circomlib/circuits/poseidon.circom

99 lines
2.6 KiB
Plaintext

include "./poseidon_constants.circom";
template Sigma() {
signal input in;
signal output out;
signal in2;
signal in4;
in2 <== in*in;
in4 <== in2*in2;
out <== in4*in;
}
template Ark(t, C, r) {
signal input in[t];
signal output out[t];
for (var i=0; i<t; i++) {
out[i] <== in[i] + C[i + r];
}
}
template Mix(t, M) {
signal input in[t];
signal output out[t];
var lc;
for (var i=0; i<t; i++) {
lc = 0;
for (var j=0; j<t; j++) {
lc += M[j][i]*in[j];
}
out[i] <== lc;
}
}
template Poseidon(nInputs) {
signal input inputs[nInputs];
signal output out;
// Using recommended parameters from whitepaper https://eprint.iacr.org/2019/458.pdf (table 2, table 8)
// Generated by https://extgit.iaik.tugraz.at/krypto/hadeshash/-/blob/master/code/calc_round_numbers.py
// And rounded up to nearest integer that divides by t
var N_ROUNDS_P[8] = [56, 57, 56, 60, 60, 63, 64, 63];
var t = nInputs + 1;
var nRoundsF = 8;
var nRoundsP = N_ROUNDS_P[t - 2];
var C[t*(nRoundsF + nRoundsP)] = POSEIDON_C(t);
var M[t][t] = POSEIDON_M(t);
component ark[nRoundsF + nRoundsP - 1];
component sigmaF[nRoundsF - 1][t];
component sigmaP[nRoundsP];
component mix[nRoundsF + nRoundsP - 1];
var k;
for (var i=0; i<nRoundsF + nRoundsP - 1; i++) {
ark[i] = Ark(t, C, t*i);
for (var j=0; j<t; j++) {
if (i==0) {
if (j<nInputs) {
ark[i].in[j] <== inputs[j];
} else {
ark[i].in[j] <== 0;
}
} else {
ark[i].in[j] <== mix[i-1].out[j];
}
}
if (i < nRoundsF/2 || i >= nRoundsP + nRoundsF/2) {
k = i < nRoundsF/2 ? i : i - nRoundsP;
mix[i] = Mix(t, M);
for (var j=0; j<t; j++) {
sigmaF[k][j] = Sigma();
sigmaF[k][j].in <== ark[i].out[j];
mix[i].in[j] <== sigmaF[k][j].out;
}
} else {
k = i - nRoundsF/2;
mix[i] = Mix(t, M);
sigmaP[k] = Sigma();
sigmaP[k].in <== ark[i].out[0];
mix[i].in[0] <== sigmaP[k].out;
for (var j=1; j<t; j++) {
mix[i].in[j] <== ark[i].out[j];
}
}
}
// last round is done only for the first word, so we do it manually to save constraints
component lastSigmaF = Sigma();
lastSigmaF.in <== mix[nRoundsF + nRoundsP - 2].out[0] + C[t*(nRoundsF + nRoundsP - 1)];
out <== lastSigmaF.out;
}