Merge pull request #1 from tornadocash/feat/audit_fixes

Feat/audit fixes
This commit is contained in:
Pertsev Alexey 2020-04-06 12:55:59 +03:00 committed by GitHub
commit ce5dbe8e1a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 280 additions and 88 deletions

@ -512,7 +512,7 @@ Implementation of MiMC-7 hash in Fp being... (link to description of the hash)
### mimcsponge
- `MiMCSponge(nInputs, nRounds, nOutputs)`
- `MiMCSponge(nInputs, nOutputs)`
- DESCRIPTION
- SCHEMA

@ -21,7 +21,6 @@ include "compconstant.circom";
template AliasCheck() {
signal input in[254];
component compConstant = CompConstant(-1);
@ -30,3 +29,15 @@ template AliasCheck() {
compConstant.out === 0;
}
template AliasCheckBabyJub() {
signal input in[251];
signal input enabled;
component compConstant = CompConstant(2736030358979909402780800718157159386076813972158567259200215660948447373040);
for (var i=0; i<251; i++) in[i] ==> compConstant.in[i];
for (var i=0; i<3; i++) 0 ==> compConstant.in[251+i];
compConstant.out*enabled === 0;
}

@ -81,7 +81,7 @@ template BabyCheck() {
a*x2 + y2 === 1 + d*x2*y2;
}
// Extracts the public key from private key
// Extracts the public key from private key, as mentioned in https://tools.ietf.org/html/rfc8032
template BabyPbk() {
signal private input in;
signal output Ax;

@ -50,6 +50,7 @@ To waranty binary outputs:
This function calculates the number of extra bits in the output to do the full sum.
*/
/* a must be < Nq/2, where Nq is the number of elements in the scalar field */
function nbits(a) {
var n = 1;
var r = 0;
@ -61,6 +62,7 @@ function nbits(a) {
}
/* n must be such that (2**(n+1) -2) < Nq/ops, where Nq is the number of bits in the scalar field */
template BinSum(n, ops) {
var nout = nbits((2**n -1)*ops);
signal input in[ops][n];

@ -21,6 +21,7 @@ include "comparators.circom";
include "aliascheck.circom";
/* This doesn't check aliasing, so for n > 253 there are multiple bit strings for each number */
template Num2Bits(n) {
signal input in;
signal output out[n];
@ -76,6 +77,7 @@ template Bits2Num_strict() {
b2n.out ==> out;
}
/* n must not exceed 253 */
template Num2BitsNeg(n) {
signal input in;
signal output out[n];

@ -17,7 +17,7 @@
along with circom. If not, see <https://www.gnu.org/licenses/>.
*/
include "compconstant.circom";
include "aliascheck.circom";
include "pointbits.circom";
include "pedersen.circom";
include "escalarmulany.circom";
@ -40,12 +40,15 @@ template EdDSAVerifier(n) {
// Ensure S<Subgroup Order
component compConstant = CompConstant(2736030358979909402780800718157159386076813972158567259200215660948447373040);
component aliasCheck = AliasCheckBabyJub();
aliasCheck.enabled <== 1;
for (i=0; i<254; i++) {
S[i] ==> compConstant.in[i];
for (i=0; i<251; i++) {
S[i] ==> aliasCheck.in[i];
}
compConstant.out === 0;
S[251] === 0;
S[252] === 0;
S[253] === 0;
S[254] === 0;
S[255] === 0;

@ -17,7 +17,7 @@
along with circom. If not, see <https://www.gnu.org/licenses/>.
*/
include "compconstant.circom";
include "aliascheck.circom";
include "pointbits.circom";
include "mimc.circom";
include "bitify.circom";
@ -39,16 +39,15 @@ template EdDSAMiMCVerifier() {
// Ensure S<Subgroup Order
component snum2bits = Num2Bits(253);
component snum2bits = Num2Bits(251);
snum2bits.in <== S;
component compConstant = CompConstant(2736030358979909402780800718157159386076813972158567259200215660948447373040);
component aliasCheck = AliasCheckBabyJub();
aliasCheck.enabled <== 1;
for (i=0; i<253; i++) {
snum2bits.out[i] ==> compConstant.in[i];
for (i=0; i<251; i++) {
snum2bits.out[i] ==> aliasCheck.in[i];
}
compConstant.in[253] <== 0;
compConstant.out === 0;
// Calculate the h = H(R,A, msg)
@ -104,8 +103,8 @@ template EdDSAMiMCVerifier() {
5299619240641551281634865583518297030282874472190772894086521144482721001553,
16950150798460657717958625567821834550301663161624707787222815936182638968203
];
component mulFix = EscalarMulFix(253, BASE8);
for (i=0; i<253; i++) {
component mulFix = EscalarMulFix(251, BASE8);
for (i=0; i<251; i++) {
mulFix.e[i] <== snum2bits.out[i];
}

