ethers.js/packages/asm/src.ts/assembler.ts

1352 lines
44 KiB
TypeScript
Raw Normal View History

"use strict";
// @TODO:
// - warn return/revert non-empty, comment ; !assert(+1 @extra)
// - In JS add config (positionIndependent)
// - When checking name collisions, verify no collision in javascript
import { dirname, resolve } from "path";
import _module from "module";
import vm from "vm";
import { ethers } from "ethers";
2020-01-31 05:41:03 +03:00
import { Opcode } from "./opcodes";
import { parse as _parse, parser as _parser } from "./_parser";
import { version } from "./_version";
const logger = new ethers.utils.Logger(version);
const Guard = { };
function hexConcat(values: Array<Opcode | ethers.utils.BytesLike>): string {
return ethers.utils.hexlify(ethers.utils.concat(values.map((v) => {
if (v instanceof Opcode) { return [ v.value ]; }
if (typeof(v) === "number") {
if (v >= 0 && v <= 255 && !(v % 1)) {
return ethers.utils.hexlify(v);
} else {
throw new Error("invalid number: " + v);
}
}
return v;
})));
}
function repeat(char: string, length: number): string {
let result = char;
while (result.length < length) { result += result; }
return result.substring(0, length);
}
class Script {
readonly filename: string;
readonly context: any;
readonly contextObject: any;
private _context: { context: any };
constructor(filename: string, callback: (name: string, context: any) => any) {
ethers.utils.defineReadOnly(this, "filename", filename);
ethers.utils.defineReadOnly(this, "contextObject", this._baseContext(callback));
ethers.utils.defineReadOnly(this, "context", vm.createContext(this.contextObject));
}
_baseContext(callback: (name: string, context: any) => any): any {
return new Proxy({
__filename: this.filename,
__dirname: dirname(this.filename),
console: console,
Uint8Array: Uint8Array,
ethers: ethers,
utils: ethers.utils,
2020-01-31 05:41:03 +03:00
BigNumber: ethers.BigNumber,
arrayify: ethers.utils.arrayify,
concat: hexConcat,
2020-01-31 05:41:03 +03:00
hexlify: ethers.utils.hexlify,
zeroPad: function(value: ethers.utils.BytesLike, length: number) {
return ethers.utils.hexlify(ethers.utils.zeroPad(value, length));
},
id: ethers.utils.id,
keccak256: ethers.utils.keccak256,
namehash: ethers.utils.namehash,
sha256: ethers.utils.sha256,
parseEther: ethers.utils.parseEther,
formatEther: ethers.utils.formatEther,
parseUnits: ethers.utils.parseUnits,
formatUnits: ethers.utils.formatUnits,
randomBytes: function(length: number): string {
return ethers.utils.hexlify(ethers.utils.randomBytes(length));
},
toUtf8Bytes: ethers.utils.toUtf8Bytes,
toUtf8String: ethers.utils.toUtf8String,
formatBytes32String: ethers.utils.formatBytes32String,
parseBytes32String: ethers.utils.parseBytes32String,
2020-01-31 05:41:03 +03:00
Opcode: Opcode,
sighash: function(signature: string): string {
return ethers.utils.id(ethers.utils.FunctionFragment.from(signature).format()).substring(0, 10);
},
topichash: function(signature: string): string {
return ethers.utils.id(ethers.utils.EventFragment.from(signature).format());
},
assemble: assemble,
disassemble: disassemble,
Error: Error
}, {
get: (obj: any, key: string): any => {
if (obj[key]) { return obj[key]; }
if (!callback) { return undefined; }
return callback(key, this._context.context);
}
});
}
async evaluate(code: string, context?: any): Promise<string> {
if (this._context) { throw new Error("evaluation collision"); }
this._context = { context: context };
const script = new vm.Script(code, { filename: this.filename });
let result = script.runInContext(this.context);
if (result instanceof Promise) {
result = await result;
}
this._context = null;
return result;
}
}
let nextTag = 1;
export type Location = {
offset: number;
line: number;
length: number;
source: string;
statement: boolean;
};
export type AssembleVisitFunc = (node: Node, bytecode: string) => void;
export type VisitFunc = (node: Node) => void;
function throwError(message: string, location: Location): never {
2020-04-25 10:26:44 +03:00
return logger.throwError(message, <any>"ASSEMBLER", {
location: location
});
}
export abstract class Node {
readonly tag: string;
readonly location: Location;
constructor(guard: any, location: Location, options: { [ key: string ]: any }) {
if (guard !== Guard) { throwError("cannot instantiate class", location); }
logger.checkAbstract(new.target, Node);
ethers.utils.defineReadOnly(this, "location", Object.freeze(location));
ethers.utils.defineReadOnly(this, "tag", `node-${ nextTag++ }-${ this.constructor.name }`);
