finish wellformedness argument, can now test

This commit is contained in:
Alex Vlasov 2019-02-21 20:42:56 -05:00
parent 0089b98439
commit 08f1384c7c
2 changed files with 43 additions and 61 deletions

@ -16,7 +16,6 @@ pub struct WellformednessArgument<E: Engine> {
#[derive(Clone)] #[derive(Clone)]
pub struct WellformednessProof<E: Engine> { pub struct WellformednessProof<E: Engine> {
commitments: Vec<E::G1Affine>, commitments: Vec<E::G1Affine>,
challenges: Vec<E::Fr>,
l: E::G1Affine, l: E::G1Affine,
r: E::G1Affine r: E::G1Affine
} }
@ -79,81 +78,63 @@ impl<E: Engine> WellformednessArgument<E> {
let d = srs.d; let d = srs.d;
// here the multiplier is x^-d, so largest negative power is -d + 1 assert!(n < d);
let l = polynomial_commitment::<E, _>(
n,
d - 1,
0,
&srs,
p0.iter());
// here the multiplier is x^d-n, so largest positive power is d // here the multiplier is x^-d, so largest negative power is -(d - 1), smallest negative power is -(d - n)
let l = multiexp(
srs.g_negative_x[(d - n)..(d - 1)].iter().rev(),
p0.iter()
).into_affine();
let r = polynomial_commitment::<E, _>( // here the multiplier is x^d-n, so largest positive power is d, smallest positive power is d - n + 1
n,
0, let r = multiexp(
d, srs.g_positive_x[(d - n + 1)..].iter().rev(),
&srs, p0.iter()
p0.iter()); ).into_affine();
WellformednessProof { WellformednessProof {
commitments: commitments, commitments: commitments,
challenges: challenges,
l: l, l: l,
r: r r: r
} }
} }
pub fn verify(n: usize, challenges: Vec<E::Fr>, proof: &WellformednessProof<E>, srs: &SRS<E>) -> bool {
let d = srs.d;
// pub fn verify(challenges: Vec<E::Fr>, proof: &WellformednessProof<E>, srs: &SRS<E>) -> bool { let alpha_x_d_precomp = srs.h_positive_x_alpha[d].prepare();
let alpha_x_n_minus_d_precomp = srs.h_negative_x_alpha[d - n].prepare();
let mut h_prep = srs.h_positive_x[0];
h_prep.negate();
let h_prep = h_prep.prepare();
// // e(C,hαx)e(Cyz,hα) = e(O,h)e(gc,hα) let a = multiexp(
proof.commitments.iter(),
challenges.iter(),
).into_affine();
// let alpha_x_precomp = srs.h_positive_x_alpha[1].prepare(); let a = a.prepare();
// let alpha_precomp = srs.h_positive_x_alpha[0].prepare();
// let mut h_prep = srs.h_positive_x[0];
// h_prep.negate();
// let h_prep = h_prep.prepare();
// let mut c_minus_xy = proof.c_value; let valid = E::final_exponentiation(&E::miller_loop(&[
// let mut xy = x; (&a, &h_prep),
// xy.mul_assign(&y); (&proof.l.prepare(), &alpha_x_d_precomp)
])).unwrap() == E::Fqk::one();
// c_minus_xy.sub_assign(&xy); if !valid {
return false;
}
// let mut c_in_c_minus_xy = proof.c_opening.mul(c_minus_xy.into_repr()).into_affine(); let valid = E::final_exponentiation(&E::miller_loop(&[
(&a, &h_prep),
(&proof.r.prepare(), &alpha_x_n_minus_d_precomp)
])).unwrap() == E::Fqk::one();
// let valid = E::final_exponentiation(&E::miller_loop(&[ if !valid {
// (&proof.c_opening.prepare(), &alpha_x_precomp), return false;
// (&c_in_c_minus_xy.prepare(), &alpha_precomp), }
// (&proof.o.prepare(), &h_prep),
// ])).unwrap() == E::Fqk::one();
// if !valid { true
// return false; }
// }
// // e(D,hαx)e(Dy1z,hα) = e(O,h)e(gd,hα)
// let mut d_minus_x_y_inv = proof.d_value;
// let mut x_y_inv = x;
// x_y_inv.mul_assign(&y.inverse().unwrap());
// d_minus_x_y_inv.sub_assign(&x_y_inv);
// let mut d_in_d_minus_x_y_inv = proof.d_opening.mul(d_minus_x_y_inv.into_repr()).into_affine();
// let valid = E::final_exponentiation(&E::miller_loop(&[
// (&proof.d_opening.prepare(), &alpha_x_precomp),
// (&d_in_d_minus_x_y_inv.prepare(), &alpha_precomp),
// (&proof.o.prepare(), &h_prep),
// ])).unwrap() == E::Fqk::one();
// if !valid {
// return false;
// }
// true
// }
} }

@ -90,6 +90,7 @@ pub fn polynomial_commitment<
// of we should use part of the negative powers // of we should use part of the negative powers
let d = srs.d; let d = srs.d;
assert!(max >= largest_positive_power); assert!(max >= largest_positive_power);
// use both positive and negative powers for commitment
if d < max + largest_negative_power + 1 { if d < max + largest_negative_power + 1 {
let min_power = largest_negative_power + max - d; let min_power = largest_negative_power + max - d;
let max_power = d + largest_positive_power - max; let max_power = d + largest_positive_power - max;
@ -101,8 +102,8 @@ pub fn polynomial_commitment<
).into_affine(); ).into_affine();
} else { } else {
return multiexp( return multiexp(
srs.g_positive_x_alpha[(srs.d - max - largest_negative_power - 1)..].iter(), srs.g_positive_x_alpha[(srs.d - max - largest_negative_power - 1)..].iter(),
s s
).into_affine(); ).into_affine();
} }
} }