infrastructure-upgrade/lib/openzeppelin-contracts/contracts/GSN/GSNRecipientERC20Fee.sol
T-Hax 735546619e
init
Signed-off-by: T-Hax <>
2023-04-08 18:46:18 +00:00

153 lines
5.9 KiB
Solidity

// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
import "./GSNRecipient.sol";
import "../math/SafeMath.sol";
import "../access/Ownable.sol";
import "../token/ERC20/SafeERC20.sol";
import "../token/ERC20/ERC20.sol";
/**
* @dev A xref:ROOT:gsn-strategies.adoc#gsn-strategies[GSN strategy] that charges transaction fees in a special purpose ERC20
* token, which we refer to as the gas payment token. The amount charged is exactly the amount of Ether charged to the
* recipient. This means that the token is essentially pegged to the value of Ether.
*
* The distribution strategy of the gas payment token to users is not defined by this contract. It's a mintable token
* whose only minter is the recipient, so the strategy must be implemented in a derived contract, making use of the
* internal {_mint} function.
*/
contract GSNRecipientERC20Fee is GSNRecipient {
using SafeERC20 for __unstable__ERC20Owned;
using SafeMath for uint256;
enum GSNRecipientERC20FeeErrorCodes {
INSUFFICIENT_BALANCE
}
__unstable__ERC20Owned private _token;
/**
* @dev The arguments to the constructor are the details that the gas payment token will have: `name` and `symbol`. `decimals` is hard-coded to 18.
*/
constructor(string memory name, string memory symbol) public {
_token = new __unstable__ERC20Owned(name, symbol);
}
/**
* @dev Returns the gas payment token.
*/
function token() public view returns (IERC20) {
return IERC20(_token);
}
/**
* @dev Internal function that mints the gas payment token. Derived contracts should expose this function in their public API, with proper access control mechanisms.
*/
function _mint(address account, uint256 amount) internal virtual {
_token.mint(account, amount);
}
/**
* @dev Ensures that only users with enough gas payment token balance can have transactions relayed through the GSN.
*/
function acceptRelayedCall(
address,
address from,
bytes memory,
uint256 transactionFee,
uint256 gasPrice,
uint256,
uint256,
bytes memory,
uint256 maxPossibleCharge
)
public
view
virtual
override
returns (uint256, bytes memory)
{
if (_token.balanceOf(from) < maxPossibleCharge) {
return _rejectRelayedCall(uint256(GSNRecipientERC20FeeErrorCodes.INSUFFICIENT_BALANCE));
}
return _approveRelayedCall(abi.encode(from, maxPossibleCharge, transactionFee, gasPrice));
}
/**
* @dev Implements the precharge to the user. The maximum possible charge (depending on gas limit, gas price, and
* fee) will be deducted from the user balance of gas payment token. Note that this is an overestimation of the
* actual charge, necessary because we cannot predict how much gas the execution will actually need. The remainder
* is returned to the user in {_postRelayedCall}.
*/
function _preRelayedCall(bytes memory context) internal virtual override returns (bytes32) {
(address from, uint256 maxPossibleCharge) = abi.decode(context, (address, uint256));
// The maximum token charge is pre-charged from the user
_token.safeTransferFrom(from, address(this), maxPossibleCharge);
}
/**
* @dev Returns to the user the extra amount that was previously charged, once the actual execution cost is known.
*/
function _postRelayedCall(bytes memory context, bool, uint256 actualCharge, bytes32) internal virtual override {
(address from, uint256 maxPossibleCharge, uint256 transactionFee, uint256 gasPrice) =
abi.decode(context, (address, uint256, uint256, uint256));
// actualCharge is an _estimated_ charge, which assumes postRelayedCall will use all available gas.
// This implementation's gas cost can be roughly estimated as 10k gas, for the two SSTORE operations in an
// ERC20 transfer.
uint256 overestimation = _computeCharge(_POST_RELAYED_CALL_MAX_GAS.sub(10000), gasPrice, transactionFee);
actualCharge = actualCharge.sub(overestimation);
// After the relayed call has been executed and the actual charge estimated, the excess pre-charge is returned
_token.safeTransfer(from, maxPossibleCharge.sub(actualCharge));
}
}
/**
* @title __unstable__ERC20Owned
* @dev An ERC20 token owned by another contract, which has minting permissions and can use transferFrom to receive
* anyone's tokens. This contract is an internal helper for GSNRecipientERC20Fee, and should not be used
* outside of this context.
*/
// solhint-disable-next-line contract-name-camelcase
contract __unstable__ERC20Owned is ERC20, Ownable {
uint256 private constant _UINT256_MAX = 2**256 - 1;
constructor(string memory name, string memory symbol) public ERC20(name, symbol) { }
// The owner (GSNRecipientERC20Fee) can mint tokens
function mint(address account, uint256 amount) public onlyOwner {
_mint(account, amount);
}
// The owner has 'infinite' allowance for all token holders
function allowance(address tokenOwner, address spender) public view override returns (uint256) {
if (spender == owner()) {
return _UINT256_MAX;
} else {
return super.allowance(tokenOwner, spender);
}
}
// Allowance for the owner cannot be changed (it is always 'infinite')
function _approve(address tokenOwner, address spender, uint256 value) internal override {
if (spender == owner()) {
return;
} else {
super._approve(tokenOwner, spender, value);
}
}
function transferFrom(address sender, address recipient, uint256 amount) public override returns (bool) {
if (recipient == owner()) {
_transfer(sender, recipient, amount);
return true;
} else {
return super.transferFrom(sender, recipient, amount);
}
}
}