/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */ // bls12-381 pairing-friendly Barreto-Lynn-Scott elliptic curve construction allows to: // - Construct zk-SNARKs at the 128-bit security // - Use threshold signatures, which allows a user to sign lots of messages with one signature and // verify them swiftly in a batch, using Boneh-Lynn-Shacham signature scheme. // // The library uses G1 for public keys and G2 for signatures. Support for G1 signatures is planned. // Compatible with Algorand, Chia, Dfinity, Ethereum, FIL, Zcash. Matches specs // [pairing-curves-11](https://tools.ietf.org/html/draft-irtf-cfrg-pairing-friendly-curves-11), // [bls-sigs-04](https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04), // [hash-to-curve-12](https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-12). // // ### Summary // 1. BLS Relies on Bilinear Pairing (expensive) // 2. Private Keys: 32 bytes // 3. Public Keys: 48 bytes: 381 bit affine x coordinate, encoded into 48 big-endian bytes. // 4. Signatures: 96 bytes: two 381 bit integers (affine x coordinate), encoded into two 48 big-endian byte arrays. // - The signature is a point on the G2 subgroup, which is defined over a finite field // with elements twice as big as the G1 curve (G2 is over Fp2 rather than Fp. Fp2 is analogous to the complex numbers). // 5. The 12 stands for the Embedding degree. // // ### Formulas // - `P = pk x G` - public keys // - `S = pk x H(m)` - signing // - `e(P, H(m)) == e(G, S)` - verification using pairings // - `e(G, S) = e(G, SUM(n)(Si)) = MUL(n)(e(G, Si))` - signature aggregation // Filecoin uses little endian byte arrays for private keys - // so ensure to reverse byte order if you'll use it with FIL. import { sha256 } from '@noble/hashes/sha256'; import { randomBytes } from '@noble/hashes/utils'; import { bls, CurveFn } from './abstract/bls.js'; import * as mod from './abstract/modular.js'; import { concatBytes as concatB, ensureBytes, numberToBytesBE, bytesToNumberBE, bitLen, bitSet, bitGet, Hex, bitMask, bytesToHex, } from './abstract/utils.js'; // Types import { ProjPointType, ProjConstructor, mapToCurveSimpleSWU, AffinePoint, } from './abstract/weierstrass.js'; import { isogenyMap } from './abstract/hash-to-curve.js'; // Be friendly to bad ECMAScript parsers by not using bigint literals // prettier-ignore const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3), _4n = BigInt(4); // prettier-ignore const _8n = BigInt(8), _16n = BigInt(16); // CURVE FIELDS // Finite field over p. const Fp_raw = BigInt( '0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab' ); const Fp = mod.Field(Fp_raw); type Fp = bigint; // Finite field over r. // This particular field is not used anywhere in bls12-381, but it is still useful. const Fr = mod.Field(BigInt('0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001')); // Fp₂ over complex plane type BigintTuple = [bigint, bigint]; type Fp2 = { c0: bigint; c1: bigint }; const Fp2Add = ({ c0, c1 }: Fp2, { c0: r0, c1: r1 }: Fp2) => ({ c0: Fp.add(c0, r0), c1: Fp.add(c1, r1), }); const Fp2Subtract = ({ c0, c1 }: Fp2, { c0: r0, c1: r1 }: Fp2) => ({ c0: Fp.sub(c0, r0), c1: Fp.sub(c1, r1), }); const Fp2Multiply = ({ c0, c1 }: Fp2, rhs: Fp2) => { if (typeof rhs === 'bigint') return { c0: Fp.mul(c0, rhs), c1: Fp.mul(c1, rhs) }; // (a+bi)(c+di) = (ac−bd) + (ad+bc)i const { c0: r0, c1: r1 } = rhs; let t1 = Fp.mul(c0, r0); // c0 * o0 let t2 = Fp.mul(c1, r1); // c1 * o1 // (T1 - T2) + ((c0 + c1) * (r0 + r1) - (T1 + T2))*i const o0 = Fp.sub(t1, t2); const o1 = Fp.sub(Fp.mul(Fp.add(c0, c1), Fp.add(r0, r1)), Fp.add(t1, t2)); return { c0: o0, c1: o1 }; }; const Fp2Square = ({ c0, c1 }: Fp2) => { const a = Fp.add(c0, c1); const b = Fp.sub(c0, c1); const c = Fp.add(c0, c0); return { c0: Fp.mul(a, b), c1: Fp.mul(c, c1) }; }; type Fp2Utils = { fromBigTuple: (tuple: BigintTuple | bigint[]) => Fp2; reim: (num: Fp2) => { re: bigint; im: bigint }; mulByNonresidue: (num: Fp2) => Fp2; multiplyByB: (num: Fp2) => Fp2; frobeniusMap(num: Fp2, power: number): Fp2; }; // G2 is the order-q subgroup of E2(Fp²) : y² = x³+4(1+√−1), // where Fp2 is Fp[√−1]/(x2+1). #E2(Fp2 ) = h2q, where // G² - 1 // h2q // NOTE: ORDER was wrong! const FP2_ORDER = Fp_raw * Fp_raw; const Fp2: mod.IField & Fp2Utils = { ORDER: FP2_ORDER, BITS: bitLen(FP2_ORDER), BYTES: Math.ceil(bitLen(FP2_ORDER) / 8), MASK: bitMask(bitLen(FP2_ORDER)), ZERO: { c0: Fp.ZERO, c1: Fp.ZERO }, ONE: { c0: Fp.ONE, c1: Fp.ZERO }, create: (num) => num, isValid: ({ c0, c1 }) => typeof c0 === 'bigint' && typeof c1 === 'bigint', is0: ({ c0, c1 }) => Fp.is0(c0) && Fp.is0(c1), eql: ({ c0, c1 }: Fp2, { c0: r0, c1: r1 }: Fp2) => Fp.eql(c0, r0) && Fp.eql(c1, r1), neg: ({ c0, c1 }) => ({ c0: Fp.neg(c0), c1: Fp.neg(c1) }), pow: (num, power) => mod.FpPow(Fp2, num, power), invertBatch: (nums) => mod.FpInvertBatch(Fp2, nums), // Normalized add: Fp2Add, sub: Fp2Subtract, mul: Fp2Multiply, sqr: Fp2Square, // NonNormalized stuff addN: Fp2Add, subN: Fp2Subtract, mulN: Fp2Multiply, sqrN: Fp2Square, // Why inversion for bigint inside Fp instead of Fp2? it is even used in that context? div: (lhs, rhs) => Fp2.mul(lhs, typeof rhs === 'bigint' ? Fp.inv(Fp.create(rhs)) : Fp2.inv(rhs)), inv: ({ c0: a, c1: b }) => { // We wish to find the multiplicative inverse of a nonzero // element a + bu in Fp2. We leverage an identity // // (a + bu)(a - bu) = a² + b² // // which holds because u² = -1. This can be rewritten as // // (a + bu)(a - bu)/(a² + b²) = 1 // // because a² + b² = 0 has no nonzero solutions for (a, b). // This gives that (a - bu)/(a² + b²) is the inverse // of (a + bu). Importantly, this can be computing using // only a single inversion in Fp. const factor = Fp.inv(Fp.create(a * a + b * b)); return { c0: Fp.mul(factor, Fp.create(a)), c1: Fp.mul(factor, Fp.create(-b)) }; }, sqrt: (num) => { if (Fp2.eql(num, Fp2.ZERO)) return Fp2.ZERO; // Algo doesn't handles this case // TODO: Optimize this line. It's extremely slow. // Speeding this up would boost aggregateSignatures. // https://eprint.iacr.org/2012/685.pdf