"use strict"; var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; result["default"] = mod; return result; }; Object.defineProperty(exports, "__esModule", { value: true }); // See: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki // See: https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki // The English language word list. // For additional word lists, please see @ethersproject//wordlists var lang_en_1 = require("@ethersproject/wordlists/lang-en"); var basex_1 = require("@ethersproject/basex"); var errors = __importStar(require("@ethersproject/errors")); var bytes_1 = require("@ethersproject/bytes"); var bignumber_1 = require("@ethersproject/bignumber"); var strings_1 = require("@ethersproject/strings"); var pbkdf2_1 = require("@ethersproject/pbkdf2"); var properties_1 = require("@ethersproject/properties"); var signing_key_1 = require("@ethersproject/signing-key"); var sha2_1 = require("@ethersproject/sha2"); var transactions_1 = require("@ethersproject/transactions"); var N = bignumber_1.BigNumber.from("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"); // "Bitcoin seed" var MasterSecret = strings_1.toUtf8Bytes("Bitcoin seed"); var HardenedBit = 0x80000000; // Returns a byte with the MSB bits set function getUpperMask(bits) { return ((1 << bits) - 1) << (8 - bits); } // Returns a byte with the LSB bits set function getLowerMask(bits) { return (1 << bits) - 1; } function bytes32(value) { return bytes_1.hexZeroPad(bytes_1.hexlify(value), 32); } function base58check(data) { var checksum = bytes_1.hexDataSlice(sha2_1.sha256(sha2_1.sha256(data)), 0, 4); return basex_1.Base58.encode(bytes_1.concat([data, checksum])); } var _constructorGuard = {}; exports.defaultPath = "m/44'/60'/0'/0/0"; var HDNode = /** @class */ (function () { /** * This constructor should not be called directly. * * Please use: * - fromMnemonic * - fromSeed */ function HDNode(constructorGuard, privateKey, publicKey, parentFingerprint, chainCode, index, depth, mnemonic, path) { var _newTarget = this.constructor; errors.checkNew(_newTarget, HDNode); if (constructorGuard !== _constructorGuard) { throw new Error("HDNode constructor cannot be called directly"); } if (privateKey) { var signingKey = new signing_key_1.SigningKey(privateKey); properties_1.defineReadOnly(this, "privateKey", signingKey.privateKey); properties_1.defineReadOnly(this, "publicKey", signingKey.compressedPublicKey); } else { properties_1.defineReadOnly(this, "privateKey", null); properties_1.defineReadOnly(this, "publicKey", bytes_1.hexlify(publicKey)); } properties_1.defineReadOnly(this, "parentFingerprint", parentFingerprint); properties_1.defineReadOnly(this, "fingerprint", bytes_1.hexDataSlice(sha2_1.ripemd160(sha2_1.sha256(this.publicKey)), 0, 4)); properties_1.defineReadOnly(this, "address", transactions_1.computeAddress(this.publicKey)); properties_1.defineReadOnly(this, "chainCode", chainCode); properties_1.defineReadOnly(this, "index", index); properties_1.defineReadOnly(this, "depth", depth); properties_1.defineReadOnly(this, "mnemonic", mnemonic); properties_1.defineReadOnly(this, "path", path); } Object.defineProperty(HDNode.prototype, "extendedKey", { get: function () { // We only support the mainnet values for now, but if anyone needs // testnet values, let me know. I believe current senitment is that // we should always use mainnet, and use BIP-44 to derive the network // - Mainnet: public=0x0488B21E, private=0x0488ADE4 // - Testnet: public=0x043587CF, private=0x04358394 if (this.depth >= 256) { throw new Error("Depth too large!"); } return base58check(bytes_1.concat([ ((this.privateKey != null) ? "0x0488ADE4" : "0x0488B21E"), bytes_1.hexlify(this.depth), this.parentFingerprint, bytes_1.hexZeroPad(bytes_1.hexlify(this.index), 4), this.chainCode, ((this.privateKey != null) ? bytes_1.concat(["0x00", this.privateKey]) : this.publicKey), ])); }, enumerable: true, configurable: true }); HDNode.prototype.neuter = function () { return new HDNode(_constructorGuard, null, this.publicKey, this.parentFingerprint, this.chainCode, this.index, this.depth, null, this.path); }; HDNode.prototype._derive = function (index) { if (index > 0xffffffff) { throw new Error("invalid index - " + String(index)); } // Base path var path = this.path; if (path) { path += "/" + (index & ~HardenedBit); } var data = new Uint8Array(37); if (index & HardenedBit) { if (!this.privateKey) { throw new Error("cannot derive child of neutered node"); } // Data = 0x00 || ser_256(k_par) data.set(bytes_1.arrayify(this.privateKey), 1); // Hardened path if (path) { path += "'"; } } else { // Data = ser_p(point(k_par)) data.set(bytes_1.arrayify(this.publicKey)); } // Data += ser_32(i) for (var i = 24; i >= 0; i -= 8) { data[33 + (i >> 3)] = ((index >> (24 - i)) & 0xff); } var I = bytes_1.arrayify(sha2_1.computeHmac(sha2_1.SupportedAlgorithms.sha512, this.chainCode, data)); var IL = I.slice(0, 32); var IR = I.slice(32); // The private key var ki = null; // The public key var Ki = null; if (this.privateKey) { ki = bytes32(bignumber_1.BigNumber.from(IL).add(this.privateKey).mod(N)); } else { var ek = new signing_key_1.SigningKey(bytes_1.hexlify(IL)); Ki = ek._addPoint(this.publicKey); } return new HDNode(_constructorGuard, ki, Ki, this.fingerprint, bytes32(IR), index, this.depth + 1, this.mnemonic, path); }; HDNode.prototype.derivePath = function (path) { var components = path.split("/"); if (components.length === 0 || (components[0] === "m" && this.depth !== 0)) { throw new Error("invalid path - " + path); } if (components[0] === "m") { components.shift(); } var result = this; for (var i = 0; i < components.length; i++) { var component = components[i]; if (component.match(/^[0-9]+'$/)) { var index = parseInt(component.substring(0, component.length - 1)); if (index >= HardenedBit) { throw new Error("invalid path index - " + component); } result = result._derive(HardenedBit + index); } else if (component.match(/^[0-9]+$/)) { var index = parseInt(component); if (index >= HardenedBit) { throw new Error("invalid path index - " + component); } result = result._derive(index); } else { throw new Error("invlaid path component - " + component); } } return result; }; HDNode._fromSeed = function (seed, mnemonic) { var seedArray = bytes_1.arrayify(seed); if (seedArray.length < 16 || seedArray.length > 64) { throw new Error("invalid seed"); } var I = bytes_1.arrayify(sha2_1.computeHmac(sha2_1.SupportedAlgorithms.sha512, MasterSecret, seedArray)); return new HDNode(_constructorGuard, bytes32(I.slice(0, 32)), null, "0x00000000", bytes32(I.slice(32)), 0, 0, mnemonic, "m"); }; HDNode.fromMnemonic = function (mnemonic, password, wordlist) { // Check that the checksum s valid (will throw an error) mnemonicToEntropy(mnemonic, wordlist); return HDNode._fromSeed(mnemonicToSeed(mnemonic, password), mnemonic); }; HDNode.fromSeed = function (seed) { return HDNode._fromSeed(seed, null); }; HDNode.fromExtendedKey = function (extendedKey) { var bytes = basex_1.Base58.decode(extendedKey); if (bytes.length !== 82 || base58check(bytes.slice(0, 78)) !