'use strict'; var __importDefault = (this && this.__importDefault) || function (mod) { return (mod && mod.__esModule) ? mod : { "default": mod }; }; var __importStar = (this && this.__importStar) || function (mod) { if (mod && mod.__esModule) return mod; var result = {}; if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k]; result["default"] = mod; return result; }; Object.defineProperty(exports, "__esModule", { value: true }); var aes_js_1 = __importDefault(require("aes-js")); var scrypt_js_1 = __importDefault(require("scrypt-js")); var uuid_1 = __importDefault(require("uuid")); var signing_key_1 = require("./signing-key"); var HDNode = __importStar(require("./hdnode")); var address_1 = require("../utils/address"); var bytes_1 = require("../utils/bytes"); var pbkdf2_1 = require("../utils/pbkdf2"); var keccak256_1 = require("../utils/keccak256"); var utf8_1 = require("../utils/utf8"); var random_bytes_1 = require("../utils/random-bytes"); function looseArrayify(hexString) { if (typeof (hexString) === 'string' && hexString.substring(0, 2) !== '0x') { hexString = '0x' + hexString; } return bytes_1.arrayify(hexString); } function zpad(value, length) { value = String(value); while (value.length < length) { value = '0' + value; } return value; } function getPassword(password) { if (typeof (password) === 'string') { return utf8_1.toUtf8Bytes(password, utf8_1.UnicodeNormalizationForm.NFKC); } return bytes_1.arrayify(password); } // Search an Object and its children recursively, caselessly. function searchPath(object, path) { var currentChild = object; var comps = path.toLowerCase().split('/'); for (var i = 0; i < comps.length; i++) { // Search for a child object with a case-insensitive matching key var matchingChild = null; for (var key in currentChild) { if (key.toLowerCase() === comps[i]) { matchingChild = currentChild[key]; break; } } // Didn't find one. :'( if (matchingChild === null) { return null; } // Now check this child... currentChild = matchingChild; } return currentChild; } // @TODO: Make a type for string or arrayish // See: https://github.com/ethereum/pyethsaletool function decryptCrowdsale(json, password) { var data = JSON.parse(json); password = getPassword(password); // Ethereum Address var ethaddr = address_1.getAddress(searchPath(data, 'ethaddr')); // Encrypted Seed var encseed = looseArrayify(searchPath(data, 'encseed')); if (!encseed || (encseed.length % 16) !== 0) { throw new Error('invalid encseed'); } var key = pbkdf2_1.pbkdf2(password, password, 2000, 32, 'sha256').slice(0, 16); var iv = encseed.slice(0, 16); var encryptedSeed = encseed.slice(16); // Decrypt the seed var aesCbc = new aes_js_1.default.ModeOfOperation.cbc(key, iv); var seed = bytes_1.arrayify(aesCbc.decrypt(encryptedSeed)); seed = aes_js_1.default.padding.pkcs7.strip(seed); // This wallet format is weird... Convert the binary encoded hex to a string. var seedHex = ''; for (var i = 0; i < seed.length; i++) { seedHex += String.fromCharCode(seed[i]); } var seedHexBytes = utf8_1.toUtf8Bytes(seedHex); var signingKey = new signing_key_1.SigningKey(keccak256_1.keccak256(seedHexBytes)); if (signingKey.address !== ethaddr) { throw new Error('corrupt crowdsale wallet'); } return signingKey; } exports.decryptCrowdsale = decryptCrowdsale; //@TODO: string or arrayish function decrypt(json, password, progressCallback) { var data = JSON.parse(json); var passwordBytes = getPassword(password); var decrypt = function (key, ciphertext) { var cipher = searchPath(data, 'crypto/cipher'); if (cipher === 'aes-128-ctr') { var iv = looseArrayify(searchPath(data, 'crypto/cipherparams/iv')); var counter = new aes_js_1.default.Counter(iv); var aesCtr = new aes_js_1.default.ModeOfOperation.ctr(key, counter); return bytes_1.arrayify(aesCtr.decrypt(ciphertext)); } return null; }; var computeMAC = function (derivedHalf, ciphertext) { return keccak256_1.keccak256(bytes_1.concat([derivedHalf, ciphertext])); }; var getSigningKey = function (key, reject) { var ciphertext = looseArrayify(searchPath(data, 'crypto/ciphertext')); var computedMAC = bytes_1.hexlify(computeMAC(key.slice(16, 32), ciphertext)).substring(2); if (computedMAC !