applicable? // https://github.com/zkcrypto/bls12_381/blob/080eaa74ec0e394377caa1ba302c8c121df08b07/src/fp2.rs#L250 // https://github.com/supranational/blst/blob/aae0c7d70b799ac269ff5edf29d8191dbd357876/src/exp2.c#L1 // Inspired by https://github.com/dalek-cryptography/curve25519-dalek/blob/17698df9d4c834204f83a3574143abacb4fc81a5/src/field.rs#L99 const candidateSqrt = Fp2.pow(num, (Fp2.ORDER + _8n) / _16n); const check = Fp2.div(Fp2.sqr(candidateSqrt), num); // candidateSqrt.square().div(this); const R = FP2_ROOTS_OF_UNITY; const divisor = [R[0], R[2], R[4], R[6]].find((r) => Fp2.eql(r, check)); if (!divisor) throw new Error('No root'); const index = R.indexOf(divisor); const root = R[index / 2]; if (!root) throw new Error('Invalid root'); const x1 = Fp2.div(candidateSqrt, root); const x2 = Fp2.neg(x1); const { re: re1, im: im1 } = Fp2.reim(x1); const { re: re2, im: im2 } = Fp2.reim(x2); if (im1 > im2 || (im1 === im2 && re1 > re2)) return x1; return x2; }, // Same as sgn0_fp2 in draft-irtf-cfrg-hash-to-curve-16 isOdd: (x: Fp2) => { const { re: x0, im: x1 } = Fp2.reim(x); const sign_0 = x0 % _2n; const zero_0 = x0 === _0n; const sign_1 = x1 % _2n; return BigInt(sign_0 || (zero_0 && sign_1)) == _1n; }, // Bytes util fromBytes(b: Uint8Array): Fp2 { if (b.length !== Fp2.BYTES) throw new Error(`fromBytes wrong length=${b.length}`); return { c0: Fp.fromBytes(b.subarray(0, Fp.BYTES)), c1: Fp.fromBytes(b.subarray(Fp.BYTES)) }; }, toBytes: ({ c0, c1 }) => concatB(Fp.toBytes(c0), Fp.toBytes(c1)), cmov: ({ c0, c1 }, { c0: r0, c1: r1 }, c) => ({ c0: Fp.cmov(c0, r0, c), c1: Fp.cmov(c1, r1, c), }), // Specific utils // toString() { // return `Fp2(${this.c0} + ${this.c1}×i)`; // } reim: ({ c0, c1 }) => ({ re: c0, im: c1 }), // multiply by u + 1 mulByNonresidue: ({ c0, c1 }) => ({ c0: Fp.sub(c0, c1), c1: Fp.add(c0, c1) }), multiplyByB: ({ c0, c1 }) => { let t0 = Fp.mul(c0, _4n); // 4 * c0 let t1 = Fp.mul(c1, _4n); // 4 * c1 // (T0-T1) + (T0+T1)*i return { c0: Fp.sub(t0, t1), c1: Fp.add(t0, t1) }; }, fromBigTuple: (tuple: BigintTuple | bigint[]) => { if (tuple.length !== 2) throw new Error('Invalid tuple'); const fps = tuple.map((n) => Fp.create(n)) as [Fp, Fp]; return { c0: fps[0], c1: fps[1] }; }, frobeniusMap: ({ c0, c1 }, power: number): Fp2 => ({ c0, c1: Fp.mul(c1, FP2_FROBENIUS_COEFFICIENTS[power % 2]), }), }; // Finite extension field over irreducible polynominal. // Fp(u) / (u² - β) where β = -1 const FP2_FROBENIUS_COEFFICIENTS = [ BigInt('0x1'), BigInt( '0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaaa' ), ].map((item) => Fp.create(item)); // For Fp2 roots of unity. const rv1 = BigInt( '0x6af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09' ); // const ev1 = // BigInt('0x699be3b8c6870965e5bf892ad5d2cc7b0e85a117402dfd83b7f4a947e02d978498255a2aaec0ac627b5afbdf1bf1c90'); // const ev2 = // BigInt('0x8157cd83046453f5dd0972b6e3949e4288020b5b8a9cc99ca07e27089a2ce2436d965026adad3ef7baba37f2183e9b5'); // const ev3 = // BigInt('0xab1c2ffdd6c253ca155231eb3e71ba044fd562f6f72bc5bad5ec46a0b7a3b0247cf08ce6c6317f40edbc653a72dee17'); // const ev4 = // BigInt('0xaa404866706722864480885d68ad0ccac1967c7544b447873cc37e0181271e006df72162a3d3e0287bf597fbf7f8fc1'); // Eighth roots of unity, used for computing square roots in Fp2. // To verify or re-calculate: // Array(8).fill(new Fp2([1n, 1n])).map((fp2, k) => fp2.pow(Fp2.ORDER * BigInt(k) / 8n)) const FP2_ROOTS_OF_UNITY = [ [_1n, _0n], [rv1, -rv1], [_0n, _1n], [rv1, rv1], [-_1n, _0n], [-rv1, rv1], [_0n, -_1n], [-rv1, -rv1], ].map((pair) => Fp2.fromBigTuple(pair)); // eta values, used for computing sqrt(g(X1(t))) // const FP2_ETAs = [ // [ev1, ev2], // [-ev2, ev1], // [ev3, ev4], // [-ev4, ev3], // ].map((pair) => Fp2.fromBigTuple(pair)); // Finite extension field over irreducible polynominal. // Fp2(v) / (v³ - ξ) where ξ = u + 1 type BigintSix = [bigint, bigint, bigint, bigint, bigint, bigint]; type Fp6 = { c0: Fp2; c1: Fp2; c2: Fp2 }; const Fp6Add = ({ c0, c1, c2 }: Fp6, { c0: r0, c1: r1, c2: r2 }: Fp6) => ({ c0: Fp2.add(c0, r0), c1: Fp2.add(c1, r1), c2: Fp2.add(c2, r2), }); const Fp6Subtract = ({ c0, c1, c2 }: Fp6, { c0: r0, c1: r1, c2: r2 }: Fp6) => ({ c0: Fp2.sub(c0, r0), c1: Fp2.sub(c1, r1), c2: Fp2.sub(c2, r2), }); const Fp6Multiply = ({ c0, c1, c2 }: Fp6, rhs: Fp6 | bigint) => { if (typeof rhs === 'bigint') { return { c0: Fp2.mul(c0, rhs), c1: Fp2.mul(c1, rhs), c2: Fp2.mul(c2, rhs), }; } const { c0: r0, c1: r1, c2: r2 } = rhs; const t0 = Fp2.mul(c0, r0); // c0 * o0 const t1 = Fp2.mul(c1, r1); // c1 * o1 const t2 = Fp2.mul(c2, r2); // c2 * o2 return { // t0 + (c1 + c2) * (r1 * r2) - (T1 + T2) * (u + 1) c0: Fp2.add( t0, Fp2.mulByNonresidue(Fp2.sub(Fp2.mul(Fp2.add(c1, c2), Fp2.add(r1, r2)), Fp2.add(t1, t2))) ), // (c0 + c1) * (r0 + r1) - (T0 + T1) + T2 * (u + 1) c1: Fp2.add( Fp2.sub(Fp2.mul(Fp2.add(c0, c1), Fp2.add(r0, r1)), Fp2.add(t0, t1)), Fp2.mulByNonresidue(t2) ), // T1 + (c0 + c2) * (r0 + r2) - T0 + T2 c2: Fp2.sub(Fp2.add(t1, Fp2.mul(Fp2.add(c0, c2), Fp2.add(r0, r2))), Fp2.add(t0, t2)), }; }; const Fp6Square = ({ c0, c1, c2 }: Fp6) => { let t0 = Fp2.sqr(c0); // c0² let t1 = Fp2.mul(Fp2.mul(c0, c1), _2n); // 2 * c0 * c1 let t3 = Fp2.mul(Fp2.mul(c1, c2), _2n); // 2 * c1 * c2 let t4 = Fp2.sqr(c2); // c2² return { c0: Fp2.add(Fp2.mulByNonresidue(t3), t0), // T3 * (u + 1) + T0 c1: Fp2.add(Fp2.mulByNonresidue(t4), t1), // T4 * (u + 1) + T1 // T1 + (c0 - c1 + c2)² + T3 - T0 - T4 c2: Fp2.sub(Fp2.sub(Fp2.add(Fp2.add(t1, Fp2.sqr(Fp2.add(Fp2.sub(c0, c1), c2))), t3), t0), t4), }; }; type Fp6Utils = { fromBigSix: (tuple: BigintSix) => Fp6; mulByNonresidue: (num: Fp6) => Fp6; frobeniusMap(num: Fp6, power: number): Fp6; multiplyBy1(num: Fp6, b1: Fp2): Fp6; multiplyBy01(num: Fp6, b0: Fp2, b1: Fp2): Fp6; multiplyByFp2(lhs: Fp6, rhs: Fp2): Fp6; }; const Fp6: mod.IField & Fp6Utils = { ORDER: Fp2.ORDER, // TODO: unused, but need to verify BITS: 3 * Fp2.BITS, BYTES: 3 * Fp2.BYTES, MASK: bitMask(3 * Fp2.BITS), ZERO: { c0: Fp2.ZERO, c1: Fp2.ZERO, c2: Fp2.ZERO }, ONE: { c0: Fp2.ONE, c1: Fp2.ZERO, c2: