Auto merge of #90 - str4d:ff, r=ebfull
Use ff crate for traits and impls Depends on https://github.com/ebfull/ff/pull/1 and https://github.com/ebfull/ff/pull/5
This commit is contained in:
commit
183a64b08e
@ -3,7 +3,10 @@ name = "pairing"
|
||||
|
||||
# Remember to change version string in README.md.
|
||||
version = "0.14.2"
|
||||
authors = ["Sean Bowe <ewillbefull@gmail.com>"]
|
||||
authors = [
|
||||
"Sean Bowe <ewillbefull@gmail.com>",
|
||||
"Jack Grigg <jack@z.cash>",
|
||||
]
|
||||
license = "MIT/Apache-2.0"
|
||||
|
||||
description = "Pairing-friendly elliptic curve library"
|
||||
@ -14,10 +17,9 @@ repository = "https://github.com/ebfull/pairing"
|
||||
[dependencies]
|
||||
rand = "0.4"
|
||||
byteorder = "1"
|
||||
clippy = { version = "0.0.200", optional = true }
|
||||
ff = { version = "0.4", features = ["derive"] }
|
||||
|
||||
[features]
|
||||
unstable-features = ["expose-arith"]
|
||||
expose-arith = []
|
||||
u128-support = []
|
||||
default = []
|
||||
|
@ -6,14 +6,6 @@ This is a Rust crate for using pairing-friendly elliptic curves. Currently, only
|
||||
|
||||
Bring the `pairing` crate into your project just as you normally would.
|
||||
|
||||
If you're using a supported platform and the nightly Rust compiler, you can enable the `u128-support` feature for faster arithmetic.
|
||||
|
||||
```toml
|
||||
[dependencies.pairing]
|
||||
version = "0.14"
|
||||
features = ["u128-support"]
|
||||
```
|
||||
|
||||
## Security Warnings
|
||||
|
||||
This library does not make any guarantees about constant-time operations, memory access patterns, or resistance to side-channel attacks.
|
||||
|
@ -1,7 +1,7 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use ff::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_repr_add_nocarry(b: &mut ::test::Bencher) {
|
||||
|
@ -1,7 +1,7 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use ff::Field;
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::Field;
|
||||
|
||||
#[bench]
|
||||
fn bench_fq12_add_assign(b: &mut ::test::Bencher) {
|
||||
|
@ -1,7 +1,7 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use ff::{Field, SqrtField};
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::{Field, SqrtField};
|
||||
|
||||
#[bench]
|
||||
fn bench_fq2_add_assign(b: &mut ::test::Bencher) {
|
||||
|
@ -1,7 +1,7 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use ff::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_repr_add_nocarry(b: &mut ::test::Bencher) {
|
||||
|
@ -1,5 +1,6 @@
|
||||
#![feature(test)]
|
||||
|
||||
extern crate ff;
|
||||
extern crate pairing;
|
||||
extern crate rand;
|
||||
extern crate test;
|
||||
|
@ -623,12 +623,10 @@ macro_rules! curve_impl {
|
||||
pub mod g1 {
|
||||
use super::super::{Bls12, Fq, Fq12, FqRepr, Fr, FrRepr};
|
||||
use super::g2::G2Affine;
|
||||
use ff::{BitIterator, Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
use rand::{Rand, Rng};
|
||||
use std::fmt;
|
||||
use {
|
||||
BitIterator, CurveAffine, CurveProjective, EncodedPoint, Engine, Field, GroupDecodingError,
|
||||
PrimeField, PrimeFieldRepr, SqrtField,
|
||||
};
|
||||
use {CurveAffine, CurveProjective, EncodedPoint, Engine, GroupDecodingError};
|
||||
|
||||
curve_impl!(
|
||||
"G1",
|
||||
@ -1270,12 +1268,10 @@ pub mod g1 {
|
||||
pub mod g2 {
|
||||
use super::super::{Bls12, Fq, Fq12, Fq2, FqRepr, Fr, FrRepr};
|
||||
use super::g1::G1Affine;
|
||||
use ff::{BitIterator, Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
use rand::{Rand, Rng};
|
||||
use std::fmt;
|
||||
use {
|
||||
BitIterator, CurveAffine, CurveProjective, EncodedPoint, Engine, Field, GroupDecodingError,
|
||||
PrimeField, PrimeFieldRepr, SqrtField,
|
||||
};
|
||||
use {CurveAffine, CurveProjective, EncodedPoint, Engine, GroupDecodingError};
|
||||
|
||||
curve_impl!(
|
||||
"G2",
|
||||
|
@ -1,69 +1,5 @@
|
||||
use super::fq2::Fq2;
|
||||
use std::cmp::Ordering;
|
||||
use {Field, PrimeField, PrimeFieldDecodingError, PrimeFieldRepr, SqrtField};
|
||||
|
||||
// q = 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787
|
||||
const MODULUS: FqRepr = FqRepr([
|
||||
0xb9feffffffffaaab,
|
||||
0x1eabfffeb153ffff,
|
||||
0x6730d2a0f6b0f624,
|
||||
0x64774b84f38512bf,
|
||||
0x4b1ba7b6434bacd7,
|
||||
0x1a0111ea397fe69a,
|
||||
]);
|
||||
|
||||
// The number of bits needed to represent the modulus.
