ethers.js/packages/hdnode/index.js
2019-05-14 18:48:48 -04:00

316 lines
13 KiB
JavaScript

"use strict";
var __importStar = (this && this.__importStar) || function (mod) {
if (mod && mod.__esModule) return mod;
var result = {};
if (mod != null) for (var k in mod) if (Object.hasOwnProperty.call(mod, k)) result[k] = mod[k];
result["default"] = mod;
return result;
};
Object.defineProperty(exports, "__esModule", { value: true });
// See: https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
// See: https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
// The English language word list.
// For additional word lists, please see @ethersproject//wordlists
var lang_en_1 = require("@ethersproject/wordlists/lang-en");
var basex_1 = require("@ethersproject/basex");
var errors = __importStar(require("@ethersproject/errors"));
var bytes_1 = require("@ethersproject/bytes");
var bignumber_1 = require("@ethersproject/bignumber");
var strings_1 = require("@ethersproject/strings");
var pbkdf2_1 = require("@ethersproject/pbkdf2");
var properties_1 = require("@ethersproject/properties");
var signing_key_1 = require("@ethersproject/signing-key");
var sha2_1 = require("@ethersproject/sha2");
var transactions_1 = require("@ethersproject/transactions");
var N = bignumber_1.BigNumber.from("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141");
// "Bitcoin seed"
var MasterSecret = strings_1.toUtf8Bytes("Bitcoin seed");
var HardenedBit = 0x80000000;
// Returns a byte with the MSB bits set
function getUpperMask(bits) {
return ((1 << bits) - 1) << (8 - bits);
}
// Returns a byte with the LSB bits set
function getLowerMask(bits) {
return (1 << bits) - 1;
}
function bytes32(value) {
return bytes_1.hexZeroPad(bytes_1.hexlify(value), 32);
}
function base58check(data) {
var checksum = bytes_1.hexDataSlice(sha2_1.sha256(sha2_1.sha256(data)), 0, 4);
return basex_1.Base58.encode(bytes_1.concat([data, checksum]));
}
var _constructorGuard = {};
exports.defaultPath = "m/44'/60'/0'/0/0";
var HDNode = /** @class */ (function () {
/**
* This constructor should not be called directly.
*
* Please use:
* - fromMnemonic
* - fromSeed
*/
function HDNode(constructorGuard, privateKey, publicKey, parentFingerprint, chainCode, index, depth, mnemonic, path) {
var _newTarget = this.constructor;
errors.checkNew(_newTarget, HDNode);
if (constructorGuard !== _constructorGuard) {
throw new Error("HDNode constructor cannot be called directly");
}
if (privateKey) {
var signingKey = new signing_key_1.SigningKey(privateKey);
properties_1.defineReadOnly(this, "privateKey", signingKey.privateKey);
properties_1.defineReadOnly(this, "publicKey", signingKey.compressedPublicKey);
}
else {
properties_1.defineReadOnly(this, "privateKey", null);
properties_1.defineReadOnly(this, "publicKey", bytes_1.hexlify(publicKey));
}
properties_1.defineReadOnly(this, "parentFingerprint", parentFingerprint);
properties_1.defineReadOnly(this, "fingerprint", bytes_1.hexDataSlice(sha2_1.ripemd160(sha2_1.sha256(this.publicKey)), 0, 4));
properties_1.defineReadOnly(this, "address", transactions_1.computeAddress(this.publicKey));
properties_1.defineReadOnly(this, "chainCode", chainCode);
properties_1.defineReadOnly(this, "index", index);
properties_1.defineReadOnly(this, "depth", depth);
properties_1.defineReadOnly(this, "mnemonic", mnemonic);
properties_1.defineReadOnly(this, "path", path);
}
Object.defineProperty(HDNode.prototype, "extendedKey", {
get: function () {
// We only support the mainnet values for now, but if anyone needs
// testnet values, let me know. I believe current senitment is that
// we should always use mainnet, and use BIP-44 to derive the network
// - Mainnet: public=0x0488B21E, private=0x0488ADE4