@ -17,7 +17,7 @@
along with circom. If not, see <https://www.gnu.org/licenses/>.
*/
include "compconstant.circom";
include "aliascheck.circom";
include "pointbits.circom";
include "mimcsponge.circom";
include "bitify.circom";
@ -39,20 +39,19 @@ template EdDSAMiMCSpongeVerifier() {
// Ensure S<Subgroup Order
component snum2bits = Num2Bits(253);
component snum2bits = Num2Bits(251);
snum2bits.in <== S;
component compConstant = CompConstant(2736030358979909402780800718157159386076813972158567259200215660948447373040);
component aliasCheck = AliasCheckBabyJub();
aliasCheck.enabled <== 1;
for (i=0; i<253; i++) {
snum2bits.out[i] ==> compConstant.in[i];
for (i=0; i<251; i++) {
snum2bits.out[i] ==> aliasCheck.in[i];
}
compConstant.in[253] <== 0;
compConstant.out === 0;
// Calculate the h = H(R,A, msg)
component hash = MiMCSponge(5, 220, 1);
component hash = MiMCSponge(5, 1);
hash.ins[0] <== R8x;
hash.ins[1] <== R8y;
hash.ins[2] <== Ax;
@ -104,8 +103,8 @@ template EdDSAMiMCSpongeVerifier() {
5299619240641551281634865583518297030282874472190772894086521144482721001553,
16950150798460657717958625567821834550301663161624707787222815936182638968203
];
component mulFix = EscalarMulFix(253, BASE8);
for (i=0; i<253; i++) {
component mulFix = EscalarMulFix(251, BASE8);
for (i=0; i<251; i++) {
mulFix.e[i] <== snum2bits.out[i];
}

@ -38,16 +38,15 @@ template EdDSAPoseidonVerifier() {
// Ensure S<Subgroup Order
component snum2bits = Num2Bits(253);
component snum2bits = Num2Bits(251);
snum2bits.in <== S;
component compConstant = CompConstant(2736030358979909402780800718157159386076813972158567259200215660948447373040);
component aliasCheck = AliasCheckBabyJub();
aliasCheck.enabled <== enabled;
for (i=0; i<253; i++) {
snum2bits.out[i] ==> compConstant.in[i];
for (i=0; i<251; i++) {
snum2bits.out[i] ==> aliasCheck.in[i];
}
compConstant.in[253] <== 0;
compConstant.out*enabled === 0;
// Calculate the h = H(R,A, msg)
@ -103,8 +102,8 @@ template EdDSAPoseidonVerifier() {
5299619240641551281634865583518297030282874472190772894086521144482721001553,
16950150798460657717958625567821834550301663161624707787222815936182638968203
];
component mulFix = EscalarMulFix(253, BASE8);
for (i=0; i<253; i++) {
component mulFix = EscalarMulFix(251, BASE8);
for (i=0; i<251; i++) {
mulFix.e[i] <== snum2bits.out[i];
}

@ -44,6 +44,7 @@ include "babyjub.circom";
A good way to see it is that the accumulator input of the adder >= 2^247*B and the other input
is the output of the windows that it's going to be <= 2^246*B
*/
/* base must not be the neutral element nor points of small order */
template WindowMulFix() {
signal input in[3];
signal input base[2];
@ -133,11 +134,12 @@ template WindowMulFix() {
/*
This component does a multiplication of a escalar times a fix base
nWindows must not exceed 82
Signals:
e: The scalar in bits
base: the base point in edwards format
out: The result
dbl: Point in Edwards to be linked to the next segment.
dbl: Point in Montgomery to be linked to the next segment.
*/
template SegmentMulFix(nWindows) {
@ -236,7 +238,7 @@ template EscalarMulFix(n, BASE) {
signal output out[2]; // Point (Twisted format)
var nsegments = (n-1)\246 +1; // 249 probably would work. But I'm not sure and for security I keep 246
var nlastsegment = n - (nsegments-1)*249;
var nlastsegment = n - (nsegments-1)*246;
component segments[nsegments];
@ -250,13 +252,13 @@ template EscalarMulFix(n, BASE) {
for (s=0; s<nsegments; s++) {
nseg = (s < nsegments-1) ? 249 : nlastsegment;
nseg = (s < nsegments-1) ? 246 : nlastsegment;
nWindows = ((nseg - 1)\3)+1;
segments[s] = SegmentMulFix(nWindows);
for (i=0; i<nseg; i++) {
segments[s].e[i] <== e[s*249+i];
segments[s].e[i] <== e[s*246+i];
}
for (i = nseg; i<nWindows*3; i++) {

