# noble-curves Minimal, zero-dependency JS implementation of elliptic curve cryptography. - Short Weierstrass, Edwards, Montgomery curves - ECDSA, EdDSA, Schnorr, BLS signature schemes - ECDH key agreement - [hash to curve](https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/) algorithms for encoding or hashing an arbitrary string to a point on an elliptic curve - Auditable, [fast](#speed) - 🔻 Helps JS bundlers with lack of entry point, ensures small size of your app - 🔍 Unique tests ensure correctness. Wycheproof vectors included No curve definitions are provided out-of-box. Use separate package `micro-curve-definitions`: - It provides: - NIST curves secp192r1/P192, secp224r1/P224, secp256r1/P256, secp384r1/P384, secp521r1/P521 - SECG curve secp256k1 - bls12-381, bn254 pairing-friendly curves - ed25519/curve25519/x25519/ristretto, edwards448/curve448/x448 RFC7748 / RFC8032 / ZIP215 stuff - It allows to keep the main library minimal, zero-dependency. m-c-d depends on a hashing library `@noble/hashes` - Packages may be merged later, once a stable version is ready The goal for the near future is to update previous packages ([secp256k1](https://github.com/paulmillr/noble-secp256k1), [ed25519](https://github.com/paulmillr/noble-ed25519), [bls12-381](https://github.com/paulmillr/noble-bls12-381)) with lean UMD builds based on noble-curves. This would improve compatibility & allow having one codebase for everything. ### This library belongs to _noble_ crypto > **noble-crypto** — high-security, easily auditable set of contained cryptographic libraries and tools. - No dependencies, small files - Easily auditable TypeScript/JS code - Supported in all major browsers and stable node.js versions - All releases are signed with PGP keys - Check out [homepage](https://paulmillr.com/noble/) & all libraries: [curves](https://github.com/paulmillr/noble-curves) ([secp256k1](https://github.com/paulmillr/noble-secp256k1), [ed25519](https://github.com/paulmillr/noble-ed25519), [bls12-381](https://github.com/paulmillr/noble-bls12-381)), [hashes](https://github.com/paulmillr/noble-hashes) ## Usage Use NPM in node.js / browser, or include single file from [GitHub's releases page](https://github.com/paulmillr/noble-curves/releases): > npm install @noble/curves The library does not have an entry point. It allows you to select specific primitives and drop everything else. If you only want to use secp256k1, just use the library with rollup or other bundlers. This is done to make your bundles tiny. ```ts import { Fp } from '@noble/curves/modular'; import { weierstrass } from '@noble/curves/weierstrass'; import { sha256 } from '@noble/hashes/sha256'; import { hmac } from '@noble/hashes/hmac'; import { concatBytes, randomBytes } from '@noble/hashes/utils'; const secp256k1 = weierstrass({ a: 0n, b: 7n, Fp: Fp(2n ** 256n - 2n ** 32n - 2n ** 9n - 2n ** 8n - 2n ** 7n - 2n ** 6n - 2n ** 4n - 1n), n: 2n ** 256n - 432420386565659656852420866394968145599n, Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240n, Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424n, hash: sha256, hmac: (k: Uint8Array, ...msgs: Uint8Array[]) => hmac(sha256, key, concatBytes(...msgs)), }); const key = secp256k1.utils.randomPrivateKey(); const pub = secp256k1.getPublicKey(key); const msg = randomBytes(32); const sig = secp256k1.sign(msg, key); secp256k1.verify(sig, msg, pub) === true; sig.recoverPublicKey(msg) === pub; const someonesPub = secp256k1.getPublicKey(secp256k1.utils.randomPrivateKey()); const shared = secp256k1.getSharedSecret(key, someonesPub); ``` ## API - [Overview](#overview) - [edwards: Twisted