for (const key in options) {
2020-02-04 16:01:26 +03:00
ethers.utils.defineReadOnly<any, any>(this, key, options[key]);
}
}
// Note: EVERY node must call assemble with `this`, even if only with
// the bytes "0x" to trigger the offset and bytecode checks
async assemble(assembler: Assembler, visit: AssembleVisitFunc): Promise<void> {
assembler.start(this);
visit(this, "0x");
assembler.end(this);
}
children(): Array<Node> {
return [ ];
}
visit(visit: VisitFunc): void {
visit(this);
this.children().forEach((child) => {
child.visit(visit);
});
}
static from(options: any): Node {
const Factories: { [ type: string ]: { from: (options: any) => Node }} = {
data: DataNode,
decimal: LiteralNode,
eval: EvaluationNode,
exec: ExecutionNode,
hex: LiteralNode,
label: LabelNode,
length: LinkNode,
offset: LinkNode,
opcode: OpcodeNode,
pop: PopNode,
scope: ScopeNode,
};
const factory = Factories[options.type];
if (!factory) { throwError("unknown type: " + options.type, options.loc); }
return factory.from(options);
}
}
2020-02-04 07:09:32 +03:00
export abstract class ValueNode extends Node {
constructor(guard: any, location: Location, options: { [ key: string ]: any }) {
logger.checkAbstract(new.target, ValueNode);
super(guard, location, options);
}
getPushLiteral(value: ethers.utils.BytesLike | ethers.utils.Hexable | number) {
// Convert value into a hexstring
const hex = ethers.utils.hexlify(value);
if (hex === "0x") {
throwError("invalid literal: 0x", this.location);
}
// Make sure it will fit into a push
const length = ethers.utils.hexDataLength(hex);
if (length === 0 || length > 32) {
throwError(`literal out of range: ${ hex }`, this.location);
}
return hexConcat([ Opcode.from("PUSH" + String(length)), hex ]);
}
}
export class LiteralNode extends ValueNode {
readonly value: string;
readonly verbatim: boolean;
constructor(guard: any, location: Location, value: string, verbatim: boolean) {
super(guard, location, { value, verbatim });
}
async assemble(assembler: Assembler, visit: AssembleVisitFunc): Promise<void> {
assembler.start(this);
if (this.verbatim) {
if (this.value.substring(0, 2) === "0x") {
visit(this, this.value);
} else {
visit(this, ethers.BigNumber.from(this.value).toHexString());
}
} else {
visit(this, this.getPushLiteral(ethers.BigNumber.from(this.value)));
}
assembler.end(this);
}
static from(options: any): LiteralNode {
if (options.type !== "hex" && options.type !== "decimal") { throwError("expected hex or decimal type", options.loc); }
return new LiteralNode(Guard, options.loc, options.value, !!options.verbatim);
}
}
export class PopNode extends ValueNode {
readonly index: number;
constructor(guard: any, location: Location, index: number) {
super(guard, location, { index });
}
get placeholder(): string {
if (this.index === 0) { return "$$"; }
return "$" + String(this.index);
}
static from(options: any): PopNode {
return new PopNode(Guard, options.loc, options.index);
}
}
export class LinkNode extends ValueNode {
readonly type: string;
readonly label: string;
constructor(guard: any, location: Location, type: string, label: string) {
super(guard, location, { type, label });
}
async assemble(assembler: Assembler, visit: AssembleVisitFunc): Promise<void> {
assembler.start(this);
let value: number = null;
let isOffset = false;
const target = assembler.getTarget(this.label);
if (target instanceof LabelNode) {
if (this.type === "offset") {
value = (<number>(assembler.getLinkValue(target, this)));
isOffset = true;
}
} else {
const result = (<DataSource>(assembler.getLinkValue(target, this)));
if (this.type === "offset") {
value = result.offset;
isOffset = true;
} else if (this.type === "length") {
value = result.length;
}
}
if (value == null) {
throwError("labels can only be targetted as offsets", this.location);
}
if (isOffset && assembler.positionIndependentCode) {
const here = assembler.getOffset(this, this);
const opcodes = [ ];
if (here > value) {
// Jump backwards
// Find a literal with length the encodes its own length in the delta
let literal = "0x";
for (let w = 1; w <= 5; w++) {
if (w > 4) { throwError("jump too large!", this.location); }
literal = this.getPushLiteral(here - value + w);
if (ethers.utils.hexDataLength(literal) <= w) {
literal = ethers.utils.hexZeroPad(literal, w);
break;
}
}
opcodes.push(literal);
opcodes.push(Opcode.from("PC"));
opcodes.push(Opcode.from("SUB"));
// This also works, in case the above literal thing doesn't work out...