@ -1,11 +1,13 @@
// implements MiMC-2n/n as hash using a sponge construction.
// log_5(21888242871839275222246405745257275088548364400416034343698204186575808495617) ~= 110
// => nRounds should be 220
template MiMCSponge(nInputs, nRounds, nOutputs) {
template MiMCSponge(nInputs, nOutputs) {
signal input ins[nInputs];
signal input k;
signal output outs[nOutputs];
var nRounds = 220;
// S = R||C
component S[nInputs + nOutputs - 1];

@ -85,6 +85,7 @@ template Montgomery2Edwards() {
*/
/* in1 must be != in2 */
template MontgomeryAdd() {
signal input in1[2];
signal input in2[2];

@ -108,6 +108,7 @@ template Window4() {
}
/* nWindows must not exceed 50 */
template Segment(nWindows) {
signal input in[nWindows*4];
signal input base[2];

@ -20,34 +20,29 @@ function createCode(seed, n) {
C.push("0x00");
C.mload();
C.div();
C.push("0x3f1a1187"); // MiMCSponge(uint256,uint256,uint256)
C.push("0xf47d33b5"); // MiMCSponge(uint256,uint256)
C.eq();
C.jmpi("start");
C.invalid();
C.label("start");
C.push("0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001"); // q
C.push("0x44");
C.mload(); // k q
C.push("0x04");
C.mload(); // xL k q
C.dup(2); // q xL k q
C.mload(); // xL q
C.dup(1); // q xL q
C.push("0x24");
C.mload(); // xR q xL k q
C.dup(1); // q xR q xL k q
C.dup(0); // q q xR q xL k q
C.dup(4); // xL q q xR q xL k q
C.dup(6); // k xL q q xR q xL k q
C.addmod(); // t=k+xL q xR q xL k q
C.dup(1); // q t q xR q xL k q
C.dup(0); // q q t q xR q xL k q
C.dup(2); // t q q t q xR q xL k q
C.dup(0); // t t q q t q xR q xL k q
C.mulmod(); // b=t^2 q t q xR q xL k q
C.dup(0); // b b q t q xR q xL k q
C.mulmod(); // c=t^4 t q xR q xL k q
C.mulmod(); // d=t^5 xR q xL k q
C.addmod(); // e=t^5+xR xL k q (for next round: xL xR k q)
C.mload(); // xR q xL q
C.dup(1); // q xR q xL q
C.dup(3); // xL q xR q xL q
C.dup(1); // q xL q xR q xL q
C.dup(0); // q q xL q xR q xL q
C.dup(2); // xL q q xL q xR q xL q
C.dup(0); // xL xL q q xL q xR q xL q
C.mulmod(); // b=xL^2 q xL q xR q xL q
C.dup(0); // b b q xL q xR q xL q
C.mulmod(); // c=xL^4 xL q xR q xL q
C.mulmod(); // d=xL^5 xR q xL q
C.addmod(); // e=xL^5+xR xL q (for next round: xL xR q)
for (let i=0; i<n-1; i++) {
if (i < n-2) {
@ -55,27 +50,24 @@ function createCode(seed, n) {
} else {
ci = "0x00";
}
C.swap(1); // xR xL k q
C.dup(3); // q xR xL k q
C.dup(3); // k q xR xL k q
C.dup(1); // q k q xR xL k q
C.dup(4); // xL q k q xR xL k q
C.push(ci); // ci xL q k q xR xL k q
C.addmod(); // a=ci+xL k q xR xL k q
C.addmod(); // t=a+k xR xL k q
C.dup(4); // q t xR xL k q
C.swap(1); // t q xR xL k q
C.dup(1); // q t q xR xL k q
C.dup(0); // q q t q xR xL k q
C.dup(2); // t q q t q xR xL k q
C.dup(0); // t t q q t q xR xL k q
C.mulmod(); // b=t^2 q t q xR xL k q
C.dup(0); // b b q t q xR xL k q
C.mulmod(); // c=t^4 t q xR xL k q
C.mulmod(); // d=t^5 xR xL k q
C.dup(4); // q d xR xL k q
C.swap(2); // xR d q xL k q
C.addmod(); // e=t^5+xR xL k q (for next round: xL xR k q)
C.swap(1); // xR xL q
C.dup(2); // q xR xL q
C.dup(2); // xL q xR xL q
C.push(ci); // ci xL q xR xL q
C.addmod(); // a=ci+xL xR xL q
C.dup(3); // q a xR xL q
C.swap(1); // a q xR xL q
C.dup(1); // q a q xR xL q
C.dup(0); // q q a q xR xL q
C.dup(2); // a q q a q xR xL q
C.dup(0); // a a q q a q xR xL q
C.mulmod(); // b=a^2 q a q xR xL q
C.dup(0); // b b q a q xR xL q
C.mulmod(); // c=a^4 a q xR xL q
C.mulmod(); // d=a^5 xR xL q
C.dup(3); // q d xR xL q
C.swap(2); // xR d q xL q
C.addmod(); // e=a^5+xR xL q (for next round: xL xR q)
}
C.push("0x20");
@ -100,10 +92,6 @@ module.exports.abi = [
{
"name": "xR_in",
"type": "uint256"
},
{
"name": "k",
"type": "uint256"
}
],
"name": "MiMCSponge",