Edwards curve](#edwards-twisted-edwards-curve) - [montgomery: Montgomery curve](#montgomery-montgomery-curve) - [weierstrass: Short Weierstrass curve](#weierstrass-short-weierstrass-curve) - [modular](#modular) - [utils](#utils) ### Overview * To initialize new curve, you must specify its variables, order (number of points on curve), field prime (over which the modular division would be done) * All curves expose same generic interface: * `getPublicKey()`, `sign()`, `verify()` functions * `Point` conforming to `Group` interface with add/multiply/double/negate/add/equals methods * `CURVE` object with curve variables like `Gx`, `Gy`, `Fp` (field), `n` (order) * `utils` object with `randomPrivateKey()`, `mod()`, `invert()` methods (`mod CURVE.P`) * All arithmetics is done with JS bigints over finite fields, which is defined from `modular` sub-module * Many features require hashing, which is not provided. `@noble/hashes` can be used for this purpose. Any other library must conform to the CHash interface: ```ts export type CHash = { (message: Uint8Array): Uint8Array; blockLen: number; outputLen: number; create(): any; }; ``` * w-ary non-adjacent form (wNAF) method with constant-time adjustments is used for point multiplication. It is possible to enable precomputes for edwards & weierstrass curves. Precomputes are calculated once (takes ~20-40ms), after that most `G` base point multiplications: for example, `getPublicKey()`, `sign()` and similar methods - would be much faster. Use `curve.utils.precompute()` to adjust precomputation window size * You could use optional special params to tune performance: * `Fp({sqrt})` square root calculation, used for point decompression * `endo` endomorphism options for Koblitz curves ### edwards: Twisted Edwards curve Twisted Edwards curve's formula is: ax² + y² = 1 + dx²y². * You must specify curve params `a`, `d`, field `Fp`, order `n`, cofactor `h` and coordinates `Gx`, `Gy` of generator point * For EdDSA signatures, params `hash` is also required. `adjustScalarBytes` which instructs how to change private scalars could be specified ```typescript import { twistedEdwards } from '@noble/curves/edwards'; // Twisted Edwards curve import { sha512 } from '@noble/hashes/sha512'; import * as mod from '@noble/curves/modular'; const ed25519 = twistedEdwards({ a: -1n, d: mod.div(-121665n, 121666n, 2n ** 255n - 19n), // -121665n/121666n P: 2n ** 255n - 19n, n: 2n ** 252n + 27742317777372353535851937790883648493n, h: 8n, Gx: 15112221349535400772501151409588531511454012693041857206046113283949847762202n, Gy: 46316835694926478169428394003475163141307993866256225615783033603165251855960n, hash: sha512, randomBytes, adjustScalarBytes(bytes) { // optional in general, mandatory in ed25519 bytes[0] &= 248; bytes[31] &= 127; bytes[31] |= 64; return bytes; }, } as const); const key = ed25519.utils.randomPrivateKey(); const pub = ed25519.getPublicKey(key); const msg = new TextEncoder().encode('hello world'); // strings not accepted, must be Uint8Array const sig = ed25519.sign(msg, key); ed25519.verify(sig, msg, pub) === true; ``` `twistedEdwards()` returns `CurveFn` of following type: ```ts export type CurveFn = { CURVE: ReturnType; getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array; sign: (message: Hex, privateKey: Hex) => Uint8Array; verify: (sig: SigType, message: Hex, publicKey: PubKey) => boolean; Point: PointConstructor; ExtendedPoint: ExtendedPointConstructor; Signature: SignatureConstructor; utils: { mod: (a: bigint, b?: bigint) => bigint; invert: (number: bigint, modulo?: bigint) => bigint; randomPrivateKey: () => Uint8Array; getExtendedPublicKey: (key: PrivKey) => { head: Uint8Array; prefix: Uint8Array; scalar: bigint; point: PointType; pointBytes: Uint8Array; }; }; }; ``` ### montgomery: Montgomery curve For now the module only contains methods for x-only ECDH on Curve25519 / Curve448 from RFC7748. Proper Elliptic Curve Points are not implemented yet. You must specify curve field, `a24` special variable, `montgomeryBits`, `nByteLength`, and coordinate `u` of generator point. ```typescript const x25519 = montgomery({ P: 2n ** 255n - 19n, a24: 121665n, // TODO: change to a montgomeryBits: 255, nByteLength: 32, Gu: '0900000000000000000000000000000000000000000000000000000000000000', // Optional params powPminus2: (x: bigint): bigint => { return mod.pow(x, P-2, P); }, adjustScalarBytes(bytes) { bytes[0] &= 248; bytes[31] &= 127; bytes[31] |= 64; return bytes; }, }); ``` ### weierstrass: Short Weierstrass curve Short Weierstrass curve's formula is: y² = x³ + ax + b. Uses deterministic ECDSA from RFC6979. You can also specify `extraEntropy` in `sign()`. * You must specify curve params: `a`, `b`, field `Fp`, order `n`, cofactor `h` and coordinates `Gx`, `Gy` of generator point * For ECDSA, you must specify `hash`, `hmac`. It is also possible to recover keys from signatures * For ECDH, use `getSharedSecret(privKeyA, pubKeyB)` * Optional params are `lowS` (default value) and `endo` (endomorphism) ```typescript import { Fp } from '@noble/curves/modular'; import { weierstrass } from '@noble/curves/weierstrass'; // Short Weierstrass curve import { sha256 } from '@noble/hashes/sha256'; import { hmac } from '@noble/hashes/hmac'; import { concatBytes, randomBytes } from '@noble/hashes/utils'; const secp256k1 = weierstrass({ a: 0n, b: 7n, Fp: Fp(2n ** 256n - 2n ** 32n - 2n ** 9n - 2n ** 8n - 2n ** 7n - 2n ** 6n - 2n ** 4n - 1n), n: 2n ** 256n - 432420386565659656852420866394968145599n, Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240n, Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424n, hash: sha256, hmac: (k: Uint8Array, ...msgs: Uint8Array[]) => hmac(sha256, key, concatBytes(...msgs)), randomBytes, // Optional params h: 1n, // Cofactor lowS: true, // Allow only low-S signatures by default in sign() and verify() endo: { // Endomorphism options for Koblitz curve // Beta param beta: 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501een, // Split scalar k into k1, k2 splitScalar: (k: bigint) => { // return { k1neg: true, k1: 512n, k2neg: false, k2: 448n }; }, }, }); // Usage const key = secp256k1.utils.randomPrivateKey(); const pub = secp256k1.getPublicKey(key); const msg = randomBytes(32); const sig = secp256k1.sign(msg, key); secp256k1.verify(sig, msg, pub); // true sig.recoverPublicKey(msg); // == pub const someonesPubkey = secp256k1.getPublicKey(secp256k1.utils.randomPrivateKey()); const shared = secp256k1.getSharedSecret(key, someonesPubkey); ``` `weierstrass()` returns `CurveFn`: ```ts export type CurveFn = { CURVE: ReturnType; getPublicKey: (privateKey: PrivKey, isCompressed?: boolean) => Uint8Array; getSharedSecret: (privateA: PrivKey, publicB: PubKey, isCompressed?: boolean) => Uint8Array; sign: (msgHash: Hex, privKey: PrivKey, opts?: SignOpts) => SignatureType; verify: ( signature: Hex | SignatureType, msgHash: Hex, publicKey: PubKey, opts?: {lowS?: boolean;} ) => boolean; Point: PointConstructor; ProjectivePoint: ProjectivePointConstructor; Signature: SignatureConstructor; utils: { mod: (a: bigint) => bigint; invert: (number: bigint) => bigint; isValidPrivateKey(privateKey: PrivKey): boolean; hashToPrivateKey: (hash: Hex) => Uint8Array; randomPrivateKey: () => Uint8Array; }; }; ``` ### modular