|
||||
const MODULUS_BITS: u32 = 381;
|
||||
|
||||
// The number of bits that must be shaved from the beginning of
|
||||
// the representation when randomly sampling.
|
||||
const REPR_SHAVE_BITS: u32 = 3;
|
||||
|
||||
// R = 2**384 % q
|
||||
const R: FqRepr = FqRepr([
|
||||
0x760900000002fffd,
|
||||
0xebf4000bc40c0002,
|
||||
0x5f48985753c758ba,
|
||||
0x77ce585370525745,
|
||||
0x5c071a97a256ec6d,
|
||||
0x15f65ec3fa80e493,
|
||||
]);
|
||||
|
||||
// R2 = R^2 % q
|
||||
const R2: FqRepr = FqRepr([
|
||||
0xf4df1f341c341746,
|
||||
0xa76e6a609d104f1,
|
||||
0x8de5476c4c95b6d5,
|
||||
0x67eb88a9939d83c0,
|
||||
0x9a793e85b519952d,
|
||||
0x11988fe592cae3aa,
|
||||
]);
|
||||
|
||||
// INV = -(q^{-1} mod 2^64) mod 2^64
|
||||
const INV: u64 = 0x89f3fffcfffcfffd;
|
||||
|
||||
// GENERATOR = 2 (multiplicative generator of q-1 order, that is also quadratic nonresidue)
|
||||
const GENERATOR: FqRepr = FqRepr([
|
||||
0x321300000006554f,
|
||||
0xb93c0018d6c40005,
|
||||
0x57605e0db0ddbb51,
|
||||
0x8b256521ed1f9bcb,
|
||||
0x6cf28d7901622c03,
|
||||
0x11ebab9dbb81e28c,
|
||||
]);
|
||||
|
||||
// 2^s * t = MODULUS - 1 with t odd
|
||||
const S: u32 = 1;
|
||||
|
||||
// 2^s root of unity computed by GENERATOR^t
|
||||
const ROOT_OF_UNITY: FqRepr = FqRepr([
|
||||
0x43f5fffffffcaaae,
|
||||
0x32b7fff2ed47fffd,
|
||||
0x7e83a49a2e99d69,
|
||||
0xeca8f3318332bb7a,
|
||||
0xef148d1ea0f4c069,
|
||||
0x40ab3263eff0206,
|
||||
]);
|
||||
use ff::{Field, PrimeField, PrimeFieldDecodingError, PrimeFieldRepr};
|
||||
|
||||
// B coefficient of BLS12-381 curve, 4.
|
||||
pub const B_COEFF: Fq = Fq(FqRepr([
|
||||
@ -507,669 +443,11 @@ pub const NEGATIVE_ONE: Fq = Fq(FqRepr([
|
||||
0x40ab3263eff0206,
|
||||
]));
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Default, Debug)]
|
||||
pub struct FqRepr(pub [u64; 6]);
|
||||
|
||||
impl ::rand::Rand for FqRepr {
|
||||
#[inline(always)]
|
||||
fn rand<R: ::rand::Rng>(rng: &mut R) -> Self {
|
||||
FqRepr(rng.gen())
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::fmt::Display for FqRepr {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
|
||||
try!(write!(f, "0x"));
|
||||
for i in self.0.iter().rev() {
|
||||
try!(write!(f, "{:016x}", *i));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl AsRef<[u64]> for FqRepr {
|
||||
#[inline(always)]
|
||||
fn as_ref(&self) -> &[u64] {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl AsMut<[u64]> for FqRepr {
|
||||
#[inline(always)]
|
||||
fn as_mut(&mut self) -> &mut [u64] {
|
||||
&mut self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl From<u64> for FqRepr {
|
||||
#[inline(always)]
|
||||
fn from(val: u64) -> FqRepr {
|
||||
let mut repr = Self::default();
|
||||
repr.0[0] = val;
|
||||
repr
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for FqRepr {
|
||||
#[inline(always)]
|
||||
fn cmp(&self, other: &FqRepr) -> Ordering {
|
||||
for (a, b) in self.0.iter().rev().zip(other.0.iter().rev()) {
|
||||
if a < b {
|
||||
return Ordering::Less;
|
||||
} else if a > b {
|
||||
return Ordering::Greater;
|
||||
}
|
||||
}
|
||||
|
||||
Ordering::Equal
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for FqRepr {
|
||||
#[inline(always)]
|
||||
fn partial_cmp(&self, other: &FqRepr) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeFieldRepr for FqRepr {
|
||||
#[inline(always)]
|
||||