//opcodes.push(Opcode.from("PC"));
//opcodes.push(pushLiteral(-delta));
//opcodes.push(Opcode.from("SWAP1"));
//opcodes.push(Opcode.from("SUB"));
} else {
// Jump forwards; this is easy to calculate since we can
// do PC firat.
opcodes.push(Opcode.from("PC"));
opcodes.push(this.getPushLiteral(value - here));
opcodes.push(Opcode.from("ADD"));
}
visit(this, hexConcat(opcodes));
} else {
visit(this, this.getPushLiteral(value));
}
assembler.end(this);
}
static from(options: any): LinkNode {
// @TODO: Verify type is offset or link...
return new LinkNode(Guard, options.loc, options.type, options.label);
}
}
export class OpcodeNode extends ValueNode {
readonly opcode: Opcode;
readonly operands: Array<ValueNode>;
readonly instructional: boolean;
constructor(guard: any, location: Location, opcode: Opcode, operands: Array<ValueNode>, instructional: boolean) {
super(guard, location, { instructional, opcode, operands });
}
async assemble(assembler: Assembler, visit: AssembleVisitFunc): Promise<void> {
assembler.start(this);
// Compute the bytecode in reverse stack order
for (let i = this.operands.length - 1; i >= 0; i--) {
await this.operands[i].assemble(assembler, visit);
}
// Append this opcode
visit(this, ethers.utils.hexlify(this.opcode.value));
assembler.end(this);
}
children(): Array<Node> {
return this.operands;
}
visit(visit: VisitFunc): void {
for (let i = this.operands.length - 1; i >= 0; i--) {
this.operands[i].visit(visit);
}
visit(this);
}
static from(options: any): OpcodeNode {
if (options.type !== "opcode") { throwError("expected opcode type", options.loc); }
2020-01-31 05:41:03 +03:00
const opcode = Opcode.from(options.mnemonic);
if (!opcode) { throwError("unknown opcode: " + options.mnemonic, options.loc); }
const operands = Object.freeze(options.operands.map((o: any) => {
const operand = Node.from(o);
if (!(operand instanceof ValueNode)) {
throwError("bad grammar?!", options.loc);
}
return operand;
}));
return new OpcodeNode(Guard, options.loc, opcode, operands, !!options.bare);
}
}
2020-02-04 07:09:32 +03:00
export abstract class LabelledNode extends Node {
readonly name: string;
constructor(guard: any, location: Location, name: string, values?: { [ key: string ]: any }) {
logger.checkAbstract(new.target, LabelledNode);
values = ethers.utils.shallowCopy(values || { });
values.name = name;
super(guard, location, values);
}
}
export class LabelNode extends LabelledNode {
async assemble(assembler: Assembler, visit: AssembleVisitFunc): Promise<void> {
assembler.start(this);
2020-01-31 05:41:03 +03:00
visit(this, ethers.utils.hexlify(Opcode.from("JUMPDEST").value));
assembler.end(this);
}
static from(options: any): LabelNode {
if (options.type !== "label") { throwError("expected label type", options.loc); }
return new LabelNode(Guard, options.loc, options.name);
}
}
export class PaddingNode extends ValueNode {
_length: number;
constructor(guard: any, location: Location) {
super(guard, location, { });
this._length = 0;
}
setLength(length: number): void {
this._length = length;
}
async assemble(assembler: Assembler, visit: AssembleVisitFunc): Promise<void> {
assembler.start(this);
const padding = new Uint8Array(this._length);
padding.fill(0);
visit(this, ethers.utils.hexlify(padding));
assembler.end(this);
}
}
export class DataNode extends LabelledNode {
readonly data: Array<ValueNode>;
readonly padding: PaddingNode;
constructor(guard: any, location: Location, name: string, data: string) {
super(guard, location, name, { data });
ethers.utils.defineReadOnly(this, "padding", new PaddingNode(Guard, this.location));
}
async assemble(assembler: Assembler, visit: AssembleVisitFunc): Promise<void> {
assembler.start(this);
// @TODO: This is a problem... We need to visit before visiting children
// so offsets are correct, but then we cannot pad...