Modular arithmetics utilities. ```typescript import { mod, invert, div, invertBatch, sqrt, Fp } from '@noble/curves/modular'; mod(21n, 10n); // 21 mod 10 == 1n; fixed version of 21 % 10 invert(17n, 10n); // invert(17) mod 10; modular multiplicative inverse div(5n, 17n, 10n); // 5/17 mod 10 == 5 * invert(17) mod 10; division invertBatch([1n, 2n, 4n], 21n); // => [1n, 11n, 16n] in one inversion sqrt(21n, 73n); // √21 mod 73; square root const fp = Fp(2n ** 255n - 19n); // Finite field over 2^255-19 fp.mul(591n, 932n); fp.pow(481n, 11024858120n); ``` ### utils ```typescript import * as utils from '@noble/curves/utils'; utils.bytesToHex(Uint8Array.from([0xde, 0xad, 0xbe, 0xef])); utils.hexToBytes('deadbeef'); utils.hexToNumber(); utils.bytesToNumberBE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef])); utils.bytesToNumberLE(Uint8Array.from([0xde, 0xad, 0xbe, 0xef])); utils.numberToBytesBE(123n); utils.numberToBytesLE(123n); utils.numberToHexUnpadded(123n); utils.concatBytes(Uint8Array.from([0xde, 0xad]), Uint8Array.from([0xbe, 0xef])); utils.nLength(255n); utils.hashToPrivateScalar(sha512_of_something, secp256r1.n); utils.equalBytes(Uint8Array.from([0xde]), Uint8Array.from([0xde])); ``` ## Security The library had no prior security audit. [Timing attack](https://en.wikipedia.org/wiki/Timing_attack) considerations: _JIT-compiler_ and _Garbage Collector_ make "constant time" extremely hard to achieve in a scripting language. Which means _any other JS library can't have constant-timeness_. Even statically typed Rust, a language without GC, [makes it harder to achieve constant-time](https://www.chosenplaintext.ca/open-source/rust-timing-shield/security) for some cases. If your goal is absolute security, don't use any JS lib — including bindings to native ones. Use low-level libraries & languages. Nonetheless we're targetting algorithmic constant time. We consider infrastructure attacks like rogue NPM modules very important; that's why it's crucial to minimize the amount of 3rd-party dependencies & native bindings. If your app uses 500 dependencies, any dep could get hacked and you'll be downloading malware with every `npm install`. Our goal is to minimize this attack vector. ## Speed Benchmark results on Apple M2 with node v18.10: ``` getPublicKey secp256k1 x 5,241 ops/sec @ 190μs/op P256 x 7,993 ops/sec @ 125μs/op P384 x 3,819 ops/sec @ 261μs/op P521 x 2,074 ops/sec @ 481μs/op ed25519 x 8,390 ops/sec @ 119μs/op ed448 x 3,224 ops/sec @ 310μs/op sign secp256k1 x 3,934 ops/sec @ 254μs/op P256 x 5,327 ops/sec @ 187μs/op P384 x 2,728 ops/sec @ 366μs/op P521 x 1,594 ops/sec @ 626μs/op ed25519 x 4,233 ops/sec @ 236μs/op ed448 x 1,561 ops/sec @ 640μs/op verify secp256k1 x 731 ops/sec @ 1ms/op P256 x 806 ops/sec @ 1ms/op P384 x 353 ops/sec @ 2ms/op P521 x 171 ops/sec @ 5ms/op ed25519 x 860 ops/sec @ 1ms/op ed448 x 313 ops/sec @ 3ms/op getSharedSecret secp256k1 x 445 ops/sec @ 2ms/op recoverPublicKey secp256k1 x 732 ops/sec @ 1ms/op ==== bls12-381 ==== getPublicKey x 817 ops/sec @ 1ms/op sign x 50 ops/sec @ 19ms/op verify x 34 ops/sec @ 28ms/op pairing x 89 ops/sec @ 11ms/op ==== stark ==== pedersen old x 85 ops/sec @ 11ms/op noble x 1,216 ops/sec @ 822μs/op verify old x 302 ops/sec @ 3ms/op noble x 698 ops/sec @ 1ms/op ``` ## Contributing & testing 1. Clone the repository 2. `npm install` to install build dependencies like TypeScript 3. `npm run build` to compile TypeScript code 4. `npm run test` will execute all main tests ## License The MIT License (MIT) Copyright (c) 2022 Paul Miller [(https://paulmillr.com)](https://paulmillr.com) See LICENSE file.