Fp2.ZERO }, create: (num) => num, isValid: ({ c0, c1, c2 }) => Fp2.isValid(c0) && Fp2.isValid(c1) && Fp2.isValid(c2), is0: ({ c0, c1, c2 }) => Fp2.is0(c0) && Fp2.is0(c1) && Fp2.is0(c2), neg: ({ c0, c1, c2 }) => ({ c0: Fp2.neg(c0), c1: Fp2.neg(c1), c2: Fp2.neg(c2) }), eql: ({ c0, c1, c2 }, { c0: r0, c1: r1, c2: r2 }) => Fp2.eql(c0, r0) && Fp2.eql(c1, r1) && Fp2.eql(c2, r2), sqrt: () => { throw new Error('Not implemented'); }, // Do we need division by bigint at all? Should be done via order: div: (lhs, rhs) => Fp6.mul(lhs, typeof rhs === 'bigint' ? Fp.inv(Fp.create(rhs)) : Fp6.inv(rhs)), pow: (num, power) => mod.FpPow(Fp6, num, power), invertBatch: (nums) => mod.FpInvertBatch(Fp6, nums), // Normalized add: Fp6Add, sub: Fp6Subtract, mul: Fp6Multiply, sqr: Fp6Square, // NonNormalized stuff addN: Fp6Add, subN: Fp6Subtract, mulN: Fp6Multiply, sqrN: Fp6Square, inv: ({ c0, c1, c2 }) => { let t0 = Fp2.sub(Fp2.sqr(c0), Fp2.mulByNonresidue(Fp2.mul(c2, c1))); // c0² - c2 * c1 * (u + 1) let t1 = Fp2.sub(Fp2.mulByNonresidue(Fp2.sqr(c2)), Fp2.mul(c0, c1)); // c2² * (u + 1) - c0 * c1 let t2 = Fp2.sub(Fp2.sqr(c1), Fp2.mul(c0, c2)); // c1² - c0 * c2 // 1/(((c2 * T1 + c1 * T2) * v) + c0 * T0) let t4 = Fp2.inv( Fp2.add(Fp2.mulByNonresidue(Fp2.add(Fp2.mul(c2, t1), Fp2.mul(c1, t2))), Fp2.mul(c0, t0)) ); return { c0: Fp2.mul(t4, t0), c1: Fp2.mul(t4, t1), c2: Fp2.mul(t4, t2) }; }, // Bytes utils fromBytes: (b: Uint8Array): Fp6 => { if (b.length !== Fp6.BYTES) throw new Error(`fromBytes wrong length=${b.length}`); return { c0: Fp2.fromBytes(b.subarray(0, Fp2.BYTES)), c1: Fp2.fromBytes(b.subarray(Fp2.BYTES, 2 * Fp2.BYTES)), c2: Fp2.fromBytes(b.subarray(2 * Fp2.BYTES)), }; }, toBytes: ({ c0, c1, c2 }): Uint8Array => concatB(Fp2.toBytes(c0), Fp2.toBytes(c1), Fp2.toBytes(c2)), cmov: ({ c0, c1, c2 }: Fp6, { c0: r0, c1: r1, c2: r2 }: Fp6, c) => ({ c0: Fp2.cmov(c0, r0, c), c1: Fp2.cmov(c1, r1, c), c2: Fp2.cmov(c2, r2, c), }), // Utils // fromTriple(triple: [Fp2, Fp2, Fp2]) { // return new Fp6(...triple); // } // toString() { // return `Fp6(${this.c0} + ${this.c1} * v, ${this.c2} * v^2)`; // } fromBigSix: (t: BigintSix): Fp6 => { if (!Array.isArray(t) || t.length !== 6) throw new Error('Invalid Fp6 usage'); return { c0: Fp2.fromBigTuple(t.slice(0, 2)), c1: Fp2.fromBigTuple(t.slice(2, 4)), c2: Fp2.fromBigTuple(t.slice(4, 6)), }; }, frobeniusMap: ({ c0, c1, c2 }, power: number) => ({ c0: Fp2.frobeniusMap(c0, power), c1: Fp2.mul(Fp2.frobeniusMap(c1, power), FP6_FROBENIUS_COEFFICIENTS_1[power % 6]), c2: Fp2.mul(Fp2.frobeniusMap(c2, power), FP6_FROBENIUS_COEFFICIENTS_2[power % 6]), }), mulByNonresidue: ({ c0, c1, c2 }) => ({ c0: Fp2.mulByNonresidue(c2), c1: c0, c2: c1 }), // Sparse multiplication multiplyBy1: ({ c0, c1, c2 }, b1: Fp2): Fp6 => ({ c0: Fp2.mulByNonresidue(Fp2.mul(c2, b1)), c1: Fp2.mul(c0, b1), c2: Fp2.mul(c1, b1), }), // Sparse multiplication multiplyBy01({ c0, c1, c2 }, b0: Fp2, b1: Fp2): Fp6 { let t0 = Fp2.mul(c0, b0); // c0 * b0 let t1 = Fp2.mul(c1, b1); // c1 * b1 return { // ((c1 + c2) * b1 - T1) * (u + 1) + T0 c0: Fp2.add(Fp2.mulByNonresidue(Fp2.sub(Fp2.mul(Fp2.add(c1, c2), b1), t1)), t0), // (b0 + b1) * (c0 + c1) - T0 - T1 c1: Fp2.sub(Fp2.sub(Fp2.mul(Fp2.add(b0, b1), Fp2.add(c0, c1)), t0), t1), // (c0 + c2) * b0 - T0 + T1 c2: Fp2.add(Fp2.sub(Fp2.mul(Fp2.add(c0, c2), b0), t0), t1), }; }, multiplyByFp2: ({ c0, c1, c2 }, rhs: Fp2): Fp6 => ({ c0: Fp2.mul(c0, rhs), c1: Fp2.mul(c1, rhs), c2: Fp2.mul(c2, rhs), }), }; const FP6_FROBENIUS_COEFFICIENTS_1 = [ [BigInt('0x1'), BigInt('0x0')], [ BigInt('0x0'), BigInt( '0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac' ), ], [ BigInt( '0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffe' ), BigInt('0x0'), ], [BigInt('0x0'), BigInt('0x1')], [ BigInt( '0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac' ), BigInt('0x0'), ], [ BigInt('0x0'), BigInt( '0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffe' ), ], ].map((pair) => Fp2.fromBigTuple(pair)); const FP6_FROBENIUS_COEFFICIENTS_2 = [ [BigInt('0x1'), BigInt('0x0')], [ BigInt( '0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaad' ), BigInt('0x0'), ], [ BigInt( '0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac' ), BigInt('0x0'), ], [ BigInt( '0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaaa' ), BigInt('0x0'), ], [ BigInt( '0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffe' ), BigInt('0x0'), ], [ BigInt( '0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffeffff' ), BigInt('0x0'), ], ].map((pair) => Fp2.fromBigTuple(pair)); // Finite extension field over irreducible polynominal. // Fp₁₂ = Fp₆² => Fp₂³ // Fp₆(w) / (w² - γ) where γ = v type Fp12 = { c0: Fp6; c1: Fp6 }; // The BLS parameter x for BLS12-381 const BLS_X = BigInt('0xd201000000010000'); const BLS_X_LEN = bitLen(BLS_X); // prettier-ignore type BigintTwelve = [ bigint, bigint, bigint, bigint, bigint, bigint, bigint, bigint, bigint, bigint, bigint, bigint ]; const Fp12Add = ({ c0, c1 }: Fp12, { c0: r0, c1: r1 }: Fp12) => ({ c0: Fp6.add(c0, r0), c1: Fp6.add(c1, r1), }); const Fp12Subtract = ({ c0, c1 }: Fp12, { c0: r0, c1: r1 }: Fp12) => ({ c0: Fp6.sub(c0, r0), c1: Fp6.sub(c1, r1), }); const Fp12Multiply = ({ c0, c1 }: Fp12, rhs: Fp12 | bigint) => { if (typeof rhs === 'bigint') return { c0: Fp6.mul(c0, rhs), c1: Fp6.mul(c1, rhs) }; let { c0: r0, c1: r1 } = rhs; let t1 = Fp6.mul(c0, r0); // c0 * r0 let t2 = Fp6.mul(c1, r1); // c1 * r1 return { c0: Fp6.add(t1, Fp6.mulByNonresidue(t2)), // T1 + T2 * v // (c0 + c1) * (r0 + r1) - (T1 + T2) c1: Fp6.sub(Fp6.mul(Fp6.add(c0, c1), Fp6.add(r0, r1)), Fp6.add(t1, t2)), }; }; const Fp12Square = ({ c0, c1 }: Fp12) => { let ab = Fp6.mul(c0, c1); // c0 * c1 return { // (c1 * v + c0) * (c0 + c1) - AB - AB * v c0: Fp6.sub( Fp6.sub(Fp6.mul(Fp6.add(Fp6.mulByNonresidue(c1), c0), Fp6.add(c0, c1)), ab), Fp6.mulByNonresidue(ab) ), c1: Fp6.add(ab, ab), }; // AB + AB }; function Fp4Square(a: Fp2, b: Fp2): { first: Fp2; second: Fp2 } { const a2 = Fp2.sqr(a); const b2 = Fp2.sqr(b); return { first: Fp2.add(Fp2.mulByNonresidue(b2), a2), // b² * Nonresidue + a² second: Fp2.sub(Fp2.sub(Fp2.sqr(Fp2.add(a, b)), a2), b2), // (a + b)² - a² - b² }; } type Fp12Utils = { fromBigTwelve: (t: BigintTwelve) => Fp12; frobeniusMap(num: Fp12, power: number): Fp12; multiplyBy014(num: Fp12, o0: Fp2, o1: Fp2, o4: Fp2): Fp12; multiplyByFp2(lhs: Fp12, rhs: Fp2): Fp12; conjugate(num: Fp12): Fp12; finalExponentiate(num: Fp12): Fp12; _cyclotomicSquare(num: Fp12): Fp12; _cyclotomicExp(num: Fp12, n: bigint): Fp12; }; const Fp12: mod.IField & Fp12Utils = { ORDER: Fp2.ORDER, // TODO: unused, but need to verify BITS: 2 * Fp2.BITS, BYTES: 2 * Fp2.BYTES, MASK: bitMask(2 * Fp2.BITS), ZERO: { c0: Fp6.ZERO, c1: Fp6.ZERO }, ONE: { c0: Fp6.ONE, c1: Fp6.ZERO }, create: (num) => num, isValid: ({ c0, c1 }) => Fp6.isValid(c0) && Fp6.isValid(c1), is0: ({ c0, c1 }) => Fp6.is0(c0) && Fp6.is0(c1), neg: ({ c0, c1 }) => ({ c0: Fp6.neg(c0), c1: Fp6.neg(c1) }), eql: ({ c0, c1 }, { c0: r0, c1: r1 }) => Fp6.eql(c0, r0) && Fp6.eql(c1, r1), sqrt: () => { throw new Error('Not implemented'); }, inv: ({ c0, c1 }) => { let t = Fp6.inv(Fp6.sub(Fp6.sqr(c0), Fp6.mulByNonresidue(Fp6.sqr(c1)))); // 1 / (c0² - c1² * v) return { c0: Fp6.mul(c0, t), c1: Fp6.neg(Fp6.mul(c1, t)) }; // ((C0 * T) * T) + (-C1 * T) * w }, div: (lhs, rhs) => Fp12.mul(lhs, typeof rhs === 'bigint' ? Fp.inv(Fp.create(rhs)) : Fp12.inv(rhs)), pow: (num, power) => mod.FpPow(Fp12, num, power), invertBatch: (nums) => mod.FpInvertBatch(Fp12, nums), // Normalized add: Fp12Add, sub: Fp12Subtract, mul: Fp12Multiply, sqr: Fp12Square, // NonNormalized stuff addN: Fp12Add, subN: Fp12Subtract, mulN: Fp12Multiply, sqrN: Fp12Square, // Bytes utils fromBytes: (b: Uint8Array): Fp12 => { if (b.length !== Fp12.BYTES) throw new Error(`fromBytes wrong length=${b.length}`); return { c0: Fp6.fromBytes(b.subarray(0, Fp6.BYTES)), c1: Fp6.fromBytes(b.subarray(Fp6.BYTES)), }; }, toBytes: ({ c0, c1 }): Uint8Array => concatB(Fp6.toBytes(c0), Fp6.toBytes(c1)), cmov: ({ c0, c1 }, { c0: r0, c1: r1 }, c) => ({ c0: Fp6.cmov(c0, r0, c), c1: Fp6.cmov(c1, r1, c), }), // Utils // toString() { // return `Fp12(${this.c0} + ${this.c1} * w)`; // }, // fromTuple(c: [Fp6, Fp6]) { // return new Fp12(...c); // } fromBigTwelve: (t: BigintTwelve): Fp12 => ({ c0: Fp6.fromBigSix(t.slice(0, 6) as BigintSix), c1: Fp6.fromBigSix(t.slice(6, 12) as BigintSix), }), // Raises to q**i -th power frobeniusMap(lhs, power: number) { const r0 = Fp6.frobeniusMap(lhs.c0, power); const { c0, c1, c2 } = Fp6.frobeniusMap(lhs.c1, power); const coeff = FP12_FROBENIUS_COEFFICIENTS[power % 12]; return { c0: r0, c1: Fp6.create({ c0: Fp2.mul(c0, coeff), c1: Fp2.mul(c1, coeff), c2: Fp2.mul(c2, coeff), }), }; }, // Sparse multiplication multiplyBy014: ({ c0, c1 }, o0: Fp2, o1: Fp2, o4: Fp2) => { let t0 = Fp6.multiplyBy01(c0, o0, o1); let t1 = Fp6.multiplyBy1(c1, o4); return { c0: Fp6.add(Fp6.mulByNonresidue(t1), t0), // T1 * v + T0 // (c1 + c0) * [o0, o1+o4] - T0 - T1 c1: Fp6.sub(Fp6.sub(Fp6.multiplyBy01(Fp6.add(c1, c0), o0, Fp2.add(o1, o4)), t0), t1), }; }, multiplyByFp2: ({ c0, c1 }, rhs: Fp2): Fp12 => ({ c0: Fp6.multiplyByFp2(c0, rhs), c1: Fp6.multiplyByFp2(c1, rhs), }), conjugate: ({ c0, c1 }): Fp12 => ({ c0, c1: Fp6.neg(c1) }), // A cyclotomic group is a subgroup of Fp^n defined by // GΦₙ(p) = {α ∈ Fpⁿ : α^Φₙ(p) = 1} // The result of any pairing is in a cyclotomic subgroup // https://eprint.iacr.org/2009/565.pdf _cyclotomicSquare: ({ c0, c1 }): Fp12 => { const { c0: c0c0, c1: c0c1, c2: c0c2 } = c0; const { c0: c1c0, c1: c1c1, c2: c1c2 } = c1; const { first: t3, second: t4 } = Fp4Square(c0c0, c1c1); const { first: t5, second: t6 } = Fp4Square(c1c0, c0c2); const { first: t7, second: t8 } = Fp4Square(c0c1, c1c2); let t9 = Fp2.mulByNonresidue(t8); // T8 * (u + 1) return { c0: Fp6.create({ c0: Fp2.add(Fp2.mul(Fp2.sub(t3, c0c0), _2n), t3), // 2 * (T3 - c0c0) + T3 c1: Fp2.add(Fp2.mul(Fp2.sub(t5, c0c1), _2n), t5), // 2 * (T5 - c0c1) + T5 c2: Fp2.add(Fp2.mul(Fp2.sub(t7, c0c2), _2n), t7), }), // 2 * (T7 - c0c2) + T7 c1: Fp6.create({ c0: Fp2.add(Fp2.mul(Fp2.add(t9, c1c0), _2n), t9), // 2 * (T9 + c1c0) + T9 c1: Fp2.add(Fp2.mul(Fp2.add(t4, c1c1), _2n), t4), // 2 * (T4 + c1c1) + T4 c2: Fp2.add(Fp2.mul(Fp2.add(t6, c1c2), _2n), t6), }), }; // 2 * (T6 + c1c2) + T6 }, _cyclotomicExp(num, n) { let z = Fp12.ONE; for (let i = BLS_X_LEN - 1; i >= 0; i--) { z = Fp12._cyclotomicSquare(z); if (bitGet(n, i)) z = Fp12.mul(z, num); } return z; }, // https://eprint.iacr.org/2010/354.pdf // https://eprint.iacr.org/2009/565.pdf finalExponentiate: (num) => { const x = BLS_X; // this^(q⁶) / this const t0 = Fp12.div(Fp12.frobeniusMap(num, 6), num); // t0^(q²) * t0 const t1 = Fp12.mul(Fp12.frobeniusMap(t0, 2), t0); const t2 = Fp12.conjugate(Fp12._cyclotomicExp(t1, x)); const t3 = Fp12.mul(Fp12.conjugate(Fp12._cyclotomicSquare(t1)), t2); const t4 = Fp12.conjugate(Fp12._cyclotomicExp(t3, x)); const t5 = Fp12.conjugate(Fp12._cyclotomicExp(t4, x)); const t6 = Fp12.mul(Fp12.conjugate(Fp12._cyclotomicExp(t5, x)), Fp12._cyclotomicSquare(t2)); const t7 = Fp12.conjugate(Fp12._cyclotomicExp(t6, x)); const t2_t5_pow_q2 = Fp12.frobeniusMap(Fp12.mul(t2, t5), 2); const t4_t1_pow_q3 = Fp12.frobeniusMap(Fp12.mul(t4, t1), 3); const t6_t1c_pow_q1 = Fp12.frobeniusMap(Fp12.mul(t6, Fp12.conjugate(t1)), 1); const t7_t3c_t1 = Fp12.mul(Fp12.mul(t7, Fp12.conjugate(t3)), t1); // (t2 * t5)^(q²) * (t4 * t1)^(q³) * (t6 * t1.conj)^(q^1) * t7 * t3.conj * t1 return Fp12.mul(Fp12.mul(Fp12.mul(t2_t5_pow_q2, t4_t1_pow_q3), t6_t1c_pow_q1), t7_t3c_t1); }, }; const FP12_FROBENIUS_COEFFICIENTS = [ [BigInt('0x1'), BigInt('0x0')], [ BigInt( '0x1904d3bf02bb0667c231beb4202c0d1f0fd603fd3cbd5f4f7b2443d784bab9c4f67ea53d63e7813d8d0775ed92235fb8' ), BigInt( '0x00fc3e2b36c4e03288e9e902231f9fb854a14787b6c7b36fec0c8ec971f63c5f282d5ac14d6c7ec22cf78a126ddc4af3' ), ], [ BigInt( '0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffeffff' ), BigInt('0x0'), ], [ BigInt( '0x135203e60180a68ee2e9c448d77a2cd91c3dedd930b1cf60ef396489f61eb45e304466cf3e67fa0af1ee7b04121bdea2' ), BigInt( '0x06af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09' ), ], [ BigInt( '0x00000000000000005f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffe' ), BigInt('0x0'), ], [ BigInt( '0x144e4211384586c16bd3ad4afa99cc9170df3560e77982d0db45f3536814f0bd5871c1908bd478cd1ee605167ff82995' ), BigInt( '0x05b2cfd9013a5fd8df47fa6b48b1e045f39816240c0b8fee8beadf4d8e9c0566c63a3e6e257f87329b18fae980078116' ), ], [ BigInt( '0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaaa' ), BigInt('0x0'), ], [ BigInt( '0x00fc3e2b36c4e03288e9e902231f9fb854a14787b6c7b36fec0c8ec971f63c5f282d5ac14d6c7ec22cf78a126ddc4af3' ), BigInt( '0x1904d3bf02bb0667c231beb4202c0d1f0fd603fd3cbd5f4f7b2443d784bab9c4f67ea53d63e7813d8d0775ed92235fb8' ), ], [ BigInt( '0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac' ), BigInt('0x0'), ], [ BigInt( '0x06af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09' ), BigInt( '0x135203e60180a68ee2e9c448d77a2cd91c3dedd930b1cf60ef396489f61eb45e304466cf3e67fa0af1ee7b04121bdea2' ), ], [ BigInt( '0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaad' ), BigInt('0x0'), ], [ BigInt( '0x05b2cfd9013a5fd8df47fa6b48b1e045f39816240c0b8fee8beadf4d8e9c0566c63a3e6e257f87329b18fae980078116' ), BigInt( '0x144e4211384586c16bd3ad4afa99cc9170df3560e77982d0db45f3536814f0bd5871c1908bd478cd1ee605167ff82995' ), ], ].map((n) => Fp2.fromBigTuple(n)); // END OF CURVE FIELDS // HashToCurve // 3-isogeny map from E' to E // https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#appendix-E.3 const isogenyMapG2 = isogenyMap( Fp2, [ // xNum [ [ '0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97d6', '0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97d6', ], [ '0x0', '0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71a', ], [ '0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71e', '0x8ab05f8bdd54cde190937e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ffffffffe38d', ], [ '0x171d6541fa38ccfaed6dea691f5fb614cb14b4e7f4e810aa22d6108f142b85757098e38d0f671c7188e2aaaaaaaa5ed1', '0x0', ], ], // xDen [ [ '0x0', '0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa63', ], [ '0xc', '0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa9f', ], ['0x1', '0x0'], // LAST 1 ], // yNum [ [ '0x1530477c7ab4113b59a4c18b076d11930f7da5d4a07f649bf54439d87d27e500fc8c25ebf8c92f6812cfc71c71c6d706', '0x1530477c7ab4113b59a4c18b076d11930f7da5d4a07f649bf54439d87d27e500fc8c25ebf8c92f6812cfc71c71c6d706', ], [ '0x0', '0x5c759507e8e333ebb5b7a9a47d7ed8532c52d39fd3a042a88b58423c50ae15d5c2638e343d9c71c6238aaaaaaaa97be', ], [ '0x11560bf17baa99bc32126fced787c88f984f87adf7ae0c7f9a208c6b4f20a4181472aaa9cb8d555526a9ffffffffc71c', '0x8ab05f8bdd54cde190937e76bc3e447cc27c3d6fbd7063fcd104635a790520c0a395554e5c6aaaa9354ffffffffe38f', ], [ '0x124c9ad43b6cf79bfbf7043de3811ad0761b0f37a1e26286b0e977c69aa274524e79097a56dc4bd9e1b371c71c718b10', '0x0', ], ], // yDen [ [ '0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa8fb', '0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa8fb', ], [ '0x0', '0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffa9d3', ], [ '0x12', '0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaa99', ], ['0x1', '0x0'], // LAST 1 ], ].map((i) => i.map((pair) => Fp2.fromBigTuple(pair.map(BigInt)))) as [Fp2[], Fp2[], Fp2[], Fp2[]] ); // 11-isogeny map from E' to E const isogenyMapG1 = isogenyMap( Fp, [ // xNum [ '0x11a05f2b1e833340b809101dd99815856b303e88a2d7005ff2627b56cdb4e2c85610c2d5f2e62d6eaeac1662734649b7', '0x17294ed3e943ab2f0588bab22147a81c7c17e75b2f6a8417f565e33c70d1e86b4838f2a6f318c356e834eef1b3cb83bb', '0xd54005db97678ec1d1048c5d10a9a1bce032473295983e56878e501ec68e25c958c3e3d2a09729fe0179f9dac9edcb0', '0x1778e7166fcc6db74e0609d307e55412d7f5e4656a8dbf25f1b33289f1b330835336e25ce3107193c5b388641d9b6861', '0xe99726a3199f4436642b4b3e4118e5499db995a1257fb3f086eeb65982fac18985a286f301e77c451154ce9ac8895d9', '0x1630c3250d7313ff01d1201bf7a74ab5db3cb17dd952799b9ed3ab9097e68f90a0870d2dcae73d19cd13c1c66f652983', '0xd6ed6553fe44d296a3726c38ae652bfb11586264f0f8ce19008e218f9c86b2a8da25128c1052ecaddd7f225a139ed84', '0x17b81e7701abdbe2e8743884d1117e53356de5ab275b4db1a682c62ef0f2753339b7c8f8c8f475af9ccb5618e3f0c88e', '0x80d3cf1f9a78fc47b90b33563be990dc43b756ce79f5574a2c596c928c5d1de4fa295f296b74e956d71986a8497e317', '0x169b1f8e1bcfa7c42e0c37515d138f22dd2ecb803a0c5c99676314baf4bb1b7fa3190b2edc0327797f241067be390c9e', '0x10321da079ce07e272d8ec09d2565b0dfa7dccdde6787f96d50af36003b14866f69b771f8c285decca67df3f1605fb7b', '0x6e08c248e260e70bd1e962381edee3d31d79d7e22c837bc23c0bf1bc24c6b68c24b1b80b64d391fa9c8ba2e8ba2d229', ], // xDen [ '0x8ca8d548cff19ae18b2e62f4bd3fa6f01d5ef4ba35b48ba9c9588617fc8ac62b558d681be343df8993cf9fa40d21b1c', '0x12561a5deb559c4348b4711298e536367041e8ca0cf0800c0126c2588c48bf5713daa8846cb026e9e5c8276ec82b3bff', '0xb2962fe57a3225e8137e629bff2991f6f89416f5a718cd1fca64e00b11aceacd6a3d0967c94fedcfcc239ba5cb83e19', '0x3425581a58ae2fec83aafef7c40eb545b08243f16b1655154cca8abc28d6fd04976d5243eecf5c4130de8938dc62cd8', '0x13a8e162022914a80a6f1d5f43e7a07dffdfc759a12062bb8d6b44e833b306da9bd29ba81f35781d539d395b3532a21e', '0xe7355f8e4e667b955390f7f0506c6e9395735e9ce9cad4d0a43bcef24b8982f7400d24bc4228f11c02df9a29f6304a5', '0x772caacf16936190f3e0c63e0596721570f5799af53a1894e2e073062aede9cea73b3538f0de06cec2574496ee84a3a', '0x14a7ac2a9d64a8b230b3f5b074cf01996e7f63c21bca68a81996e1cdf9822c580fa5b9489d11e2d311f7d99bbdcc5a5e', '0xa10ecf6ada54f825e920b3dafc7a3cce07f8d1d7161366b74100da67f39883503826692abba43704776ec3a79a1d641', '0x95fc13ab9e92ad4476d6e3eb3a56680f682b4ee96f7d03776df533978f31c1593174e4b4b7865002d6384d168ecdd0a', '0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001', // LAST 1 ], // yNum [ '0x90d97c81ba24ee0259d1f094980dcfa11ad138e48a869522b52af6c956543d3cd0c7aee9b3ba3c2be9845719707bb33', '0x134996a104ee5811d51036d776fb46831223e96c254f383d0f906343eb67ad34d6c56711962fa8bfe097e75a2e41c696', '0xcc786baa966e66f4a384c86a3b49942552e2d658a31ce2c344be4b91400da7d26d521628b00523b8dfe240c72de1f6', '0x1f86376e8981c217898751ad8746757d42aa7b90eeb791c09e4a3ec03251cf9de405aba9ec61deca6355c77b0e5f4cb', '0x8cc03fdefe0ff135caf4fe2a21529c4195536fbe3ce50b879833fd221351adc2ee7f8dc099040a841b6daecf2e8fedb', '0x16603fca40634b6a2211e11db8f0a6a074a7d0d4afadb7bd76505c3d3ad5544e203f6326c95a807299b23ab13633a5f0', '0x4ab0b9bcfac1bbcb2c977d027796b3ce75bb8ca2be184cb5231413c4d634f3747a87ac2460f415ec961f8855fe9d6f2', '0x987c8d5333ab86fde9926bd2ca6c674170a05bfe3bdd81ffd038da6c26c842642f64550fedfe935a15e4ca31870fb29', '0x9fc4018bd96684be88c9e221e4da1bb8f3abd16679dc26c1e8b6e6a1f20cabe69d65201c78607a360370e577bdba587', '0xe1bba7a1186bdb5223abde7ada14a23c42a0ca7915af6fe06985e7ed1e4d43b9b3f7055dd4eba6f2bafaaebca731c30', '0x19713e47937cd1be0dfd0b8f1d43fb93cd2fcbcb6caf493fd1183e416389e61031bf3a5cce3fbafce813711ad011c132', '0x18b46a908f36f6deb918c143fed2edcc523559b8aaf0c2462e6bfe7f911f643249d9cdf41b44d606ce07c8a4d0074d8e', '0xb182cac101b9399d155096004f53f447aa7b12a3426b08ec02710e807b4633f06c851c1919211f20d4c04f00b971ef8', '0x245a394ad1eca9b72fc00ae7be315dc757b3b080d4c158013e6632d3c40659cc6cf90ad1c232a6442d9d3f5db980133', '0x5c129645e44cf1102a159f748c4a3fc5e673d81d7e86568d9ab0f5d396a7ce46ba1049b6579afb7866b1e715475224b', '0x15e6be4e990f03ce4ea50b3b42df2eb5cb181d8f84965a3957add4fa95af01b2b665027efec01c7704b456be69c8b604', ], // yDen [ '0x16112c4c3a9c98b252181140fad0eae9601a6de578980be6eec3232b5be72e7a07f3688ef60c206d01479253b03663c1', '0x1962d75c2381201e1a0cbd6c43c348b885c84ff731c4d59ca4a10356f453e01f78a4260763529e3532f6102c2e49a03d', '0x58df3306640da276faaae7d6e8eb15778c4855551ae7f310c35a5dd279cd2eca6757cd636f96f891e2538b53dbf67f2', '0x16b7d288798e5395f20d23bf89edb4d1d115c5dbddbcd30e123da489e726af41727364f2c28297ada8d26d98445f5416', '0xbe0e079545f43e4b00cc912f8228ddcc6d19c9f0f69bbb0542eda0fc9dec916a20b15dc0fd2ededda39142311a5001d', '0x8d9e5297186db2d9fb266eaac783182b70152c65550d881c5ecd87b6f0f5a6449f38db9dfa9cce202c6477faaf9b7ac', '0x166007c08a99db2fc3ba8734ace9824b5eecfdfa8d0cf8ef5dd365bc400a0051d5fa9c01a58b1fb93d1a1399126a775c', '0x16a3ef08be3ea7ea03bcddfabba6ff6ee5a4375efa1f4fd7feb34fd206357132b920f5b00801dee460ee415a15812ed9', '0x1866c8ed336c61231a1be54fd1d74cc4f9fb0ce4c6af5920abc5750c4bf39b4852cfe2f7bb9248836b233d9d55535d4a', '0x167a55cda70a6e1cea820597d94a84903216f763e13d87bb5308592e7ea7d4fbc7385ea3d529b35e346ef48bb8913f55', '0x4d2f259eea405bd48f010a01ad2911d9c6dd039bb61a6290e591b36e636a5c871a5c29f4f83060400f8b49cba8f6aa8', '0xaccbb67481d033ff5852c1e48c50c477f94ff8aefce42d28c0f9a88cea7913516f968986f7ebbea9684b529e2561092', '0xad6b9514c767fe3c3613144b45f1496543346d98adf02267d5ceef9a00d9b8693000763e3b90ac11e99b138573345cc', '0x2660400eb2e4f3b628bdd0d53cd76f2bf565b94e72927c1cb748df27942480e420517bd8714cc80d1fadc1326ed06f7', '0xe0fa1d816ddc03e6b24255e0d7819c171c40f65e273b853324efcd6356caa205ca2f570f13497804415473a1d634b8f', '0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001', // LAST 1 ], ].map((i) => i.map((j) => BigInt(j))) as [Fp[], Fp[], Fp[], Fp[]] ); // SWU Map - Fp2 to G2': y² = x³ + 240i * x + 1012 + 1012i const G2_SWU = mapToCurveSimpleSWU(Fp2, { A: Fp2.create({ c0: Fp.create(_0n), c1: Fp.create(BigInt(240)) }), // A' = 240 * I B: Fp2.create({ c0: Fp.create(BigInt(1012)), c1: Fp.create(BigInt(1012)) }), // B' = 1012 * (1 + I) Z: Fp2.create({ c0: Fp.create(BigInt(-2)), c1: Fp.create(BigInt(-1)) }), // Z: -(2 + I) }); // Optimized SWU Map - Fp to G1 const G1_SWU = mapToCurveSimpleSWU(Fp, { A: Fp.create( BigInt( '0x144698a3b8e9433d693a02c96d4982b0ea985383ee66a8d8e8981aefd881ac98936f8da0e0f97f5cf428082d584c1d' ) ), B: Fp.create( BigInt( '0x12e2908d11688030018b12e8753eee3b2016c1f0f24f4070a0b9c14fcef35ef55a23215a316ceaa5d1cc48e98e172be0' ) ), Z: Fp.create(BigInt(11)), }); // Endomorphisms (for fast cofactor clearing) // Ψ(P) endomorphism const ut_root = Fp6.create({ c0: Fp2.ZERO, c1: Fp2.ONE, c2: Fp2.ZERO }); const wsq = Fp12.create({ c0: ut_root, c1: Fp6.ZERO }); const wcu = Fp12.create({ c0: Fp6.ZERO, c1: ut_root }); const [wsq_inv, wcu_inv] = Fp12.invertBatch([wsq, wcu]); function psi(x: Fp2, y: Fp2): [Fp2, Fp2] { // Untwist Fp2->Fp12 && frobenius(1) && twist back const x2 = Fp12.mul(Fp12.frobeniusMap(Fp12.multiplyByFp2(wsq_inv, x), 1), wsq).c0.c0; const y2 = Fp12.mul(Fp12.frobeniusMap(Fp12.multiplyByFp2(wcu_inv, y), 1), wcu).c0.c0; return [x2, y2]; } // Ψ endomorphism function G2psi(c: ProjConstructor, P: ProjPointType) { const affine = P.toAffine(); const p = psi(affine.x, affine.y); return new c(p[0], p[1], Fp2.ONE); } // Ψ²(P) endomorphism // 1 / F2(2)^((p-1)/3) in GF(p²) const PSI2_C1 = BigInt( '0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaac' ); function psi2(x: Fp2, y: Fp2): [Fp2, Fp2] { return [Fp2.mul(x, PSI2_C1), Fp2.neg(y)]; } function G2psi2(c: ProjConstructor, P: ProjPointType) { const affine = P.toAffine(); const p = psi2(affine.x, affine.y); return new c(p[0], p[1], Fp2.ONE); } // Default hash_to_field options are for hash to G2. // // Parameter definitions are in section 5.3 of the spec unless otherwise noted. // Parameter values come from section 8.8.2 of the spec. // https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11#section-8.8.2 // // Base field F is GF(p^m) // p = 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaab // m = 2 (or 1 for G1 see section 8.8.1) // k = 128 const htfDefaults = Object.freeze({ // DST: a domain separation tag // defined in section 2.2.5 // Use utils.getDSTLabel(), utils.setDSTLabel(value) DST: 'BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_', encodeDST: 'BLS_SIG_BLS12381G2_XMD:SHA-256_SSWU_RO_NUL_', // p: the characteristic of F // where F is a finite field of characteristic p and order q = p^m p: Fp.ORDER, // m: the extension degree of F, m >= 1 // where F is a finite field of characteristic p and order q = p^m m: 2, // k: the target security level for the suite in bits // defined in section 5.1 k: 128, // option to use a message that has already been processed by // expand_message_xmd expand: 'xmd', // Hash functions for: expand_message_xmd is appropriate for use with a // wide range of hash functions, including