visit(this, "0x")
for (let i = 0; i < this.data.length; i++) {
await this.data[i].assemble(assembler, visit);
}
// We pad data if is contains PUSH opcodes that would overrun
// the data, which could eclipse valid operations (since the
// VM won't execute or jump within PUSH operations)
const bytecode = ethers.utils.concat(this.data.map((d) => assembler.getBytecode(d)));
// Replay the data as bytecode, skipping PUSH data
let i = 0;
while (i < bytecode.length) {
2020-01-31 05:41:03 +03:00
const opcode = Opcode.from(bytecode[i++]);
if (opcode) { i += opcode.isPush(); }
}
// The amount we overshot the data by is how much padding we need
this.padding.setLength(i - bytecode.length);
await this.padding.assemble(assembler, visit);
assembler.end(this);
}
children(): Array<Node> {
const children = this.data.slice();
children.push(this.padding);
return children;
}
static from(options: any): DataNode {
if (options.type !== "data") { throwError("expected data type", options.loc); }
return new DataNode(Guard, options.loc, options.name, Object.freeze(options.data.map((d: any) => Node.from(d))));
}
}
export class EvaluationNode extends ValueNode {
readonly script: string;
readonly verbatim: boolean;
constructor(guard: any, location: Location, script: string, verbatim: boolean) {
super(guard, location, { script, verbatim });
}
async assemble(assembler: Assembler, visit: AssembleVisitFunc): Promise<void> {
assembler.start(this);
const result: any = await assembler.evaluate(this.script, this);
if (this.verbatim) {
if (typeof(result) === "number") {
visit(this, ethers.BigNumber.from(result).toHexString());
} else {
visit(this, ethers.utils.hexlify(result));
}
} else {
visit(this, this.getPushLiteral(result));
}
assembler.end(this);
}
static from(options: any): EvaluationNode {
if (options.type !== "eval") { throwError("expected eval type", options.loc); }
return new EvaluationNode(Guard, options.loc, options.script, !!options.verbatim);
}
}
2020-02-04 07:09:32 +03:00
export class ExecutionNode extends Node {
readonly script: string;
constructor(guard: any, location: Location, script: string) {
super(guard, location, { script });
}
async assemble(assembler: Assembler, visit: AssembleVisitFunc): Promise<void> {
assembler.start(this);
await assembler.evaluate(this.script, this);
assembler.end(this);
}
static from(options: any): ExecutionNode {
if (options.type !== "exec") { throwError("expected exec type", options.loc); }
return new ExecutionNode(Guard, options.loc, options.script);
}
}
export class ScopeNode extends LabelledNode {
readonly statements: Array<Node>;
constructor(guard: any, location: Location, name: string, statements: Array<Node>) {
super(guard, location, name, { statements });
}
async assemble(assembler: Assembler, visit: AssembleVisitFunc): Promise<void> {
assembler.start(this);
visit(this, "0x");
for (let i = 0; i < this.statements.length; i++) {
await this.statements[i].assemble(assembler, visit);
}
assembler.end(this);
}
children(): Array<Node> {
return this.statements;
}
static from(options: any): ScopeNode {
if (options.type !== "scope") { throwError("expected scope type", options.loc); }
return new ScopeNode(Guard, options.loc, options.name, Object.freeze(options.statements.map((s: any) => Node.from(s))));
}
}
export type Operation = {
opcode: Opcode;
offset: number;
length: number;
pushValue?: string;
};
export interface Bytecode extends Array<Operation> {
getOperation(offset: number): Operation;
getByte(offset: number): number;
getBytes(offset: number, length: number): Uint8Array;
byteLength: number;
operationCount: number;
}
export function disassemble(bytecode: string): Bytecode {
const ops: Array<Operation> = [ ];
const offsets: { [ offset: number ]: Operation } = { };
const bytes = ethers.utils.arrayify(bytecode, { allowMissingPrefix: true });
let i = 0;
let oob = false;
while (i < bytes.length) {
2020-01-31 05:41:03 +03:00
let opcode = Opcode.from(bytes[i]);
if (!opcode) {
opcode = new Opcode(`unknown (${ ethers.utils.hexlify(bytes[i]) })`, bytes[i], 0, 0);
} else if (oob && opcode.mnemonic === "JUMPDEST") {
opcode = new Opcode(`JUMPDEST (invalid; OOB!!)`, bytes[i], 0, 0);
}
const op: Operation = {
opcode: opcode,
offset: i,
length: 1
};
offsets[i] = op;
ops.push(op);
i++;
const push = opcode.isPush();
if (push) {
const data = ethers.utils.hexlify(bytes.slice(i, i + push));
if (ethers.utils.hexDataLength(data) === push) {
op.pushValue = data;
op.length += push;
