phase2-bn254/src/lib.rs

512 lines
15 KiB
Rust
Raw Normal View History

2017-11-21 10:04:49 +03:00
extern crate pairing;
use pairing::{Engine, Field};
use std::ops::{Add, Sub};
use std::fmt;
use std::error::Error;
/// This represents a linear combination of some variables, with coefficients
/// in the scalar field of a pairing-friendly elliptic curve group.
pub struct LinearCombination<T, E: Engine>(Vec<(T, E::Fr)>);
impl<T, E: Engine> AsRef<[(T, E::Fr)]> for LinearCombination<T, E> {
fn as_ref(&self) -> &[(T, E::Fr)] {
&self.0
}
}
2017-11-21 10:04:49 +03:00
impl<T, E: Engine> LinearCombination<T, E> {
pub fn zero() -> LinearCombination<T, E> {
LinearCombination(vec![])
}
}
impl<T, E: Engine> Add<(E::Fr, T)> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
fn add(mut self, (coeff, var): (E::Fr, T)) -> LinearCombination<T, E> {
self.0.push((var, coeff));
self
}
}
impl<T, E: Engine> Sub<(E::Fr, T)> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
fn sub(self, (mut coeff, var): (E::Fr, T)) -> LinearCombination<T, E> {
coeff.negate();
self + (coeff, var)
}
}
impl<T, E: Engine> Add<T> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
fn add(self, other: T) -> LinearCombination<T, E> {
self + (E::Fr::one(), other)
}
}
impl<T, E: Engine> Sub<T> for LinearCombination<T, E> {
type Output = LinearCombination<T, E>;
fn sub(self, other: T) -> LinearCombination<T, E> {
self - (E::Fr::one(), other)
}
}
#[test]
fn test_lc() {
use pairing::bls12_381::{Bls12, Fr};
let a = LinearCombination::<usize, Bls12>::zero() + 0usize + 1usize + 2usize - 3usize;
let mut negone = Fr::one();
negone.negate();
assert_eq!(a.0, vec![(0usize, Fr::one()), (1usize, Fr::one()), (2usize, Fr::one()), (3usize, negone)]);
}
/// This is an error that could occur during circuit synthesis contexts,
/// such as CRS generation, proving or verification.
#[derive(Debug)]
pub enum SynthesisError {
AssignmentMissing
}
impl Error for SynthesisError {
fn description(&self) -> &str {
match *self {
SynthesisError::AssignmentMissing => "an assignment for a variable could not be computed"
}
}
}
impl fmt::Display for SynthesisError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "{}", self.description())
}
}
pub trait ConstraintSystem<E: Engine>: Sized {
type Variable: Sized + Copy + Clone;
2017-11-21 10:04:49 +03:00
/// Represents the type of the "root" of this constraint system
/// so that nested namespaces can minimize indirection.
type Root: ConstraintSystem<E, Variable=Self::Variable>;
2017-11-21 10:04:49 +03:00
/// Return the "one" input variable
fn one(&self) -> Self::Variable;
/// Allocate a private variable in the constraint system. The provided function is used to
/// determine the assignment of the variable. The given `annotation` function is invoked
/// in testing contexts in order to derive a unique name for this variable in the current
/// namespace.
fn alloc<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
/// Enforce that `A` * `B` = `C`. The `annotation` function is invoked in testing contexts
/// in order to derive a unique name for the constraint in the current namespace.
fn enforce<A, AR>(
&mut self,
annotation: A,
a: LinearCombination<Self::Variable, E>,
b: LinearCombination<Self::Variable, E>,
c: LinearCombination<Self::Variable, E>
)
where A: FnOnce() -> AR, AR: Into<String>;
/// Create a new (sub)namespace and enter into it. Not intended
/// for downstream use; use `namespace` instead.
fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR;
/// Exit out of the existing namespace. Not intended for
/// downstream use; use `namespace` instead.
fn pop_namespace(&mut self);
/// Gets the "root" constraint system, bypassing the namespacing.
/// Not intended for downstream use; use `namespace` instead.
fn get_root(&mut self) -> &mut Self::Root;
/// Begin a namespace for this constraint system.
fn namespace<'a, NR, N>(
&'a mut self,
name_fn: N
) -> Namespace<'a, E, Self::Root>
where NR: Into<String>, N: FnOnce() -> NR
{
self.get_root().push_namespace(name_fn);
Namespace(self.get_root(), PhantomData)
}
}
pub trait PublicConstraintSystem<E: Engine>: ConstraintSystem<E>
{
/// Represents the type of the "root" of this constraint system
/// so that nested namespaces can minimize indirection.
type PublicRoot: PublicConstraintSystem<E, Variable=Self::Variable>;
2017-11-21 10:04:49 +03:00
/// Allocate a public variable in the constraint system. The provided function is used to
/// determine the assignment of the variable.
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>;
/// Gets the "root" constraint system, bypassing the namespacing.