== extendedKey) { errors.throwError("invalid extended key", errors.INVALID_ARGUMENT, { argument: "extendedKey", value: "[REDACTED]" }); } var depth = bytes[4]; var parentFingerprint = bytes_1.hexlify(bytes.slice(5, 9)); var index = parseInt(bytes_1.hexlify(bytes.slice(9, 13)).substring(2), 16); var chainCode = bytes_1.hexlify(bytes.slice(13, 45)); var key = bytes.slice(45, 78); switch (bytes_1.hexlify(bytes.slice(0, 4))) { // Public Key case "0x0488b21e": case "0x043587cf": return new HDNode(_constructorGuard, null, bytes_1.hexlify(key), parentFingerprint, chainCode, index, depth, null, null); // Private Key case "0x0488ade4": case "0x04358394 ": if (key[0] !== 0) { break; } return new HDNode(_constructorGuard, bytes_1.hexlify(key.slice(1)), null, parentFingerprint, chainCode, index, depth, null, null); } return errors.throwError("invalid extended key", errors.INVALID_ARGUMENT, { argument: "extendedKey", value: "[REDACTED]" }); }; return HDNode; }()); exports.HDNode = HDNode; function mnemonicToSeed(mnemonic, password) { if (!password) { password = ""; } var salt = strings_1.toUtf8Bytes("mnemonic" + password, strings_1.UnicodeNormalizationForm.NFKD); return pbkdf2_1.pbkdf2(strings_1.toUtf8Bytes(mnemonic, strings_1.UnicodeNormalizationForm.NFKD), salt, 2048, 64, "sha512"); } exports.mnemonicToSeed = mnemonicToSeed; function mnemonicToEntropy(mnemonic, wordlist) { if (!wordlist) { wordlist = lang_en_1.langEn; } errors.checkNormalize(); var words = wordlist.split(mnemonic); if ((words.length % 3) !== 0) { throw new Error("invalid mnemonic"); } var entropy = bytes_1.arrayify(new Uint8Array(Math.ceil(11 * words.length / 8))); var offset = 0; for (var i = 0; i < words.length; i++) { var index = wordlist.getWordIndex(words[i].normalize("NFKD")); if (index === -1) { throw new Error("invalid mnemonic"); } for (var bit = 0; bit < 11; bit++) { if (index & (1 << (10 - bit))) { entropy[offset >> 3] |= (1 << (7 - (offset % 8))); } offset++; } } var entropyBits = 32 * words.length / 3; var checksumBits = words.length / 3; var checksumMask = getUpperMask(checksumBits); var checksum = bytes_1.arrayify(sha2_1.sha256(entropy.slice(0, entropyBits / 8)))[0]; checksum &= checksumMask; if (checksum !== (entropy[entropy.length - 1] & checksumMask)) { throw new Error("invalid checksum"); } return bytes_1.hexlify(entropy.slice(0, entropyBits / 8)); } exports.mnemonicToEntropy = mnemonicToEntropy; function entropyToMnemonic(entropy, wordlist) { entropy = bytes_1.arrayify(entropy); if ((entropy.length % 4) !== 0 || entropy.length < 16 || entropy.length > 32) { throw new Error("invalid entropy"); } var indices = [0]; var remainingBits = 11; for (var i = 0; i < entropy.length; i++) { // Consume the whole byte (with still more to go) if (remainingBits > 8) { indices[indices.length - 1] <<= 8; indices[indices.length - 1] |= entropy[i]; remainingBits -= 8; // This byte will complete an 11-bit index } else { indices[indices.length - 1] <<= remainingBits; indices[indices.length - 1] |= entropy[i] >> (8 - remainingBits); // Start the next word indices.push(entropy[i] & getLowerMask(8 - remainingBits)); remainingBits += 3; } } // Compute the checksum bits var checksum = bytes_1.arrayify(sha2_1.sha256(entropy))[0]; var checksumBits = entropy.length / 4; checksum &= getUpperMask(checksumBits); // Shift the checksum into the word indices indices[indices.length - 1] <<= checksumBits; indices[indices.length - 1] |= (checksum >> (8 - checksumBits)); if (!wordlist) { wordlist = lang_en_1.langEn; } return wordlist.join(indices.map(function (index) { return wordlist.getWord(index); })); } exports.entropyToMnemonic = entropyToMnemonic; function isValidMnemonic(mnemonic, wordlist) { try { mnemonicToEntropy(mnemonic, wordlist); return true; } catch (error) { } return false; } exports.isValidMnemonic = isValidMnemonic;