circomlib/circuits/escalarmulany.circom

197 lines
5.6 KiB
Plaintext
Raw Normal View History

2018-12-16 13:27:29 +03:00
/*
Copyright 2018 0KIMS association.
This file is part of circom (Zero Knowledge Circuit Compiler).
circom is a free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
circom is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with circom. If not, see <https://www.gnu.org/licenses/>.
*/
include "montgomery.circom";
include "babyjub.circom";
include "comparators.circom";
template Multiplexor2() {
signal input sel;
signal input in[2][2];
signal output out[2];
out[0] <== (in[1][0] - in[0][0])*sel + in[0][0];
out[1] <== (in[1][1] - in[0][1])*sel + in[0][1];
}
2018-11-27 20:30:33 +03:00
template BitElementMulAny() {
signal input sel;
signal input dblIn[2];
signal input addIn[2];
signal output dblOut[2];
signal output addOut[2];
component doubler = MontgomeryDouble();
component adder = MontgomeryAdd();
component selector = Multiplexor2();
sel ==> selector.sel;
dblIn[0] ==> doubler.in[0];
dblIn[1] ==> doubler.in[1];
doubler.out[0] ==> adder.in1[0];
doubler.out[1] ==> adder.in1[1];
addIn[0] ==> adder.in2[0];
addIn[1] ==> adder.in2[1];
addIn[0] ==> selector.in[0][0];
addIn[1] ==> selector.in[0][1];
adder.out[0] ==> selector.in[1][0];
adder.out[1] ==> selector.in[1][1];
doubler.out[0] ==> dblOut[0];
doubler.out[1] ==> dblOut[1];
selector.out[0] ==> addOut[0];
selector.out[1] ==> addOut[1];
}
// p is montgomery point
// n must be <= 248
// returns out in twisted edwards
// Double is in montgomery to be linked;
2018-11-27 20:30:33 +03:00
template SegmentMulAny(n) {
signal input e[n];
signal input p[2];
signal output out[2];
signal output dbl[2];
component bits[n-1];
component e2m = Edwards2Montgomery();
p[0] ==> e2m.in[0];
p[1] ==> e2m.in[1];
var i;
2018-11-27 20:30:33 +03:00
bits[0] = BitElementMulAny();
e2m.out[0] ==> bits[0].dblIn[0]
e2m.out[1] ==> bits[0].dblIn[1]
e2m.out[0] ==> bits[0].addIn[0]
e2m.out[1] ==> bits[0].addIn[1]
e[1] ==> bits[0].sel;
for (i=1; i<n-1; i++) {
2018-11-27 20:30:33 +03:00
bits[i] = BitElementMulAny();
bits[i-1].dblOut[0] ==> bits[i].dblIn[0]
bits[i-1].dblOut[1] ==> bits[i].dblIn[1]
bits[i-1].addOut[0] ==> bits[i].addIn[0]
bits[i-1].addOut[1] ==> bits[i].addIn[1]
e[i+1] ==> bits[i].sel;
}
bits[n-2].dblOut[0] ==> dbl[0];
bits[n-2].dblOut[1] ==> dbl[1];
component m2e = Montgomery2Edwards();
bits[n-2].addOut[0] ==> m2e.in[0];
bits[n-2].addOut[1] ==> m2e.in[1];
component eadder = BabyAdd();
m2e.out[0] ==> eadder.x1;
m2e.out[1] ==> eadder.y1;
-p[0] ==> eadder.x2;
p[1] ==> eadder.y2;
component lastSel = Multiplexor2();
e[0] ==> lastSel.sel;
eadder.xout ==> lastSel.in[0][0];
eadder.yout ==> lastSel.in[0][1];
m2e.out[0] ==> lastSel.in[1][0];
m2e.out[1] ==> lastSel.in[1][1];
lastSel.out[0] ==> out[0];
lastSel.out[1] ==> out[1];
}
// This function assumes that p is in the subgroup and it is different to 0
template EscalarMulAny(n) {
signal input e[n]; // Input in binary format
signal input p[2]; // Point (Twisted format)
signal output out[2]; // Point (Twisted format)
var nsegments = (n-1)\148 +1;
var nlastsegment = n - (nsegments-1)*148;
component segments[nsegments];
component doublers[nsegments-1];
component m2e[nsegments-1];
component adders[nsegments-1];
component zeropoint = IsZero();
zeropoint.in <== p[0];
var s;
var i;
var nseg;
for (s=0; s<nsegments; s++) {
nseg = (s < nsegments-1) ? 148 : nlastsegment;
2018-11-27 20:30:33 +03:00
segments[s] = SegmentMulAny(nseg);
for (i=0; i<nseg; i++) {
e[s*148+i] ==> segments[s].e[i];
}
if (s==0) {
// force G8 point if input point is zero
segments[s].p[0] <== p[0] + (5299619240641551281634865583518297030282874472190772894086521144482721001553 - p[0])*zeropoint.out;
segments[s].p[1] <== p[1] + (16950150798460657717958625567821834550301663161624707787222815936182638968203 - p[1])*zeropoint.out;
} else {
doublers[s-1] = MontgomeryDouble();
m2e[s-1] = Montgomery2Edwards();
adders[s-1] = BabyAdd();
segments[s-1].dbl[0] ==> doublers[s-1].in[0];
segments[s-1].dbl[1] ==> doublers[s-1].in[1];
doublers[s-1].out[0] ==> m2e[s-1].in[0];
doublers[s-1].out[1] ==> m2e[s-1].in[1];
m2e[s-1].out[0] ==> segments[s].p[0];
m2e[s-1].out[1] ==> segments[s].p[1];
if (s==1) {
segments[s-1].out[0] ==> adders[s-1].x1;
segments[s-1].out[1] ==> adders[s-1].y1;
} else {
adders[s-2].xout ==> adders[s-1].x1;
adders[s-2].yout ==> adders[s-1].y1;
}
segments[s].out[0] ==> adders[s-1].x2;
segments[s].out[1] ==> adders[s-1].y2;
}
}
if (nsegments == 1) {
segments[0].out[0]*(1-zeropoint.out) ==> out[0];
segments[0].out[1]+(1-segments[0].out[1])*zeropoint.out ==> out[1];
} else {
adders[nsegments-2].xout*(1-zeropoint.out) ==> out[0];
adders[nsegments-2].yout+(1-adders[nsegments-2].yout)*zeropoint.out ==> out[1];
}
}