fn is_odd(&self) -> bool {
|
||||
self.0[0] & 1 == 1
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn is_even(&self) -> bool {
|
||||
!self.is_odd()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn is_zero(&self) -> bool {
|
||||
self.0.iter().all(|&e| e == 0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn shr(&mut self, mut n: u32) {
|
||||
if n >= 64 * 6 {
|
||||
*self = Self::from(0);
|
||||
return;
|
||||
}
|
||||
|
||||
while n >= 64 {
|
||||
let mut t = 0;
|
||||
for i in self.0.iter_mut().rev() {
|
||||
::std::mem::swap(&mut t, i);
|
||||
}
|
||||
n -= 64;
|
||||
}
|
||||
|
||||
if n > 0 {
|
||||
let mut t = 0;
|
||||
for i in self.0.iter_mut().rev() {
|
||||
let t2 = *i << (64 - n);
|
||||
*i >>= n;
|
||||
*i |= t;
|
||||
t = t2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div2(&mut self) {
|
||||
let mut t = 0;
|
||||
for i in self.0.iter_mut().rev() {
|
||||
let t2 = *i << 63;
|
||||
*i >>= 1;
|
||||
*i |= t;
|
||||
t = t2;
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul2(&mut self) {
|
||||
let mut last = 0;
|
||||
for i in &mut self.0 {
|
||||
let tmp = *i >> 63;
|
||||
*i <<= 1;
|
||||
*i |= last;
|
||||
last = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn shl(&mut self, mut n: u32) {
|
||||
if n >= 64 * 6 {
|
||||
*self = Self::from(0);
|
||||
return;
|
||||
}
|
||||
|
||||
while n >= 64 {
|
||||
let mut t = 0;
|
||||
for i in &mut self.0 {
|
||||
::std::mem::swap(&mut t, i);
|
||||
}
|
||||
n -= 64;
|
||||
}
|
||||
|
||||
if n > 0 {
|
||||
let mut t = 0;
|
||||
for i in &mut self.0 {
|
||||
let t2 = *i >> (64 - n);
|
||||
*i <<= n;
|
||||
*i |= t;
|
||||
t = t2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn num_bits(&self) -> u32 {
|
||||
let mut ret = (6 as u32) * 64;
|
||||
for i in self.0.iter().rev() {
|
||||
let leading = i.leading_zeros();
|
||||
ret -= leading;
|
||||
if leading != 64 {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ret
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_nocarry(&mut self, other: &FqRepr) {
|
||||
let mut carry = 0;
|
||||
|
||||
for (a, b) in self.0.iter_mut().zip(other.0.iter()) {
|
||||
*a = ::adc(*a, *b, &mut carry);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_noborrow(&mut self, other: &FqRepr) {
|
||||
let mut borrow = 0;
|
||||
|
||||
for (a, b) in self.0.iter_mut().zip(other.0.iter()) {
|
||||
*a = ::sbb(*a, *b, &mut borrow);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||
#[derive(PrimeField)]
|
||||
#[PrimeFieldModulus = "4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787"]
|
||||
#[PrimeFieldGenerator = "2"]
|
||||
pub struct Fq(FqRepr);
|
||||
|
||||
/// `Fq` elements are ordered lexicographically.
|
||||
impl Ord for Fq {
|
||||
#[inline(always)]
|
||||
fn cmp(&self, other: &Fq) -> Ordering {
|
||||
self.into_repr().cmp(&other.into_repr())
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for Fq {
|
||||
#[inline(always)]
|
||||
fn partial_cmp(&self, other: &Fq) -> Option<Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::fmt::Display for Fq {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
|
||||
write!(f, "Fq({})", self.into_repr())
|
||||
}
|
||||
}
|
||||
|
||||
impl ::rand::Rand for Fq {
|
||||
fn rand<R: ::rand::Rng>(rng: &mut R) -> Self {
|
||||
loop {
|
||||
let mut tmp = Fq(FqRepr::rand(rng));
|
||||
|
||||
// Mask away the unused bits at the beginning.