SHA-2, SHA-3, BLAKE2, and others. // BBS+ uses blake2: https://github.com/hyperledger/aries-framework-go/issues/2247 hash: sha256, } as const); // Encoding utils // Point on G1 curve: (x, y) const C_BIT_POS = Fp.BITS; // C_bit, compression bit for serialization flag const I_BIT_POS = Fp.BITS + 1; // I_bit, point-at-infinity bit for serialization flag const S_BIT_POS = Fp.BITS + 2; // S_bit, sign bit for serialization flag // Compressed point of infinity const COMPRESSED_ZERO = Fp.toBytes(bitSet(bitSet(_0n, I_BIT_POS, true), S_BIT_POS, true)); // set compressed & point-at-infinity bits function signatureG2ToRawBytes(point: ProjPointType) { // NOTE: by some reasons it was missed in bls12-381, looks like bug point.assertValidity(); const len = Fp.BYTES; if (point.equals(bls12_381.G2.ProjectivePoint.ZERO)) return concatB(COMPRESSED_ZERO, numberToBytesBE(_0n, len)); const { x, y } = point.toAffine(); const { re: x0, im: x1 } = Fp2.reim(x); const { re: y0, im: y1 } = Fp2.reim(y); const tmp = y1 > _0n ? y1 * _2n : y0 * _2n; const aflag1 = Boolean((tmp / Fp.ORDER) & _1n); const z1 = bitSet(bitSet(x1, 381, aflag1), S_BIT_POS, true); const z2 = x0; return concatB(numberToBytesBE(z1, len), numberToBytesBE(z2, len)); } // To verify curve parameters, see pairing-friendly-curves spec: // https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-09 // Basic math is done over finite fields over p. // More complicated math is done over polynominal extension fields. // To simplify calculations in Fp12, we construct extension tower: // Fp₁₂ = Fp₆² => Fp₂³ // Fp(u) / (u² - β) where β = -1 // Fp₂(v) / (v³ - ξ) where ξ = u + 1 // Fp₆(w) / (w² - γ) where γ = v // Here goes constants && point encoding format export const bls12_381: CurveFn = bls({ // Fields fields: { Fp, Fp2, Fp6, Fp12, Fr, }, // G1 is the order-q subgroup of E1(Fp) : y² = x³ + 4, #E1(Fp) = h1q, where // characteristic; z + (z⁴ - z² + 1)(z - 1)²/3 G1: { Fp, // cofactor; (z - 1)²/3 h: BigInt('0x396c8c005555e1568c00aaab0000aaab'), // generator's coordinates // x = 3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507 // y = 1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569 Gx: BigInt( '0x17f1d3a73197d7942695638c4fa9ac0fc3688c4f9774b905a14e3a3f171bac586c55e83ff97a1aeffb3af00adb22c6bb' ), Gy: BigInt( '0x08b3f481e3aaa0f1a09e30ed741d8ae4fcf5e095d5d00af600db18cb2c04b3edd03cc744a2888ae40caa232946c5e7e1' ), a: Fp.ZERO, b: _4n, htfDefaults: { ...htfDefaults, m: 1 }, wrapPrivateKey: true, allowInfinityPoint: true, // Checks is the point resides in prime-order subgroup. // point.isTorsionFree() should return true for valid points // It returns false for shitty points. // https://eprint.iacr.org/2021/1130.pdf isTorsionFree: (c, point): boolean => { // φ endomorphism const cubicRootOfUnityModP = BigInt( '0x5f19672fdf76ce51ba69c6076a0f77eaddb3a93be6f89688de17d813620a00022e01fffffffefffe' ); const phi = new c(Fp.mul(point.px, cubicRootOfUnityModP), point.py, point.pz); // todo: unroll const xP = point.multiplyUnsafe(bls12_381.params.x).negate(); // [x]P const u2P = xP.multiplyUnsafe(bls12_381.params.x); // [u2]P return u2P.equals(phi); // https://eprint.iacr.org/2019/814.pdf // (z² − 1)/3 // const c1 = BigInt('0x396c8c005555e1560000000055555555'); // const P = this; // const S = P.sigma(); // const Q = S.double(); // const S2 = S.sigma(); // // [(z² − 1)/3](2σ(P) − P − σ²(P)) − σ²(P) = O // const left = Q.subtract(P).subtract(S2).multiplyUnsafe(c1); // const C = left.subtract(S2); // return C.isZero(); }, // Clear cofactor of G1 // https://eprint.iacr.org/2019/403 clearCofactor: (c, point) => { // return this.multiplyUnsafe(CURVE.h); return point.multiplyUnsafe(bls12_381.params.x).add(point); // x*P + P }, mapToCurve: (scalars: bigint[]) => { const { x, y } = G1_SWU(Fp.create(scalars[0])); return isogenyMapG1(x, y); }, fromBytes: (bytes: Uint8Array): AffinePoint => { bytes = bytes.slice(); if (bytes.length === 48) { // TODO: Fp.bytes const P = Fp.ORDER; const compressedValue = bytesToNumberBE(bytes); const bflag = bitGet(compressedValue, I_BIT_POS); // Zero if (bflag === _1n) return { x: _0n, y: _0n }; const x = Fp.create(compressedValue & Fp.MASK); const right = Fp.add(Fp.pow(x, _3n), Fp.create(bls12_381.params.G1b)); // y² = x³ + b let y = Fp.sqrt(right); if (!y) throw new Error('Invalid compressed G1 point'); const aflag = bitGet(compressedValue, C_BIT_POS); if ((y * _2n) / P !== aflag) y = Fp.neg(y); return { x: Fp.create(x), y: Fp.create(y) }; } else if (bytes.length === 96) { // Check if the infinity flag is set if ((bytes[0] & (1 << 6)) !== 0) return bls12_381.G1.ProjectivePoint.ZERO.toAffine(); const x = bytesToNumberBE(bytes.subarray(0, Fp.BYTES)); const y = bytesToNumberBE(bytes.subarray(Fp.BYTES)); return { x: Fp.create(x), y: Fp.create(y) }; } else { throw new Error('Invalid point G1, expected 48/96 bytes'); } }, toBytes: (c, point, isCompressed) => { const isZero = point.equals(c.ZERO); const { x, y } = point.toAffine(); if (isCompressed) { if (isZero) return COMPRESSED_ZERO.slice(); const P = Fp.ORDER; let num; num = bitSet(x, C_BIT_POS, Boolean((y * _2n) / P)); // set aflag num = bitSet(num, S_BIT_POS, true); return numberToBytesBE(num, Fp.BYTES); } else { if (isZero) { // 2x PUBLIC_KEY_LENGTH const x = concatB(new Uint8Array([0x40]), new Uint8Array(2 * Fp.BYTES - 1)); return x; } else { return concatB(numberToBytesBE(x, Fp.BYTES), numberToBytesBE(y, Fp.BYTES)); } } }, }, // G2 is the order-q subgroup of E2(Fp²) : y² = x³+4(1+√−1), // where Fp2 is Fp[√−1]/(x2+1). #E2(Fp2 ) = h2q, where // G² - 1 // h2q G2: { Fp: Fp2, // cofactor h: BigInt( '0x5d543a95414e7f1091d50792876a202cd91de4547085abaa68a205b2e5a7ddfa628f1cb4d9e82ef21537e293a6691ae1616ec6e786f0c70cf1c38e31c7238e5' ), Gx: Fp2.fromBigTuple([ BigInt( '0x024aa2b2f08f0a91260805272dc51051c6e47ad4fa403b02b4510b647ae3d1770bac0326a805bbefd48056c8c121bdb8' ), BigInt( '0x13e02b6052719f607dacd3a088274f65596bd0d09920b61ab5da61bbdc7f5049334cf11213945d57e5ac7d055d042b7e' ), ]), // y = // 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582, // 