i += push;
} else {
oob = true;
}
}
}
(<Bytecode>ops).getOperation = function(offset: number): Operation {
if (offset >= bytes.length) {
return {
opcode: Opcode.from("STOP"),
offset: offset,
length: 1
};
}
return (offsets[offset] || null);
};
(<Bytecode>ops).getByte = function(offset: number): number {
if (offset >= bytes.length) {
return 0x00;
}
return bytes[offset];
};
(<Bytecode>ops).getBytes = function(offset: number, length: number): Uint8Array {
const result = new Uint8Array(length);
result.fill(0);
if (offset < bytes.length) {
result.set(bytes.slice(offset));
}
return ethers.utils.arrayify(result);
};
(<Bytecode>ops).byteLength = bytes.length;
return (<Bytecode>ops);
}
export function formatBytecode(bytecode: Array<Operation>): string {
const lines: Array<string> = [ ];
bytecode.forEach((op) => {
const opcode = op.opcode;
let offset = ethers.utils.hexZeroPad(ethers.utils.hexlify(op.offset), 2);
if (opcode.isValidJumpDest()) {
offset += "*";
} else {
offset += " ";
}
let operation = opcode.mnemonic;
const push = opcode.isPush();
if (push) {
if (op.pushValue) {
2020-02-01 12:37:20 +03:00
operation = op.pushValue + `${ repeat(" ", 67 - op.pushValue.length) }; #${ push } `;
} else {
2020-02-01 12:37:20 +03:00
operation += `${ repeat(" ", 67 - operation.length) }; OOB!! `;
}
}
lines.push(`${ offset.substring(2) }: ${ operation }`);
});
return lines.join("\n");
}
export interface DataSource extends Array<number> {
offset: number;
ast: Node;
source: string;
_freeze?: () => void;
}
export type NodeState = {
node: Node;
offset: number;
bytecode: string;
};
export type AssemblerOptions = {
filename?: string;
retry?: number;
positionIndependentCode?: boolean;
defines?: { [ name: string ]: any };
target?: string;
};
export type ParserOptions = {
ignoreWarnings?: boolean;
}
class Assembler {
readonly root: Node;
readonly positionIndependentCode: boolean;
readonly nodes: { [ tag: string ]: NodeState };
readonly labels: { [ name: string ]: LabelledNode };
2020-02-04 16:01:26 +03:00
_parents: { [ tag: string ]: Node };
constructor(root: Node, positionIndependentCode?: boolean) {
ethers.utils.defineReadOnly(this, "root", root);
ethers.utils.defineReadOnly(this, "positionIndependentCode", !!positionIndependentCode);
const nodes: { [ tag: string ]: NodeState } = { };
2020-02-04 16:01:26 +03:00
const labels: { [ name: string ]: LabelledNode } = { };
const parents: { [ tag: string ]: Node } = { };
// Link labels to their target node
root.visit((node) => {
nodes[node.tag] = {
node: node,
offset: 0x0,
bytecode: "0x"
};
if (node instanceof LabelledNode) {
// Check for duplicate labels
if (labels[node.name]) {
logger.throwError(
("duplicate label: " + node.name),
ethers.utils.Logger.errors.UNSUPPORTED_OPERATION,
{ }
);
}
labels[node.name] = node;
}
});
root.visit((node) => {
// Check all labels exist
if (node instanceof LinkNode) {
const target = labels[node.label];
if (!target) {
logger.throwError(
("missing label: " + node.label),
ethers.utils.Logger.errors.UNSUPPORTED_OPERATION,
{ }
);
}
}
// Build the parent structure
node.children().forEach((child) => {
parents[child.tag] = node;
});
});
ethers.utils.defineReadOnly(this, "labels", Object.freeze(labels));
ethers.utils.defineReadOnly(this, "nodes", Object.freeze(nodes));
ethers.utils.defineReadOnly(this, "_parents", Object.freeze(parents));
}
// Link operations
getTarget(label: string): LabelledNode {
return this.labels[label];
}
// Evaluate script in the context of a {{! }} or {{= }}
evaluate(script: string, source: Node): Promise<any> {
return Promise.resolve(new Uint8Array(0));
}
getAncestor<T = Node>(node: Node, cls: { new(...args: any[]): T }): T {
node = this._parents[node.tag];
while (node) {
if (node instanceof cls) { return node; }
node = this._parents[node.tag];
}
return null;
}
getOffset(node: Node, source?: Node): number {
const offset = this.nodes[node.tag].offset;
if (source == null) { return offset }
const sourceScope: ScopeNode = ((source instanceof ScopeNode) ? source: this.getAncestor<ScopeNode>(source, ScopeNode));
return offset - this.nodes[sourceScope.tag].offset;
}
setOffset(node: Node, offset: number): void {
this.nodes[node.tag].offset = offset;
}
getBytecode(node: Node): string {
return this.nodes[node.tag].bytecode;
}
setBytecode(node: Node, bytecode: string): void {
this.nodes[node.tag].bytecode = bytecode;
}
getLinkValue(target: LabelledNode, source: Node): number | DataSource {