// - Testnet: public=0x043587CF, private=0x04358394
if (this.depth >= 256) {
throw new Error("Depth too large!");
}
return base58check(bytes_1.concat([
((this.privateKey != null) ? "0x0488ADE4" : "0x0488B21E"),
bytes_1.hexlify(this.depth),
this.parentFingerprint,
bytes_1.hexZeroPad(bytes_1.hexlify(this.index), 4),
this.chainCode,
((this.privateKey != null) ? bytes_1.concat(["0x00", this.privateKey]) : this.publicKey),
]));
},
enumerable: true,
configurable: true
});
HDNode.prototype.neuter = function () {
return new HDNode(_constructorGuard, null, this.publicKey, this.parentFingerprint, this.chainCode, this.index, this.depth, null, this.path);
};
HDNode.prototype._derive = function (index) {
if (index > 0xffffffff) {
throw new Error("invalid index - " + String(index));
}
// Base path
var path = this.path;
if (path) {
path += "/" + (index & ~HardenedBit);
}
var data = new Uint8Array(37);
if (index & HardenedBit) {
if (!this.privateKey) {
throw new Error("cannot derive child of neutered node");
}
// Data = 0x00 || ser_256(k_par)
data.set(bytes_1.arrayify(this.privateKey), 1);
// Hardened path
if (path) {
path += "'";
}
}
else {
// Data = ser_p(point(k_par))
data.set(bytes_1.arrayify(this.publicKey));
}
// Data += ser_32(i)
for (var i = 24; i >= 0; i -= 8) {
data[33 + (i >> 3)] = ((index >> (24 - i)) & 0xff);
}
var I = bytes_1.arrayify(sha2_1.computeHmac(sha2_1.SupportedAlgorithms.sha512, this.chainCode, data));
var IL = I.slice(0, 32);
var IR = I.slice(32);
// The private key
var ki = null;
// The public key
var Ki = null;
if (this.privateKey) {
ki = bytes32(bignumber_1.BigNumber.from(IL).add(this.privateKey).mod(N));
}
else {
var ek = new signing_key_1.SigningKey(bytes_1.hexlify(IL));
Ki = ek._addPoint(this.publicKey);
}
return new HDNode(_constructorGuard, ki, Ki, this.fingerprint, bytes32(IR), index, this.depth + 1, this.mnemonic, path);
};
HDNode.prototype.derivePath = function (path) {
var components = path.split("/");
if (components.length === 0 || (components[0] === "m" && this.depth !== 0)) {
throw new Error("invalid path - " + path);
}
if (components[0] === "m") {
components.shift();
}
var result = this;
for (var i = 0; i < components.length; i++) {
var component = components[i];
if (component.match(/^[0-9]+'$/)) {
var index = parseInt(component.substring(0, component.length - 1));
if (index >= HardenedBit) {
throw new Error("invalid path index - " + component);
}
result = result._derive(HardenedBit + index);
}
else if (component.match(/^[0-9]+$/)) {
var index = parseInt(component);
if (index >= HardenedBit) {
throw new Error("invalid path index - " + component);
}
result = result._derive(index);
}
else {
throw new Error("invlaid path component - " + component);
}
}
return result;
};
HDNode._fromSeed = function (seed, mnemonic) {
var seedArray = bytes_1.arrayify(seed);
if (seedArray.length < 16 || seedArray.length > 64) {
throw new Error("invalid seed");
}
var I = bytes_1.arrayify(sha2_1.computeHmac(sha2_1.SupportedAlgorithms.sha512, MasterSecret, seedArray));
return new HDNode(_constructorGuard, bytes32(I.slice(0, 32)), null, "0x00000000", bytes32(I.slice(32)), 0, 0, mnemonic, "m");
};
HDNode.fromMnemonic = function (mnemonic, password, wordlist) {
// Check that the checksum s valid (will throw an error)
mnemonicToEntropy(mnemonic, wordlist);
return HDNode._fromSeed(mnemonicToSeed(mnemonic, password), mnemonic);
};
HDNode.fromSeed = function (seed) {
return HDNode._fromSeed(seed, null);
};
HDNode.fromExtendedKey = function (extendedKey) {
var bytes = basex_1.Base58.decode(extendedKey);
if (bytes.length !== 82 || base58check(bytes.slice(0, 78)) !== extendedKey) {
errors.throwError("invalid extended key", errors.INVALID_ARGUMENT, {
argument: "extendedKey",