|
||||
tmp.0.as_mut()[5] &= 0xffffffffffffffff >> REPR_SHAVE_BITS;
|
||||
|
||||
if tmp.is_valid() {
|
||||
return tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Fq> for FqRepr {
|
||||
fn from(e: Fq) -> FqRepr {
|
||||
e.into_repr()
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeField for Fq {
|
||||
type Repr = FqRepr;
|
||||
|
||||
fn from_repr(r: FqRepr) -> Result<Fq, PrimeFieldDecodingError> {
|
||||
let mut r = Fq(r);
|
||||
if r.is_valid() {
|
||||
r.mul_assign(&Fq(R2));
|
||||
|
||||
Ok(r)
|
||||
} else {
|
||||
Err(PrimeFieldDecodingError::NotInField(format!("{}", r.0)))
|
||||
}
|
||||
}
|
||||
|
||||
fn into_repr(&self) -> FqRepr {
|
||||
let mut r = *self;
|
||||
r.mont_reduce(
|
||||
(self.0).0[0],
|
||||
(self.0).0[1],
|
||||
(self.0).0[2],
|
||||
(self.0).0[3],
|
||||
(self.0).0[4],
|
||||
(self.0).0[5],
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
);
|
||||
r.0
|
||||
}
|
||||
|
||||
fn char() -> FqRepr {
|
||||
MODULUS
|
||||
}
|
||||
|
||||
const NUM_BITS: u32 = MODULUS_BITS;
|
||||
|
||||
const CAPACITY: u32 = Self::NUM_BITS - 1;
|
||||
|
||||
fn multiplicative_generator() -> Self {
|
||||
Fq(GENERATOR)
|
||||
}
|
||||
|
||||
const S: u32 = S;
|
||||
|
||||
fn root_of_unity() -> Self {
|
||||
Fq(ROOT_OF_UNITY)
|
||||
}
|
||||
}
|
||||
|
||||
impl Field for Fq {
|
||||
#[inline]
|
||||
fn zero() -> Self {
|
||||
Fq(FqRepr::from(0))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn one() -> Self {
|
||||
Fq(R)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_zero(&self) -> bool {
|
||||
self.0.is_zero()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn add_assign(&mut self, other: &Fq) {
|
||||
// This cannot exceed the backing capacity.
|
||||
self.0.add_nocarry(&other.0);
|
||||
|
||||
// However, it may need to be reduced.
|
||||
self.reduce();
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn double(&mut self) {
|
||||
// This cannot exceed the backing capacity.
|
||||
self.0.mul2();
|
||||
|
||||
// However, it may need to be reduced.
|
||||
self.reduce();
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, other: &Fq) {
|
||||
// If `other` is larger than `self`, we'll need to add the modulus to self first.
|
||||
if other.0 > self.0 {
|
||||
self.0.add_nocarry(&MODULUS);
|
||||
}
|
||||
|
||||
self.0.sub_noborrow(&other.0);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn negate(&mut self) {
|
||||
if !self.is_zero() {
|
||||
let mut tmp = MODULUS;
|
||||
tmp.sub_noborrow(&self.0);
|
||||
self.0 = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
if self.is_zero() {
|
||||
None
|
||||
} else {
|
||||
// Guajardo Kumar Paar Pelzl
|
||||
// Efficient Software-Implementation of Finite Fields with Applications to Cryptography
|
||||
// Algorithm 16 (BEA for Inversion in Fp)
|
||||
|
||||
let one = FqRepr::from(1);
|
||||
|
||||
let mut u = self.0;
|
||||
let mut v = MODULUS;
|
||||
let mut b = Fq(R2); // Avoids unnecessary reduction step.
|
||||
let mut c = Self::zero();
|
||||
|
||||
while u != one && v != one {
|
||||
while u.is_even() {
|
||||
u.div2();
|
||||
|
||||
if b.0.is_even() {
|
||||
b.0.div2();
|
||||
} else {
|
||||
b.0.add_nocarry(&MODULUS);
|
||||
b.0.div2();
|
||||
}
|
||||
}
|
||||
|
||||
while v.is_even() {
|
||||
v.div2();
|
||||
|
||||
if c.0.is_even() {
|
||||
c.0.div2();
|
||||
} else {
|
||||
c.0.add_nocarry(&MODULUS);
|
||||
c.0.div2();
|
||||
}
|
||||
}
|
||||
|
||||
if v < u {
|
||||
u.sub_noborrow(&v);
|
||||
b.sub_assign(&c);
|
||||
} else {
|
||||
v.sub_noborrow(&u);
|
||||
c.sub_assign(&b);
|
||||
}
|
||||
}
|
||||
|
||||
if u == one {
|
||||
Some(b)
|
||||
} else {
|
||||
Some(c)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn frobenius_map(&mut self, _: usize) {
|
||||
// This has no effect in a prime field.