const sourceScope: ScopeNode = ((source instanceof ScopeNode) ? source: this.getAncestor<ScopeNode>(source, ScopeNode));
const targetScope: ScopeNode = ((target instanceof ScopeNode) ? target: this.getAncestor<ScopeNode>(target, ScopeNode));
if (target instanceof LabelNode) {
// Label offset (e.g. "@foo:"); accessible only within its direct scope
//const scope = this.getAncestor(source, Scope);
if (targetScope !== sourceScope) {
throwError(`cannot access ${ target.name } from ${ source.tag }`, source.location);
}
// Return the offset relative to its scope
return this.nodes[target.tag].offset - this.nodes[targetScope.tag].offset;
}
const info = this.nodes[target.tag];
// Return the offset is relative to its scope
const bytes = Array.prototype.slice.call(ethers.utils.arrayify(info.bytecode));
ethers.utils.defineReadOnly(bytes, "ast", target);
ethers.utils.defineReadOnly(bytes, "source", target.location.source);
if (!((target instanceof DataNode) || (target instanceof ScopeNode))) {
throwError("invalid link value lookup", source.location);
}
// Check that target is any descendant (or self) of the source scope
let safeOffset = (sourceScope == targetScope);
if (!safeOffset) {
sourceScope.visit((node) => {
if (node === targetScope) { safeOffset = true; }
});
}
// Not safe to access the offset; this will fault if anything tries.
if (!safeOffset) {
Object.defineProperty(bytes, "offset", {
get: function() { throwError(`cannot access ${ target.name }.offset from ${ source.tag }`, this.location); }
});
ethers.utils.defineReadOnly(bytes, "_freeze", function() { });
}
// Add the offset relative to the scope; unless the offset has
// been marked as invalid, in which case accessing it will fail
if (safeOffset) {
bytes.offset = info.offset - this.nodes[sourceScope.tag].offset;
let frozen = false;
ethers.utils.defineReadOnly(bytes, "_freeze", function() {
if (frozen) { return; }
frozen = true;
ethers.utils.defineReadOnly(bytes, "offset", bytes.offset);
});
}
return bytes;
}
start(node: Node): void { }
end(node: Node): void { }
}
export enum SemanticErrorSeverity {
error = "error",
warning = "warning"
};
export type SemanticError = {
readonly message: string;
readonly severity: SemanticErrorSeverity;
readonly node: Node;
};
// This Assembler is designed to only check for errors and warnings
// Warnings
// - Bare PUSH opcodes
// - Instructional opcode that has parameters
// Errors
// - Using a $$ outside of RPN
// - Using a $$ when it is not adjacent to the stack
// - The operand count does not match the opcode
// - An opcode is used as an operand but does not return a value
class SemanticChecker extends Assembler {
check(): Array<SemanticError> {
const errors: Array<SemanticError> = [ ];
this.root.visit((node) => {
if (node instanceof OpcodeNode) {
const opcode = node.opcode;
if (node.instructional) {
if (opcode.delta) {
errors.push({
message: `${ opcode.mnemonic } used as instructional`,
severity: SemanticErrorSeverity.warning,
node: node
});
}
} else {
if (opcode.mnemonic === "POP") {
if (node.operands.length !== 0) {
errors.push({
message: "POP expects 0 operands",
severity: SemanticErrorSeverity.error,
node: node
});
}
} else if (node.operands.length !== opcode.delta) {
errors.push({
message: `${ opcode.mnemonic } expects ${ opcode.delta } operands`,
severity: SemanticErrorSeverity.error,
node: node
});
}
}
if (opcode.isPush()) {
// A stray PUSH operation will gobble up the following code
// bytes which is bad. But this may be a disassembled program
// and that PUSH may actually be just some data (which is safe)
errors.push({
message: "PUSH opcode modifies program flow - use literals instead",
severity: SemanticErrorSeverity.warning,
node: node
});
} else if (!node.location.statement && opcode.alpha !== 1) {
// If an opcode does not push anything on the stack, it
// cannot be used as an operand
errors.push({
message: `${ node.opcode.mnemonic } cannot be an operand`,
severity: SemanticErrorSeverity.error,
node: node
});
}
}
if (node.location.statement) {
if (node instanceof PopNode) {
// $$ by istelf is useless and is intended to be an operand
errors.push({
message: `$$ must be an operand`,
severity: SemanticErrorSeverity.error,
node: node
});
} else {
const scope = this.getAncestor(node, ScopeNode);
// Make sure any $$ is stack adjacent (within this scope)
const ordered: Array<Node> = [ ];
node.visit((node) => {
if (scope !== this.getAncestor(node, ScopeNode)) { return; }
ordered.push(node);
});