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905 Gy: Fp2.fromBigTuple([ BigInt( '0x0ce5d527727d6e118cc9cdc6da2e351aadfd9baa8cbdd3a76d429a695160d12c923ac9cc3baca289e193548608b82801' ), BigInt( '0x0606c4a02ea734cc32acd2b02bc28b99cb3e287e85a763af267492ab572e99ab3f370d275cec1da1aaa9075ff05f79be' ), ]), a: Fp2.ZERO, b: Fp2.fromBigTuple([_4n, _4n]), hEff: BigInt( '0xbc69f08f2ee75b3584c6a0ea91b352888e2a8e9145ad7689986ff031508ffe1329c2f178731db956d82bf015d1212b02ec0ec69d7477c1ae954cbc06689f6a359894c0adebbf6b4e8020005aaa95551' ), htfDefaults: { ...htfDefaults }, wrapPrivateKey: true, allowInfinityPoint: true, mapToCurve: (scalars: bigint[]) => { const { x, y } = G2_SWU(Fp2.fromBigTuple(scalars)); return isogenyMapG2(x, y); }, // Checks is the point resides in prime-order subgroup. // point.isTorsionFree() should return true for valid points // It returns false for shitty points. // https://eprint.iacr.org/2021/1130.pdf isTorsionFree: (c, P): boolean => { return P.multiplyUnsafe(bls12_381.params.x).negate().equals(G2psi(c, P)); // ψ(P) == [u](P) // Older version: https://eprint.iacr.org/2019/814.pdf // Ψ²(P) => Ψ³(P) => [z]Ψ³(P) where z = -x => [z]Ψ³(P) - Ψ²(P) + P == O // return P.psi2().psi().mulNegX().subtract(psi2).add(P).isZero(); }, // Maps the point into the prime-order subgroup G2. // clear_cofactor_bls12381_g2 from cfrg-hash-to-curve-11 // https://eprint.iacr.org/2017/419.pdf // prettier-ignore clearCofactor: (c, P) => { const x = bls12_381.params.x; let t1 = P.multiplyUnsafe(x).negate(); // [-x]P let t2 = G2psi(c, P); // Ψ(P) let t3 = P.double(); // 2P t3 = G2psi2(c, t3); // Ψ²(2P) t3 = t3.subtract(t2); // Ψ²(2P) - Ψ(P) t2 = t1.add(t2); // [-x]P + Ψ(P) t2 = t2.multiplyUnsafe(x).negate(); // [x²]P - [x]Ψ(P) t3 = t3.add(t2); // Ψ²(2P) - Ψ(P) + [x²]P - [x]Ψ(P) t3 = t3.subtract(t1); // Ψ²(2P) - Ψ(P) + [x²]P - [x]Ψ(P) + [x]P const Q = t3.subtract(P); // Ψ²(2P) - Ψ(P) + [x²]P - [x]Ψ(P) + [x]P - 1P return Q; // [x²-x-1]P + [x-1]Ψ(P) + Ψ²(2P) }, fromBytes: (bytes: Uint8Array): AffinePoint => { bytes = bytes.slice(); const m_byte = bytes[0] & 0xe0; if (m_byte === 0x20 || m_byte === 0x60 || m_byte === 0xe0) { throw new Error('Invalid encoding flag: ' + m_byte); } const bitC = m_byte & 0x80; // compression bit const bitI = m_byte & 0x40; // point at infinity bit const bitS = m_byte & 0x20; // sign bit const L = Fp.BYTES; const slc = (b: Uint8Array, from: number, to?: number) => bytesToNumberBE(b.slice(from, to)); if (bytes.length === 96 && bitC) { const b = bls12_381.params.G2b; const P = Fp.ORDER; bytes[0] = bytes[0] & 0x1f; // clear flags if (bitI) { // check that all bytes are 0 if (bytes.reduce((p, c) => (p !== 0 ? c + 1 : c), 0) > 0) { throw new Error('Invalid compressed G2 point'); } return { x: Fp2.ZERO, y: Fp2.ZERO }; } const x_1 = slc(bytes, 0, L); const x_0 = slc(bytes, L, 2 * L); const x = Fp2.create({ c0: Fp.create(x_0), c1: Fp.create(x_1) }); const right = Fp2.add(Fp2.pow(x, _3n), b); // y² = x³ + 4 * (u+1) = x³ + b let y = Fp2.sqrt(right); const Y_bit = y.c1 === _0n ? (y.c0 * _2n) / P : (y.c1 * _2n) / P ? _1n : _0n; y = bitS > 0 && Y_bit > 0 ? y : Fp2.neg(y); return { x, y }; } else if (bytes.length === 192 && !bitC) { // Check if the infinity flag is set if ((bytes[0] & (1 << 6)) !== 0) { return { x: Fp2.ZERO, y: Fp2.ZERO }; } const x1 = slc(bytes, 0, L); const x0 = slc(bytes, L, 2 * L); const y1 = slc(bytes, 2 * L, 3 * L); const y0 = slc(bytes, 3 * L, 4 * L); return { x: Fp2.fromBigTuple([x0, x1]), y: Fp2.fromBigTuple([y0, y1]) }; } else { throw new Error('Invalid point G2, expected 96/192 bytes'); } }, toBytes: (c, point, isCompressed) => { const { BYTES: len, ORDER: P } = Fp; const isZero = point.equals(c.ZERO); const { x, y } = point.toAffine(); if (isCompressed) { if (isZero) return concatB(COMPRESSED_ZERO, numberToBytesBE(_0n, len)); const flag = Boolean(y.c1 === _0n ? (y.c0 * _2n) / P : (y.c1 * _2n) / P); // set compressed & sign bits (looks like different offsets than for G1/Fp?) let x_1 = bitSet(x.c1, C_BIT_POS, flag); x_1 = bitSet(x_1, S_BIT_POS, true); return concatB(numberToBytesBE(x_1, len), numberToBytesBE(x.c0, len)); } else { if (isZero) return concatB(new Uint8Array([0x40]), new Uint8Array(4 * len - 1)); // bytes[0] |= 1 << 6; const { re: x0, im: x1 } = Fp2.reim(x); const { re: y0, im: y1 } = Fp2.reim(y); return concatB( numberToBytesBE(x1, len), numberToBytesBE(x0, len), numberToBytesBE(y1, len), numberToBytesBE(y0, len) ); } }, Signature: { // TODO: Optimize, it's very slow because of sqrt. fromHex(hex: Hex): ProjPointType { hex = ensureBytes('signatureHex', hex); const P = Fp.ORDER; const half = hex.length / 2; if (half !== 48 && half !== 96) throw new Error('Invalid compressed signature length, must be 96 or 192'); const z1 = bytesToNumberBE(hex.slice(0, half)); const z2 = bytesToNumberBE(hex.slice(half)); // Indicates the infinity point const bflag1 = bitGet(z1, I_BIT_POS); if (bflag1 === _1n) return bls12_381.G2.ProjectivePoint.ZERO; const x1 = Fp.create(z1 & Fp.MASK); const x2 = Fp.create(z2); const x = Fp2.create({ c0: x2, c1: x1 }); const y2 = Fp2.add(Fp2.pow(x, _3n), bls12_381.params.G2b); // y² = x³ + 4 // The slow part let y = Fp2.sqrt(y2); if (!y) throw new Error('Failed to find a square root'); // Choose the y whose leftmost bit of the imaginary part is equal to the a_flag1 // If y1 happens to be zero, then use the bit of y0 const { re: y0, im: y1 } = Fp2.reim(y); const aflag1 = bitGet(z1, 381); const isGreater = y1 > _0n && (y1 * _2n) / P !== aflag1; const isZero = y1 === _0n && (y0 * _2n) / P !== aflag1; if (isGreater || isZero) y = Fp2.neg(y); const point = bls12_381.G2.ProjectivePoint.fromAffine({ x, y }); point.assertValidity(); return point; }, toRawBytes(point: ProjPointType) { return signatureG2ToRawBytes(point); }, toHex(point: ProjPointType) { return bytesToHex(signatureG2ToRawBytes(point)); }, }, }, params: { x: BLS_X, // The BLS parameter x for BLS12-381 r: Fr.ORDER, // order; z⁴ − z² + 1; CURVE.n from other curves }, htfDefaults, hash: sha256, randomBytes, });