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, other: &Fq) {
|
||||
let mut carry = 0;
|
||||
let r0 = ::mac_with_carry(0, (self.0).0[0], (other.0).0[0], &mut carry);
|
||||
let r1 = ::mac_with_carry(0, (self.0).0[0], (other.0).0[1], &mut carry);
|
||||
let r2 = ::mac_with_carry(0, (self.0).0[0], (other.0).0[2], &mut carry);
|
||||
let r3 = ::mac_with_carry(0, (self.0).0[0], (other.0).0[3], &mut carry);
|
||||
let r4 = ::mac_with_carry(0, (self.0).0[0], (other.0).0[4], &mut carry);
|
||||
let r5 = ::mac_with_carry(0, (self.0).0[0], (other.0).0[5], &mut carry);
|
||||
let r6 = carry;
|
||||
let mut carry = 0;
|
||||
let r1 = ::mac_with_carry(r1, (self.0).0[1], (other.0).0[0], &mut carry);
|
||||
let r2 = ::mac_with_carry(r2, (self.0).0[1], (other.0).0[1], &mut carry);
|
||||
let r3 = ::mac_with_carry(r3, (self.0).0[1], (other.0).0[2], &mut carry);
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[1], (other.0).0[3], &mut carry);
|
||||
let r5 = ::mac_with_carry(r5, (self.0).0[1], (other.0).0[4], &mut carry);
|
||||
let r6 = ::mac_with_carry(r6, (self.0).0[1], (other.0).0[5], &mut carry);
|
||||
let r7 = carry;
|
||||
let mut carry = 0;
|
||||
let r2 = ::mac_with_carry(r2, (self.0).0[2], (other.0).0[0], &mut carry);
|
||||
let r3 = ::mac_with_carry(r3, (self.0).0[2], (other.0).0[1], &mut carry);
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[2], (other.0).0[2], &mut carry);
|
||||
let r5 = ::mac_with_carry(r5, (self.0).0[2], (other.0).0[3], &mut carry);
|
||||
let r6 = ::mac_with_carry(r6, (self.0).0[2], (other.0).0[4], &mut carry);
|
||||
let r7 = ::mac_with_carry(r7, (self.0).0[2], (other.0).0[5], &mut carry);
|
||||
let r8 = carry;
|
||||
let mut carry = 0;
|
||||
let r3 = ::mac_with_carry(r3, (self.0).0[3], (other.0).0[0], &mut carry);
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[3], (other.0).0[1], &mut carry);
|
||||
let r5 = ::mac_with_carry(r5, (self.0).0[3], (other.0).0[2], &mut carry);
|
||||
let r6 = ::mac_with_carry(r6, (self.0).0[3], (other.0).0[3], &mut carry);
|
||||
let r7 = ::mac_with_carry(r7, (self.0).0[3], (other.0).0[4], &mut carry);
|
||||
let r8 = ::mac_with_carry(r8, (self.0).0[3], (other.0).0[5], &mut carry);
|
||||
let r9 = carry;
|
||||
let mut carry = 0;
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[4], (other.0).0[0], &mut carry);
|
||||
let r5 = ::mac_with_carry(r5, (self.0).0[4], (other.0).0[1], &mut carry);
|
||||
let r6 = ::mac_with_carry(r6, (self.0).0[4], (other.0).0[2], &mut carry);
|
||||
let r7 = ::mac_with_carry(r7, (self.0).0[4], (other.0).0[3], &mut carry);
|
||||
let r8 = ::mac_with_carry(r8, (self.0).0[4], (other.0).0[4], &mut carry);
|
||||
let r9 = ::mac_with_carry(r9, (self.0).0[4], (other.0).0[5], &mut carry);
|
||||
let r10 = carry;
|
||||
let mut carry = 0;
|
||||
let r5 = ::mac_with_carry(r5, (self.0).0[5], (other.0).0[0], &mut carry);
|
||||
let r6 = ::mac_with_carry(r6, (self.0).0[5], (other.0).0[1], &mut carry);
|
||||
let r7 = ::mac_with_carry(r7, (self.0).0[5], (other.0).0[2], &mut carry);
|
||||
let r8 = ::mac_with_carry(r8, (self.0).0[5], (other.0).0[3], &mut carry);
|
||||
let r9 = ::mac_with_carry(r9, (self.0).0[5], (other.0).0[4], &mut carry);
|
||||
let r10 = ::mac_with_carry(r10, (self.0).0[5], (other.0).0[5], &mut carry);
|
||||
let r11 = carry;
|
||||
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn square(&mut self) {
|
||||
let mut carry = 0;
|
||||
let r1 = ::mac_with_carry(0, (self.0).0[0], (self.0).0[1], &mut carry);
|
||||
let r2 = ::mac_with_carry(0, (self.0).0[0], (self.0).0[2], &mut carry);