@ -57,6 +57,7 @@ describe("Aliascheck test", () => {
assert(false);
} catch(err) {
assert(/Constraint\sdoesn't\smatch(.*)1\s!=\s0/.test(err.message) );
assert(err.message.indexOf("1 != 0") >= 0);
}
});
@ -68,6 +69,7 @@ describe("Aliascheck test", () => {
assert(false);
} catch(err) {
assert(/Constraint\sdoesn't\smatch(.*)1\s!=\s0/.test(err.message) );
assert(err.message.indexOf("1 != 0") >= 0);
}
});

75
test/aliascheckbabyjub.js Normal file

@ -0,0 +1,75 @@
const chai = require("chai");
const path = require("path");
const snarkjs = require("snarkjs");
const compiler = require("circom");
const assert = chai.assert;
const bigInt = snarkjs.bigInt;
function print(circuit, w, s) {
console.log(s + ": " + w[circuit.getSignalIdx(s)]);
}
function getBits(v, n) {
const res = [];
for (let i=0; i<n; i++) {
if (v.shr(i).isOdd()) {
res.push(bigInt.one);
} else {
res.push(bigInt.zero);
}
}
return res;
}
const r = bigInt("2736030358979909402780800718157159386076813972158567259200215660948447373041");
describe("Aliascheck test", () => {
let circuit;
before( async() => {
const cirDef = await compiler(path.join(__dirname, "circuits", "aliascheckbabyjub_test.circom"));
circuit = new snarkjs.Circuit(cirDef);
console.log("NConstrains: " + circuit.nConstraints);
});
it("Satisfy the aliastest 0", async () => {
const inp = getBits(bigInt.zero, 251);
circuit.calculateWitness({in: inp});
});
it("Satisfy the aliastest 3", async () => {
const inp = getBits(bigInt(3), 251);
circuit.calculateWitness({in: inp});
});
it("Satisfy the aliastest r-1", async () => {
const inp = getBits(r.sub(bigInt.one), 251);
circuit.calculateWitness({in: inp});
});
it("Nhot not satisfy an input of r", async () => {
const inp = getBits(r, 251);
try {
circuit.calculateWitness({in: inp});
assert(false);
} catch(err) {
assert(err.message.indexOf("Constraint doesn't match") >= 0);
assert(err.message.indexOf("1 != 0") >= 0);
}
});
it("Nhot not satisfy all ones", async () => {
const inp = getBits(bigInt(1).shl(251).sub(bigInt(1)), 251);
try {
circuit.calculateWitness({in: inp});
assert(false);
} catch(err) {
assert(err.message.indexOf("Constraint doesn't match") >= 0);
assert(err.message.indexOf("1 != 0") >= 0);
}
});
});