// Allow any number of stack adjacent $$
let foundZero = null;
let lastIndex = 0;
while (ordered.length && ordered[0] instanceof PopNode) {
const popNode = (<PopNode>(ordered.shift()));
const index = popNode.index;
if (index === 0) {
foundZero = popNode;
} else if (index !== lastIndex + 1) {
errors.push({
message: `out-of-order stack placeholder ${ popNode.placeholder }; expected $$${ lastIndex + 1 }`,
severity: SemanticErrorSeverity.error,
node: popNode
});
while (ordered.length && ordered[0] instanceof PopNode) {
ordered.shift();
}
break;
} else {
lastIndex = index;
}
}
if (foundZero && lastIndex > 0) {
errors.push({
message: "cannot mix $$ and $1 stack placeholder",
severity: SemanticErrorSeverity.error,
node: foundZero
});
}
// If there are still any buried, we have a problem
const pops = ordered.filter((n) => (n instanceof PopNode));
if (pops.length) {
errors.push({
message: `stack placeholder ${ (<PopNode>(pops[0])).placeholder } must be stack adjacent`,
severity: SemanticErrorSeverity.error,
node: pops[0]
});
}
}
}
});
return errors;
}
}
class CodeGenerationAssembler extends Assembler {
readonly filename: string;
readonly retry: number;
readonly defines: { [ name: string ]: any };
readonly _stack: Array<Node>;
//_oldBytecode: { [ tag: string ]: string };
_nextBytecode: { [ tag: string ]: string };
_objectCache: { [ tag: string ]: any };
private _checks: Array<() => boolean>;
_script: Script;
_changed: boolean;
constructor(root: Node, options: AssemblerOptions) {
super(root, !!options.positionIndependentCode);
ethers.utils.defineReadOnly(this, "retry", ((options.retry != null) ? options.retry: 512));
ethers.utils.defineReadOnly(this, "filename", resolve(options.filename || "./contract.asm"));
ethers.utils.defineReadOnly(this, "defines", Object.freeze(options.defines || { }));
ethers.utils.defineReadOnly(this, "_stack", [ ]);
this.reset();
}
_didChange(): void {
this._changed = true;
}
get changed(): boolean {
return this._changed;
}
// Reset the assmebler for another run with updated values
reset(): void {
this._changed = false;
this._objectCache = { };
this._nextBytecode = { };
this._script = new Script(this.filename, (name: string, context: any) => {
return this.get(name, context);
});
this._checks = [ ];
}
evaluate(script: string, source: Node): Promise<any> {
return this._script.evaluate(script, source);
}
_runChecks(): void {
this._checks.forEach((func) => {
if (!func()) { this._didChange(); }
});
}
getLinkValue(target: LabelledNode, source: Node): number | DataSource {
// Since we are iteratively generating code, offsets and lengths
// may not be stable at any given point in time, so if an offset
// is negative the code is obviously wrong, however we set it to
// 0 so we can proceed with generation to fill in as many blanks
// as possible; then we will try assembling again
const result = super.getLinkValue(target, source);
if (typeof(result) === "number") {
if (result < 0) {
this._checks.push(() => false);
return 0;
}
this._checks.push(() => {
return (super.getLinkValue(target, source) === result);
});
return result;
}
// The offset cannot be used so is independent
try {
if (result.offset < 0) {
this._checks.push(() => false);
result.offset = 0;
//this._didChange();
} else {
this._checks.push(() => {
const check = <DataSource>super.getLinkValue(target, source);
if (check.offset === result.offset && ethers.utils.hexlify(check) === ethers.utils.hexlify(result)) {
return true;
}
return false;
});
}
} catch (error) {
this._checks.push(() => {
const check = <DataSource>super.getLinkValue(target, source);
return (ethers.utils.hexlify(check) === ethers.utils.hexlify(result));
});
}
return result;
}
start(node: Node): void {
this._stack.push(node);
//this._oldBytecode[node.tag] = this.getBytecode(node);
//this.setBytecode(node, "0x");
this._nextBytecode[node.tag] = "0x";
}
end(node: Node): void {
if (this._stack.pop() !== node) {
throwError("missing push/pop pair", node.location);
}
const oldBytecode = this.getBytecode(node);
this.setBytecode(node, this._nextBytecode[node.tag]);
if (!(node instanceof PaddingNode)) {
this._checks.push(() => {
return (oldBytecode === this.getBytecode(node));
});
}
}
// This is used by evaluate to access properties in JavaScript
// - "defines" allow meta-programming values to be used
// - jump destinations are available as numbers
// - bytecode and data are available as an immuatble DataSource
get(name: string, source: Node): any {