|
||||
let r3 = ::mac_with_carry(0, (self.0).0[0], (self.0).0[3], &mut carry);
|
||||
let r4 = ::mac_with_carry(0, (self.0).0[0], (self.0).0[4], &mut carry);
|
||||
let r5 = ::mac_with_carry(0, (self.0).0[0], (self.0).0[5], &mut carry);
|
||||
let r6 = carry;
|
||||
let mut carry = 0;
|
||||
let r3 = ::mac_with_carry(r3, (self.0).0[1], (self.0).0[2], &mut carry);
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[1], (self.0).0[3], &mut carry);
|
||||
let r5 = ::mac_with_carry(r5, (self.0).0[1], (self.0).0[4], &mut carry);
|
||||
let r6 = ::mac_with_carry(r6, (self.0).0[1], (self.0).0[5], &mut carry);
|
||||
let r7 = carry;
|
||||
let mut carry = 0;
|
||||
let r5 = ::mac_with_carry(r5, (self.0).0[2], (self.0).0[3], &mut carry);
|
||||
let r6 = ::mac_with_carry(r6, (self.0).0[2], (self.0).0[4], &mut carry);
|
||||
let r7 = ::mac_with_carry(r7, (self.0).0[2], (self.0).0[5], &mut carry);
|
||||
let r8 = carry;
|
||||
let mut carry = 0;
|
||||
let r7 = ::mac_with_carry(r7, (self.0).0[3], (self.0).0[4], &mut carry);
|
||||
let r8 = ::mac_with_carry(r8, (self.0).0[3], (self.0).0[5], &mut carry);
|
||||
let r9 = carry;
|
||||
let mut carry = 0;
|
||||
let r9 = ::mac_with_carry(r9, (self.0).0[4], (self.0).0[5], &mut carry);
|
||||
let r10 = carry;
|
||||
|
||||
let r11 = r10 >> 63;
|
||||
let r10 = (r10 << 1) | (r9 >> 63);
|
||||
let r9 = (r9 << 1) | (r8 >> 63);
|
||||
let r8 = (r8 << 1) | (r7 >> 63);
|
||||
let r7 = (r7 << 1) | (r6 >> 63);
|
||||
let r6 = (r6 << 1) | (r5 >> 63);
|
||||
let r5 = (r5 << 1) | (r4 >> 63);
|
||||
let r4 = (r4 << 1) | (r3 >> 63);
|
||||
let r3 = (r3 << 1) | (r2 >> 63);
|
||||
let r2 = (r2 << 1) | (r1 >> 63);
|
||||
let r1 = r1 << 1;
|
||||
|
||||
let mut carry = 0;
|
||||
let r0 = ::mac_with_carry(0, (self.0).0[0], (self.0).0[0], &mut carry);
|
||||
let r1 = ::adc(r1, 0, &mut carry);
|
||||
let r2 = ::mac_with_carry(r2, (self.0).0[1], (self.0).0[1], &mut carry);
|
||||
let r3 = ::adc(r3, 0, &mut carry);
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[2], (self.0).0[2], &mut carry);
|
||||
let r5 = ::adc(r5, 0, &mut carry);
|
||||
let r6 = ::mac_with_carry(r6, (self.0).0[3], (self.0).0[3], &mut carry);
|
||||
let r7 = ::adc(r7, 0, &mut carry);
|
||||
let r8 = ::mac_with_carry(r8, (self.0).0[4], (self.0).0[4], &mut carry);
|
||||
let r9 = ::adc(r9, 0, &mut carry);
|
||||
let r10 = ::mac_with_carry(r10, (self.0).0[5], (self.0).0[5], &mut carry);
|
||||
let r11 = ::adc(r11, 0, &mut carry);
|
||||
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11);
|
||||
}
|
||||
}
|
||||
|
||||
impl Fq {
|
||||
/// Determines if the element is really in the field. This is only used
|
||||
/// internally.
|
||||
#[inline(always)]
|
||||
fn is_valid(&self) -> bool {
|
||||
self.0 < MODULUS
|
||||
}
|
||||
|
||||
/// Subtracts the modulus from this element if this element is not in the
|
||||
/// field. Only used internally.
|
||||
#[inline(always)]
|
||||
fn reduce(&mut self) {
|
||||
if !self.is_valid() {
|
||||
self.0.sub_noborrow(&MODULUS);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mont_reduce(
|
||||
&mut self,
|
||||
r0: u64,
|
||||
mut r1: u64,
|
||||
mut r2: u64,
|
||||
mut r3: u64,
|
||||
mut r4: u64,
|
||||
mut r5: u64,
|
||||
mut r6: u64,
|
||||
mut r7: u64,
|
||||
mut r8: u64,
|
||||
mut r9: u64,
|
||||
mut r10: u64,
|
||||
mut r11: u64,
|
||||
) {
|
||||
// The Montgomery reduction here is based on Algorithm 14.32 in
|
||||
// Handbook of Applied Cryptography
|
||||
// <http://cacr.uwaterloo.ca/hac/about/chap14.pdf>.