@ -101,6 +101,7 @@ describe("Baby Jub test", function () {
assert(false, "Should be a valid point");
} catch(err) {
assert(/Constraint\sdoesn't\smatch(.*)168700\s!=\s1/.test(err.message) );
assert(err.message.indexOf("168700 != 1") >= 0);
}
});

@ -0,0 +1,3 @@
include "../../circuits/aliascheck.circom";
component main = AliasCheckBabyJub()

@ -0,0 +1,3 @@
include "../../circuits/eddsamimcsponge.circom";
component main = EdDSAMiMCSpongeVerifier();

@ -1,3 +1,3 @@
include "../../circuits/mimcsponge.circom"
component main = MiMCSponge(2, 220, 3);
component main = MiMCSponge(2, 3);

99
test/eddsamimcsponge.js Normal file

@ -0,0 +1,99 @@
const chai = require("chai");
const path = require("path");
const snarkjs = require("snarkjs");
const compiler = require("circom");
const eddsa = require("../src/eddsa.js");
const assert = chai.assert;
const bigInt = snarkjs.bigInt;
describe("EdDSA MiMCSponge test", function () {
let circuit;
this.timeout(100000);
before( async () => {
const cirDef = await compiler(path.join(__dirname, "circuits", "eddsamimcsponge_test.circom"));
circuit = new snarkjs.Circuit(cirDef);
console.log("NConstrains EdDSA MiMCSponge: " + circuit.nConstraints);
});
it("Sign a single number", async () => {
const msg = bigInt(1234);
const prvKey = Buffer.from("0001020304050607080900010203040506070809000102030405060708090001", "hex");
const pubKey = eddsa.prv2pub(prvKey);
const signature = eddsa.signMiMCSponge(prvKey, msg);
assert(eddsa.verifyMiMCSponge(msg, signature, pubKey));
const w = circuit.calculateWitness({
enabled: 1,
Ax: pubKey[0],
Ay: pubKey[1],
R8x: signature.R8[0],
R8y: signature.R8[1],
S: signature.S,
M: msg});
assert(circuit.checkWitness(w));
});
it("Detect Invalid signature", async () => {
const msg = bigInt(1234);
const prvKey = Buffer.from("0001020304050607080900010203040506070809000102030405060708090001", "hex");
const pubKey = eddsa.prv2pub(prvKey);
const signature = eddsa.signMiMCSponge(prvKey, msg);
assert(eddsa.verifyMiMCSponge(msg, signature, pubKey));
try {
const w = circuit.calculateWitness({
enabled: 1,
Ax: pubKey[0],
Ay: pubKey[1],
R8x: signature.R8[0].add(bigInt(1)),
R8y: signature.R8[1],
S: signature.S,
M: msg});
assert(false);
} catch(err) {
assert(err.message.indexOf("Constraint doesn't match") >= 0);
assert(err.message.indexOf("1 != 0") >= 0);
}
});
it("Test a dissabled circuit with a bad signature", async () => {
const msg = bigInt(1234);
const prvKey = Buffer.from("0001020304050607080900010203040506070809000102030405060708090001", "hex");
const pubKey = eddsa.prv2pub(prvKey);
const signature = eddsa.signMiMCSponge(prvKey, msg);
assert(eddsa.verifyMiMCSponge(msg, signature, pubKey));
const w = circuit.calculateWitness({
enabled: 0,
Ax: pubKey[0],
Ay: pubKey[1],
R8x: signature.R8[0].add(bigInt(1)),
R8y: signature.R8[1],
S: signature.S,
M: msg});
assert(circuit.checkWitness(w));
});
});

@ -33,8 +33,8 @@ describe("MiMC Sponge Smart contract test", () => {
});
it("Shold calculate the mimc correctly", async () => {
const res = await mimc.methods.MiMCSponge(1,2,3).call();
const res2 = await mimcjs.hash(1,2,3);
const res = await mimc.methods.MiMCSponge(1,2).call();
const res2 = await mimcjs.hash(1,2, 0);
assert.equal(res.xL.toString(), res2.xL.toString());
assert.equal(res.xR.toString(), res2.xR.toString());