/// Not intended for downstream use; use `namespace` instead.
fn get_public_root(&mut self) -> &mut Self::PublicRoot;
/// Begin a namespace for this constraint system.
2017-11-22 00:00:00 +03:00
fn namespace_public<'a, NR, N>(
&'a mut self,
name_fn: N
) -> Namespace<'a, E, Self::PublicRoot>
where NR: Into<String>, N: FnOnce() -> NR
{
self.get_root().push_namespace(name_fn);
Namespace(self.get_public_root(), PhantomData)
}
2017-11-21 10:04:49 +03:00
}
use std::marker::PhantomData;
/// This is a "namespaced" constraint system which borrows a constraint system (pushing
/// a namespace context) and, when dropped, pops out of the namespace context.
pub struct Namespace<'a, E: Engine, CS: ConstraintSystem<E> + 'a>(&'a mut CS, PhantomData<E>);
impl<'cs, E: Engine, CS: PublicConstraintSystem<E>> PublicConstraintSystem<E> for Namespace<'cs, E, CS> {
type PublicRoot = CS::PublicRoot;
2017-11-21 10:04:49 +03:00
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.0.alloc_input(annotation, f)
}
fn get_public_root(&mut self) -> &mut Self::PublicRoot
{
self.0.get_public_root()
}
2017-11-21 10:04:49 +03:00
}
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for Namespace<'cs, E, CS> {
type Variable = CS::Variable;
type Root = CS::Root;
fn one(&self) -> Self::Variable {
self.0.one()
}
fn alloc<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
self.0.alloc(annotation, f)
}
fn enforce<A, AR>(
&mut self,
annotation: A,
a: LinearCombination<Self::Variable, E>,
b: LinearCombination<Self::Variable, E>,
c: LinearCombination<Self::Variable, E>
)
where A: FnOnce() -> AR, AR: Into<String>
{
self.0.enforce(annotation, a, b, c)
}
// Downstream users who use `namespace` will never interact with these
// functions and they will never be invoked because the namespace is
// never a root constraint system.
fn push_namespace<NR, N>(&mut self, _: N)
2017-11-21 10:04:49 +03:00
where NR: Into<String>, N: FnOnce() -> NR
{
panic!("only the root's push_namespace should be called");
2017-11-21 10:04:49 +03:00
}
fn pop_namespace(&mut self)
{
panic!("only the root's pop_namespace should be called");
2017-11-21 10:04:49 +03:00
}
fn get_root(&mut self) -> &mut Self::Root
{
self.0.get_root()
}
}
impl<'a, E: Engine, CS: ConstraintSystem<E>> Drop for Namespace<'a, E, CS> {
fn drop(&mut self) {
self.get_root().pop_namespace()
}
}
/// Convenience implementation of PublicConstraintSystem<E> for mutable references to
/// public constraint systems.
impl<'cs, E: Engine, CS: PublicConstraintSystem<E>> PublicConstraintSystem<E> for &'cs mut CS {
type PublicRoot = CS::PublicRoot;
2017-11-21 10:04:49 +03:00
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
(**self).alloc_input(annotation, f)
}
fn get_public_root(&mut self) -> &mut Self::PublicRoot
{
(**self).get_public_root()
}
2017-11-21 10:04:49 +03:00
}
/// Convenience implementation of ConstraintSystem<E> for mutable references to
/// constraint systems.
impl<'cs, E: Engine, CS: ConstraintSystem<E>> ConstraintSystem<E> for &'cs mut CS {
type Variable = CS::Variable;
type Root = CS::Root;
fn one(&self) -> Self::Variable {
(**self).one()
}
fn alloc<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
(**self).alloc(annotation, f)
}
fn enforce<A, AR>(
&mut self,
annotation: A,
a: LinearCombination<Self::Variable, E>,
b: LinearCombination<Self::Variable, E>,
c: LinearCombination<Self::Variable, E>
)
where A: FnOnce() -> AR, AR: Into<String>
{
(**self).enforce(annotation, a, b, c)
}
fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR
{
(**self).push_namespace(name_fn)
}
fn pop_namespace(&mut self)
{
(**self).pop_namespace()
}
fn get_root(&mut self) -> &mut Self::Root
{
(**self).get_root()
}
}
#[test]
fn test_cs() {
use pairing::bls12_381::{Bls12, Fr};
#[derive(PartialEq, Copy, Clone)]
2017-11-21 10:04:49 +03:00
enum Var {
Input(usize),
Aux(usize)
}
struct MySillyConstraintSystem<E: Engine> {
inputs: Vec<(E::Fr, String)>,
aux: Vec<(E::Fr, String)>,