value: "[REDACTED]"
});
}
var depth = bytes[4];
var parentFingerprint = bytes_1.hexlify(bytes.slice(5, 9));
var index = parseInt(bytes_1.hexlify(bytes.slice(9, 13)).substring(2), 16);
var chainCode = bytes_1.hexlify(bytes.slice(13, 45));
var key = bytes.slice(45, 78);
switch (bytes_1.hexlify(bytes.slice(0, 4))) {
// Public Key
case "0x0488b21e":
case "0x043587cf":
return new HDNode(_constructorGuard, null, bytes_1.hexlify(key), parentFingerprint, chainCode, index, depth, null, null);
// Private Key
case "0x0488ade4":
case "0x04358394 ":
if (key[0] !== 0) {
break;
}
return new HDNode(_constructorGuard, bytes_1.hexlify(key.slice(1)), null, parentFingerprint, chainCode, index, depth, null, null);
}
return errors.throwError("invalid extended key", errors.INVALID_ARGUMENT, {
argument: "extendedKey",
value: "[REDACTED]"
});
};
return HDNode;
}());
exports.HDNode = HDNode;
function mnemonicToSeed(mnemonic, password) {
if (!password) {
password = "";
}
var salt = strings_1.toUtf8Bytes("mnemonic" + password, strings_1.UnicodeNormalizationForm.NFKD);
return pbkdf2_1.pbkdf2(strings_1.toUtf8Bytes(mnemonic, strings_1.UnicodeNormalizationForm.NFKD), salt, 2048, 64, "sha512");
}
exports.mnemonicToSeed = mnemonicToSeed;
function mnemonicToEntropy(mnemonic, wordlist) {
if (!wordlist) {
wordlist = lang_en_1.langEn;
}
errors.checkNormalize();
var words = wordlist.split(mnemonic);
if ((words.length % 3) !== 0) {
throw new Error("invalid mnemonic");
}
var entropy = bytes_1.arrayify(new Uint8Array(Math.ceil(11 * words.length / 8)));
var offset = 0;
for (var i = 0; i < words.length; i++) {
var index = wordlist.getWordIndex(words[i].normalize("NFKD"));
if (index === -1) {
throw new Error("invalid mnemonic");
}
for (var bit = 0; bit < 11; bit++) {
if (index & (1 << (10 - bit))) {
entropy[offset >> 3] |= (1 << (7 - (offset % 8)));
}
offset++;
}
}
var entropyBits = 32 * words.length / 3;
var checksumBits = words.length / 3;
var checksumMask = getUpperMask(checksumBits);
var checksum = bytes_1.arrayify(sha2_1.sha256(entropy.slice(0, entropyBits / 8)))[0];
checksum &= checksumMask;
if (checksum !== (entropy[entropy.length - 1] & checksumMask)) {
throw new Error("invalid checksum");
}
return bytes_1.hexlify(entropy.slice(0, entropyBits / 8));
}
exports.mnemonicToEntropy = mnemonicToEntropy;
function entropyToMnemonic(entropy, wordlist) {
entropy = bytes_1.arrayify(entropy);
if ((entropy.length % 4) !== 0 || entropy.length < 16 || entropy.length > 32) {
throw new Error("invalid entropy");
}
var indices = [0];
var remainingBits = 11;
for (var i = 0; i < entropy.length; i++) {
// Consume the whole byte (with still more to go)
if (remainingBits > 8) {
indices[indices.length - 1] <<= 8;
indices[indices.length - 1] |= entropy[i];
remainingBits -= 8;
// This byte will complete an 11-bit index
}
else {
indices[indices.length - 1] <<= remainingBits;
indices[indices.length - 1] |= entropy[i] >> (8 - remainingBits);
// Start the next word
indices.push(entropy[i] & getLowerMask(8 - remainingBits));
remainingBits += 3;
}
}
// Compute the checksum bits
var checksum = bytes_1.arrayify(sha2_1.sha256(entropy))[0];
var checksumBits = entropy.length / 4;
checksum &= getUpperMask(checksumBits);
// Shift the checksum into the word indices
indices[indices.length - 1] <<= checksumBits;
indices[indices.length - 1] |= (checksum >> (8 - checksumBits));
if (!wordlist) {
wordlist = lang_en_1.langEn;
}
return wordlist.join(indices.map(function (index) { return wordlist.getWord(index); }));
}
exports.entropyToMnemonic = entropyToMnemonic;
function isValidMnemonic(mnemonic, wordlist) {
try {
mnemonicToEntropy(mnemonic, wordlist);
return true;
}
catch (error) { }
return false;
}
exports.isValidMnemonic = isValidMnemonic;