommendation The type cast is redundant, as uint96 could be implicitly converted to
uint256.

Listing 28:

return uint256(positions|[tokenld].nonce++);

Peripheral Partl

Review ABDK
3.29 CVF-29

e Severity Minor e Status Opened

e Category Suboptimal e Source

NonfungiblePositionManager.sol

Recommendation This event is logged even if ‘to’ was already approved.

Listing 29:

413 emit Approval(ownerOf(tokenld), to, tokenld);

20

	Document properties
	Introduction
	About ABDK
	Disclaimer
	Methodology

	Detailed Results
	CVF-1
	CVF-2
	CVF-3
	CVF-4
	CVF-5
	CVF-6
	CVF-7
	CVF-8
	CVF-9
	CVF-10
	CVF-11
	CVF-12
	CVF-13
	CVF-14
	CVF-15
	CVF-16
	CVF-17
	CVF-18
	CVF-19
	CVF-20
	CVF-21
	CVF-22
	CVF-23
	CVF-24
	CVF-25
	CVF-26
	CVF-27
	CVF-28
	CVF-29

