Audited & minimal JS implementation of elliptic curve cryptography.
bitcoinbls12-381cryptocryptographyecdsaed25519ed448eddsaelliptic-curve-cryptographyelliptic-curvesjavascriptjubjubnistnoblep256p384p521secp256k1typescriptx448
.github | ||
curve-definitions | ||
lib/esm | ||
src | ||
.gitignore | ||
.prettierrc.json | ||
index.js | ||
LICENSE | ||
package.json | ||
README.md | ||
tsconfig.esm.json | ||
tsconfig.json |
noble-curves
Minimal, zero-dependency JS implementation of elliptic curve cryptography.
Implements Short Weierstrass curves with ECDSA signature scheme.
To keep the package minimal, no curve definitions are provided out-of-box. Use micro-curve-definitions
module:
- It provides P192, P224, P256, P384, P521, secp256k1, stark curve, bn254, pasta (pallas/vesta) short weierstrass curves
- It also provides ed25519 and ed448 twisted edwards curves
- Main reason for separate package is the fact hashing library (like
@noble/hashes
) is required for full functionality - We may reconsider merging packages in future, when a stable version would be ready
Future plans:
- Edwards and Montgomery curves
- hash-to-curve standard
- point indistinguishability
- pairings
This library belongs to noble crypto
noble-crypto — high-security, easily auditable set of contained cryptographic libraries and tools.
- No dependencies, small files
- Easily auditable TypeScript/JS code
- Supported in all major browsers and stable node.js versions
- All releases are signed with PGP keys
- Check out homepage & all libraries: secp256k1, ed25519, bls12-381, hashes, curves
Usage
Use NPM in node.js / browser, or include single file from GitHub's releases page:
Usage
npm install @noble/curves
import shortw from '@noble/curves/shortw'; // Short Weierstrass curve
import twistede from '@noble/curves/twistede'; // Twisted Edwards curve
import { sha256 } from '@noble/hashes/sha256';
import { hmac } from '@noble/hashes/hmac';
import { concatBytes, randomBytes } from '@noble/hashes/utils';
export const secp256k1 = shortw({
a: 0n,
b: 7n,
// Field over which we'll do calculations
P: 2n ** 256n - 2n ** 32n - 2n ** 9n - 2n ** 8n - 2n ** 7n - 2n ** 6n - 2n ** 4n - 1n,
// Curve order, total count of valid points in the field
n: 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141n,
// Base point (x, y) aka generator point
Gx: 55066263022277343669578718895168534326250603453777594175500187360389116729240n,
Gy: 32670510020758816978083085130507043184471273380659243275938904335757337482424n,
hash: sha256,
hmac: (k: Uint8Array, ...msgs: Uint8Array[]) => hmac(sha256, key, concatBytes(...msgs)),
randomBytes: randomBytes
});
// secp256k1.getPublicKey(priv)
// secp256k1.sign(msg, priv)
// secp256k1.verify(sig, msg, pub)
License
MIT (c) Paul Miller (https://paulmillr.com), see LICENSE file.