|
||||
|
||||
let k = r0.wrapping_mul(INV);
|
||||
let mut carry = 0;
|
||||
::mac_with_carry(r0, k, MODULUS.0[0], &mut carry);
|
||||
r1 = ::mac_with_carry(r1, k, MODULUS.0[1], &mut carry);
|
||||
r2 = ::mac_with_carry(r2, k, MODULUS.0[2], &mut carry);
|
||||
r3 = ::mac_with_carry(r3, k, MODULUS.0[3], &mut carry);
|
||||
r4 = ::mac_with_carry(r4, k, MODULUS.0[4], &mut carry);
|
||||
r5 = ::mac_with_carry(r5, k, MODULUS.0[5], &mut carry);
|
||||
r6 = ::adc(r6, 0, &mut carry);
|
||||
let carry2 = carry;
|
||||
let k = r1.wrapping_mul(INV);
|
||||
let mut carry = 0;
|
||||
::mac_with_carry(r1, k, MODULUS.0[0], &mut carry);
|
||||
r2 = ::mac_with_carry(r2, k, MODULUS.0[1], &mut carry);
|
||||
r3 = ::mac_with_carry(r3, k, MODULUS.0[2], &mut carry);
|
||||
r4 = ::mac_with_carry(r4, k, MODULUS.0[3], &mut carry);
|
||||
r5 = ::mac_with_carry(r5, k, MODULUS.0[4], &mut carry);
|
||||
r6 = ::mac_with_carry(r6, k, MODULUS.0[5], &mut carry);
|
||||
r7 = ::adc(r7, carry2, &mut carry);
|
||||
let carry2 = carry;
|
||||
let k = r2.wrapping_mul(INV);
|
||||
let mut carry = 0;
|
||||
::mac_with_carry(r2, k, MODULUS.0[0], &mut carry);
|
||||
r3 = ::mac_with_carry(r3, k, MODULUS.0[1], &mut carry);
|
||||
r4 = ::mac_with_carry(r4, k, MODULUS.0[2], &mut carry);
|
||||
r5 = ::mac_with_carry(r5, k, MODULUS.0[3], &mut carry);
|
||||
r6 = ::mac_with_carry(r6, k, MODULUS.0[4], &mut carry);
|
||||
r7 = ::mac_with_carry(r7, k, MODULUS.0[5], &mut carry);
|
||||
r8 = ::adc(r8, carry2, &mut carry);
|
||||
let carry2 = carry;
|
||||
let k = r3.wrapping_mul(INV);
|
||||
let mut carry = 0;
|
||||
::mac_with_carry(r3, k, MODULUS.0[0], &mut carry);
|
||||
r4 = ::mac_with_carry(r4, k, MODULUS.0[1], &mut carry);
|
||||
r5 = ::mac_with_carry(r5, k, MODULUS.0[2], &mut carry);
|
||||
r6 = ::mac_with_carry(r6, k, MODULUS.0[3], &mut carry);
|
||||
r7 = ::mac_with_carry(r7, k, MODULUS.0[4], &mut carry);
|
||||
r8 = ::mac_with_carry(r8, k, MODULUS.0[5], &mut carry);
|
||||
r9 = ::adc(r9, carry2, &mut carry);
|
||||
let carry2 = carry;
|
||||
let k = r4.wrapping_mul(INV);
|
||||
let mut carry = 0;
|
||||
::mac_with_carry(r4, k, MODULUS.0[0], &mut carry);
|
||||
r5 = ::mac_with_carry(r5, k, MODULUS.0[1], &mut carry);
|
||||
r6 = ::mac_with_carry(r6, k, MODULUS.0[2], &mut carry);
|
||||
r7 = ::mac_with_carry(r7, k, MODULUS.0[3], &mut carry);
|
||||
r8 = ::mac_with_carry(r8, k, MODULUS.0[4], &mut carry);
|
||||
r9 = ::mac_with_carry(r9, k, MODULUS.0[5], &mut carry);
|
||||
r10 = ::adc(r10, carry2, &mut carry);
|
||||
let carry2 = carry;
|
||||
let k = r5.wrapping_mul(INV);
|
||||
let mut carry = 0;
|
||||
::mac_with_carry(r5, k, MODULUS.0[0], &mut carry);
|
||||
r6 = ::mac_with_carry(r6, k, MODULUS.0[1], &mut carry);
|
||||
r7 = ::mac_with_carry(r7, k, MODULUS.0[2], &mut carry);
|
||||
r8 = ::mac_with_carry(r8, k, MODULUS.0[3], &mut carry);
|
||||
r9 = ::mac_with_carry(r9, k, MODULUS.0[4], &mut carry);
|
||||
r10 = ::mac_with_carry(r10, k, MODULUS.0[5], &mut carry);
|
||||