== searchPath(data, 'crypto/mac').toLowerCase()) { reject(new Error('invalid password')); return null; } var privateKey = decrypt(key.slice(0, 16), ciphertext); var mnemonicKey = key.slice(32, 64); if (!privateKey) { reject(new Error('unsupported cipher')); return null; } var signingKey = new signing_key_1.SigningKey(privateKey); if (signingKey.address !== address_1.getAddress(data.address)) { reject(new Error('address mismatch')); return null; } // Version 0.1 x-ethers metadata must contain an encrypted mnemonic phrase if (searchPath(data, 'x-ethers/version') === '0.1') { var mnemonicCiphertext = looseArrayify(searchPath(data, 'x-ethers/mnemonicCiphertext')); var mnemonicIv = looseArrayify(searchPath(data, 'x-ethers/mnemonicCounter')); var mnemonicCounter = new aes_js_1.default.Counter(mnemonicIv); var mnemonicAesCtr = new aes_js_1.default.ModeOfOperation.ctr(mnemonicKey, mnemonicCounter); var path = searchPath(data, 'x-ethers/path') || HDNode.defaultPath; var entropy = bytes_1.arrayify(mnemonicAesCtr.decrypt(mnemonicCiphertext)); var mnemonic = HDNode.entropyToMnemonic(entropy); var node = HDNode.fromMnemonic(mnemonic).derivePath(path); if (node.privateKey != bytes_1.hexlify(privateKey)) { reject(new Error('mnemonic mismatch')); return null; } signingKey = new signing_key_1.SigningKey(node); } return signingKey; }; return new Promise(function (resolve, reject) { var kdf = searchPath(data, 'crypto/kdf'); if (kdf && typeof (kdf) === 'string') { if (kdf.toLowerCase() === 'scrypt') { var salt = looseArrayify(searchPath(data, 'crypto/kdfparams/salt')); var N = parseInt(searchPath(data, 'crypto/kdfparams/n')); var r = parseInt(searchPath(data, 'crypto/kdfparams/r')); var p = parseInt(searchPath(data, 'crypto/kdfparams/p')); if (!N || !r || !p) { reject(new Error('unsupported key-derivation function parameters')); return; } // Make sure N is a power of 2 if ((N & (N - 1)) !== 0) { reject(new Error('unsupported key-derivation function parameter value for N')); return; } var dkLen = parseInt(searchPath(data, 'crypto/kdfparams/dklen')); if (dkLen !== 32) { reject(new Error('unsupported key-derivation derived-key length')); return; } if (progressCallback) { progressCallback(0); } scrypt_js_1.default(passwordBytes, salt, N, r, p, 64, function (error, progress, key) { if (error) { error.progress = progress; reject(error); } else if (key) { key = bytes_1.arrayify(key); var signingKey = getSigningKey(key, reject); if (!signingKey) { return; } if (progressCallback) { progressCallback(1); } resolve(signingKey); } else if (progressCallback) { return progressCallback(progress); } }); } else if (kdf.toLowerCase() === 'pbkdf2') { var salt = looseArrayify(searchPath(data, 'crypto/kdfparams/salt')); var prfFunc = null; var prf = searchPath(data, 'crypto/kdfparams/prf'); if (prf === 'hmac-sha256') { prfFunc = 'sha256'; } else if (prf === 'hmac-sha512') { prfFunc = 'sha512'; } else { reject(new Error('unsupported prf')); return; } var c = parseInt(searchPath(data, 'crypto/kdfparams/c')); var dkLen = parseInt(searchPath(data, 'crypto/kdfparams/dklen')); if (dkLen !== 32) { reject(new Error('unsupported key-derivation derived-key length')); return; } var key = pbkdf2_1.pbkdf2(passwordBytes, salt, c, dkLen, prfFunc); var signingKey = getSigningKey(key, reject); if (!signingKey) { return; } resolve(signingKey); } else { reject(new Error('unsupported key-derivation function')); } } else { reject(new Error('unsupported key-derivation function')); } }); } exports.decrypt = decrypt; function encrypt(privateKey, password, options, progressCallback) { // the options are optional, so adjust the call as needed if (typeof (options) === 'function' && !progressCallback) { progressCallback = options; options = {}; } if (!options) { options = {}; } // Check the private key var privateKeyBytes = null; if (privateKey instanceof signing_key_1.SigningKey) { privateKeyBytes = bytes_1.arrayify(privateKey.privateKey); } else { privateKeyBytes = bytes_1.arrayify(privateKey); } if (privateKeyBytes.length !