constraints: Vec<(LinearCombination<Var, E>, LinearCombination<Var, E>, LinearCombination<Var, E>, String)>,
current_namespace: Vec<String>
}
fn compute_path(ns: &[String], this: String) -> String {
let mut name = String::new();
let mut needs_separation = false;
for ns in ns.iter().chain(Some(&this).into_iter())
{
if needs_separation {
name += "/";
}
name += ns;
needs_separation = true;
}
name
}
impl<E: Engine> PublicConstraintSystem<E> for MySillyConstraintSystem<E> {
type PublicRoot = Self;
2017-11-21 10:04:49 +03:00
fn alloc_input<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
let index = self.inputs.len();
let path = compute_path(&self.current_namespace, annotation().into());
self.inputs.push((f()?, path));
Ok(Var::Input(index))
}
fn get_public_root(&mut self) -> &mut Self::PublicRoot
{
self
}
2017-11-21 10:04:49 +03:00
}
impl<E: Engine> ConstraintSystem<E> for MySillyConstraintSystem<E> {
type Variable = Var;
type Root = Self;
fn one(&self) -> Self::Variable {
Var::Input(0)
}
fn alloc<F, A, AR>(
&mut self,
annotation: A,
f: F
) -> Result<Self::Variable, SynthesisError>
where F: FnOnce() -> Result<E::Fr, SynthesisError>, A: FnOnce() -> AR, AR: Into<String>
{
let index = self.aux.len();
let path = compute_path(&self.current_namespace, annotation().into());
self.aux.push((f()?, path));
Ok(Var::Aux(index))
}
fn enforce<A, AR>(
&mut self,
annotation: A,
a: LinearCombination<Self::Variable, E>,
b: LinearCombination<Self::Variable, E>,
c: LinearCombination<Self::Variable, E>
)
where A: FnOnce() -> AR, AR: Into<String>
{
let path = compute_path(&self.current_namespace, annotation().into());
self.constraints.push((a, b, c, path));
}
fn push_namespace<NR, N>(&mut self, name_fn: N)
where NR: Into<String>, N: FnOnce() -> NR
{
self.current_namespace.push(name_fn().into());
}
fn pop_namespace(&mut self)
{
self.current_namespace.pop();
}
fn get_root(&mut self) -> &mut Self::Root
{
self
}
}
fn do_stuff_with_pcs<E: Engine, CS: PublicConstraintSystem<E>>(mut cs: CS, one_more: bool)
{
cs.alloc_input(|| "something", || Ok(E::Fr::zero())).unwrap();
if one_more {
2017-11-22 00:00:00 +03:00
do_stuff_with_pcs(cs.namespace_public(|| "cool namespace"), false);
}
}
2017-11-21 10:04:49 +03:00
let mut cs = MySillyConstraintSystem::<Bls12> {
inputs: vec![(Fr::one(), "ONE".into())],
aux: vec![],
constraints: vec![],
current_namespace: vec![]
};
cs.alloc(|| "something", || Ok(Fr::zero())).unwrap();
assert_eq!(cs.inputs, vec![(Fr::one(), "ONE".into())]);
assert_eq!(cs.aux, vec![(Fr::zero(), "something".into())]);
{
let mut cs = cs.namespace(|| "woohoo");
cs.alloc(|| "whatever", || Ok(Fr::one())).unwrap();
cs.alloc(|| "you", || Ok(Fr::zero())).unwrap();
cs.alloc(|| "say", || Ok(Fr::one())).unwrap();
{
let mut cs = cs.namespace(|| "hehe");
let v1 = cs.alloc(|| "hehe, indeed", || Ok(Fr::one())).unwrap();
let v2 = cs.alloc_input(|| "works lol", || Ok(Fr::zero())).unwrap();
let one = cs.one();
cs.enforce(
|| "great constraint",
LinearCombination::zero() + v1,
LinearCombination::zero() + one,
LinearCombination::zero() + v2
);
}
}
assert_eq!(cs.aux, vec![
(Fr::zero(), "something".into()),
(Fr::one(), "woohoo/whatever".into()),
(Fr::zero(), "woohoo/you".into()),
(Fr::one(), "woohoo/say".into()),
(Fr::one(), "woohoo/hehe/hehe, indeed".into()),
]);
assert_eq!(cs.inputs, vec![
(Fr::one(), "ONE".into()),
(Fr::zero(), "woohoo/hehe/works lol".into()),
]);
assert!(cs.constraints.len() == 1);
assert!((cs.constraints[0].0).0 == vec![(Var::Aux(4), Fr::one())]);
assert!((cs.constraints[0].1).0 == vec![(Var::Input(0), Fr::one())]);
assert!((cs.constraints[0].2).0 == vec![(Var::Input(1), Fr::one())]);
assert!(cs.constraints[0].3 == "woohoo/hehe/great constraint");
do_stuff_with_pcs(cs.namespace(|| "namey"), true);
assert_eq!(cs.inputs, vec![
(Fr::one(), "ONE".into()),
(Fr::zero(), "woohoo/hehe/works lol".into()),
(Fr::zero(), "namey/something".into()),
(Fr::zero(), "namey/cool namespace/something".into()),
]);
2017-11-21 10:04:49 +03:00
}