if (name === "defines") {
return this.defines;
} else if (name === "_ok") {
this._runChecks();
return !this._didChange;
}
const node = this.labels[name];
if (!node) { return undefined; }
// We cache objects when they are generated so all nodes
// receive consistent data; if there is a change we will
// run the entire assembly process again with the updated
// values
if (this._objectCache[node.tag] == null) {
const result = this.getLinkValue(node, source);
if (typeof(result) !== "number" ) { result._freeze(); }
this._objectCache[node.tag] = result;
}
return this._objectCache[node.tag];
}
async _assemble(): Promise<void> {
let offset = 0;
await this.root.assemble(this, (node, bytecode) => {
// Things have moved; we will need to try again
if (this.getOffset(node) !== offset) {
this.setOffset(node, offset);
//this._didChange();
this._checks.push(() => false);
}
this._stack.forEach((node) => {
this._nextBytecode[node.tag] = hexConcat([
this._nextBytecode[node.tag],
bytecode
]);
});
offset += ethers.utils.hexDataLength(bytecode);
});
this._runChecks();
}
async assemble(label?: string): Promise<string> {
if (label == null) { label = "_"; }
const target = this.getTarget(label);
if (!target) {
logger.throwArgumentError(`unknown labelled target: ${ label }`, "label", label);
} else if (!(target instanceof ScopeNode || target instanceof DataNode)) {
logger.throwArgumentError(`cannot assemble a bodyless label: ${ label }`, "label", label);
}
// Continue re-evaluating the bytecode until a stable set of
// offsets, length and values are reached.
await this._assemble();
for (let i = 0; i < this.retry; i++) {
// Regenerate the code with the updated assembler values
this.reset();
await this._assemble();
// Generated bytecode is stable!! :)
if (!this.changed) {
// This should not happen; something is wrong with the grammar
// or missing enter/exit call in assemble
if (this._stack.length !== 0) {
throwError("Bad AST! Bad grammar?!", null);
}
//console.log(`Assembled in ${ i } attempts`);
return this.getBytecode(target);
}
}
return logger.throwError(
`unable to assemble; ${ this.retry } attempts failed to generate stable bytecode`,
ethers.utils.Logger.errors.UNKNOWN_ERROR,
{ }
);
}
}
type _Location = {
first_line: number;
last_line: number;
first_column: number;
last_column: number;
statement: boolean;
}
export function parse(code: string, options?: ParserOptions): Node {
if (options == null) { options = { }; }
// Since jison allows \n, \r or \r\n line endings, we need some
// twekaing to get the correct position
const lines: Array<{ line: string, offset: number }> = [ ];
let offset = 0;
code.split(/(\r\n?|\n)/g).forEach((clump, index) => {
if (index % 2) {
lines[lines.length - 1].line += clump;
} else {
lines.push({ line: clump, offset: offset });
}
offset += clump.length;
});
// Add a mock-EOF to the end of the file so we don't out-of-bounds
// on the last character
if (lines.length) {
lines[lines.length - 1].line += "\n";
}
// Givens a line (1 offset) and column (0 offset) return the byte offset
const getOffset = function(line: number, column: number): number {
const info = lines[line - 1];
if (!info || column >= info.line.length) { throw new Error("out of range"); }
return info.offset + column;
};
// We use this in the _parser to convert locations to source
_parser.yy._ethersLocation = function(loc?: _Location): Location {
// The _ scope should call with null to get the full source
if (loc == null) {
return {
offset: 0,
line: 0,
length: code.length,
source: code,
statement: true
};
}
const offset = getOffset(loc.first_line, loc.first_column);
const end = getOffset(loc.last_line, loc.last_column);
return {
offset: offset,
line: loc.first_line - 1,
length: (end - offset),
source: code.substring(offset, end),
statement: (!!loc.statement)
};
};
const result = Node.from(_parse(code));
// Nuke the source code lookup callback
_parser.yy._ethersLocation = null;
// Semantic Checks
const checker = new SemanticChecker(result);
const errors = checker.check();
if (errors.filter((e) => (e.severity === SemanticErrorSeverity.error)).length || (errors.length && !options.ignoreWarnings)) {
const error = new Error("semantic errors during parsing");
(<any>error).errors = errors;
throw error;
}
return result;
}
export async function assemble(ast: Node, options?: AssemblerOptions): Promise<string> {
const assembler = new CodeGenerationAssembler(ast, options || { });
return assembler.assemble(options.target || "_");
}