== 32) { throw new Error('invalid private key'); } var passwordBytes = getPassword(password); var entropy = null; if (options.entropy) { entropy = bytes_1.arrayify(options.entropy); } if (options.mnemonic) { if (entropy) { if (HDNode.entropyToMnemonic(entropy) !== options.mnemonic) { throw new Error('entropy and mnemonic mismatch'); } } else { entropy = bytes_1.arrayify(HDNode.mnemonicToEntropy(options.mnemonic)); } } var path = options.path; if (entropy && !path) { path = HDNode.defaultPath; } var client = options.client; if (!client) { client = "ethers.js"; } // Check/generate the salt var salt = null; if (options.salt) { salt = bytes_1.arrayify(options.salt); } else { salt = random_bytes_1.randomBytes(32); ; } // Override initialization vector var iv = null; if (options.iv) { iv = bytes_1.arrayify(options.iv); if (iv.length !== 16) { throw new Error('invalid iv'); } } else { iv = random_bytes_1.randomBytes(16); } // Override the uuid var uuidRandom = null; if (options.uuid) { uuidRandom = bytes_1.arrayify(options.uuid); if (uuidRandom.length !== 16) { throw new Error('invalid uuid'); } } else { uuidRandom = random_bytes_1.randomBytes(16); } // Override the scrypt password-based key derivation function parameters var N = (1 << 17), r = 8, p = 1; if (options.scrypt) { if (options.scrypt.N) { N = options.scrypt.N; } if (options.scrypt.r) { r = options.scrypt.r; } if (options.scrypt.p) { p = options.scrypt.p; } } return new Promise(function (resolve, reject) { if (progressCallback) { progressCallback(0); } // We take 64 bytes: // - 32 bytes As normal for the Web3 secret storage (derivedKey, macPrefix) // - 32 bytes AES key to encrypt mnemonic with (required here to be Ethers Wallet) scrypt_js_1.default(passwordBytes, salt, N, r, p, 64, function (error, progress, key) { if (error) { error.progress = progress; reject(error); } else if (key) { key = bytes_1.arrayify(key); // This will be used to encrypt the wallet (as per Web3 secret storage) var derivedKey = key.slice(0, 16); var macPrefix = key.slice(16, 32); // This will be used to encrypt the mnemonic phrase (if any) var mnemonicKey = key.slice(32, 64); // Get the address for this private key var address = (new signing_key_1.SigningKey(privateKeyBytes)).address; // Encrypt the private key var counter = new aes_js_1.default.Counter(iv); var aesCtr = new aes_js_1.default.ModeOfOperation.ctr(derivedKey, counter); var ciphertext = bytes_1.arrayify(aesCtr.encrypt(privateKeyBytes)); // Compute the message authentication code, used to check the password var mac = keccak256_1.keccak256(bytes_1.concat([macPrefix, ciphertext])); // See: https://github.com/ethereum/wiki/wiki/Web3-Secret-Storage-Definition var data = { address: address.substring(2).toLowerCase(), id: uuid_1.default.v4({ random: uuidRandom }), version: 3, Crypto: { cipher: 'aes-128-ctr', cipherparams: { iv: bytes_1.hexlify(iv).substring(2), }, ciphertext: bytes_1.hexlify(ciphertext).substring(2), kdf: 'scrypt', kdfparams: { salt: bytes_1.hexlify(salt).substring(2), n: N, dklen: 32, p: p, r: r }, mac: mac.substring(2) } }; // If we have a mnemonic, encrypt it into the JSON wallet if (entropy) { var mnemonicIv = random_bytes_1.randomBytes(16); var mnemonicCounter = new aes_js_1.default.Counter(mnemonicIv); var mnemonicAesCtr = new aes_js_1.default.ModeOfOperation.ctr(mnemonicKey, mnemonicCounter); var mnemonicCiphertext = bytes_1.arrayify(mnemonicAesCtr.encrypt(entropy)); var now = new Date(); var timestamp = (now.getUTCFullYear() + '-' + zpad(now.getUTCMonth() + 1, 2) + '-' + zpad(now.getUTCDate(), 2) + 'T' + zpad(now.getUTCHours(), 2) + '-' + zpad(now.getUTCMinutes(), 2) + '-' + zpad(now.getUTCSeconds(), 2) + '.0Z'); data['x-ethers'] = { client: client, gethFilename: ('UTC--' + timestamp + '--' + data.address), mnemonicCounter: bytes_1.hexlify(mnemonicIv).substring(2), mnemonicCiphertext: bytes_1.hexlify(mnemonicCiphertext).substring(2), version: "0.1" }; } if (progressCallback) { progressCallback(1); } resolve(JSON.stringify(data)); } else if (progressCallback) { return progressCallback(progress); } }); }); } exports.encrypt = encrypt;