r11 = ::adc(r11, carry2, &mut carry);
|
||||
(self.0).0[0] = r6;
|
||||
(self.0).0[1] = r7;
|
||||
(self.0).0[2] = r8;
|
||||
(self.0).0[3] = r9;
|
||||
(self.0).0[4] = r10;
|
||||
(self.0).0[5] = r11;
|
||||
self.reduce();
|
||||
}
|
||||
}
|
||||
|
||||
impl SqrtField for Fq {
|
||||
fn legendre(&self) -> ::LegendreSymbol {
|
||||
use LegendreSymbol::*;
|
||||
|
||||
// s = self^((q - 1) // 2)
|
||||
let s = self.pow([
|
||||
0xdcff7fffffffd555,
|
||||
0xf55ffff58a9ffff,
|
||||
0xb39869507b587b12,
|
||||
0xb23ba5c279c2895f,
|
||||
0x258dd3db21a5d66b,
|
||||
0xd0088f51cbff34d,
|
||||
]);
|
||||
if s == Fq::zero() {
|
||||
Zero
|
||||
} else if s == Fq::one() {
|
||||
QuadraticResidue
|
||||
} else {
|
||||
QuadraticNonResidue
|
||||
}
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
// Shank's algorithm for q mod 4 = 3
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 9, algorithm 2)
|
||||
|
||||
// a1 = self^((q - 3) // 4)
|
||||
let mut a1 = self.pow([
|
||||
0xee7fbfffffffeaaa,
|
||||
0x7aaffffac54ffff,
|
||||
0xd9cc34a83dac3d89,
|
||||
0xd91dd2e13ce144af,
|
||||
0x92c6e9ed90d2eb35,
|
||||
0x680447a8e5ff9a6,
|
||||
]);
|
||||
let mut a0 = a1;
|
||||
a0.square();
|
||||
a0.mul_assign(self);
|
||||
|
||||
if a0 == NEGATIVE_ONE {
|
||||
None
|
||||
} else {
|
||||
a1.mul_assign(self);
|
||||
Some(a1)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_b_coeff() {
|
||||
assert_eq!(Fq::from_repr(FqRepr::from(4)).unwrap(), B_COEFF);
|
||||
@ -1899,6 +1177,8 @@ use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
#[test]
|
||||
fn test_fq_repr_ordering() {
|
||||
use std::cmp::Ordering;
|
||||
|
||||
fn assert_equality(a: FqRepr, b: FqRepr) {
|
||||
assert_eq!(a, b);
|
||||
assert!(a.cmp(&b) == Ordering::Equal);
|
||||
@ -2304,14 +1584,16 @@ fn test_fq_is_valid() {
|
||||
0x17c8be1800b9f059
|
||||
])).is_valid()
|
||||
);
|
||||
assert!(!Fq(FqRepr([
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff
|
||||
])).is_valid());
|
||||
assert!(
|
||||
!Fq(FqRepr([
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff
|
||||
])).is_valid()
|
||||
);
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
@ -2745,6 +2027,8 @@ fn test_fq_pow() {
|
||||
|
||||
#[test]
|
||||
fn test_fq_sqrt() {
|
||||
use ff::SqrtField;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
assert_eq!(Fq::zero().sqrt().unwrap(), Fq::zero());
|
||||
@ -2878,6 +2162,8 @@ fn test_fq_num_bits() {
|
||||
|
||||
#[test]
|
||||
fn test_fq_root_of_unity() {
|
||||
use ff::SqrtField;
|
||||
|
||||
assert_eq!(Fq::S, 1);
|
||||
assert_eq!(
|
||||
Fq::multiplicative_generator(),
|
||||
@ -2924,7 +2210,8 @@ fn fq_repr_tests() {
|
||||
|
||||
#[test]
|
||||
fn test_fq_legendre() {
|
||||
use LegendreSymbol::*;
|
||||
use ff::LegendreSymbol::*;
|
||||
use ff::SqrtField;
|
||||
|
||||
assert_eq!(QuadraticResidue, Fq::one().legendre());
|
||||
assert_eq!(Zero, Fq::zero().legendre());
|
||||
|
@ -1,8 +1,8 @@
|
||||
use super::fq::FROBENIUS_COEFF_FQ12_C1;
|
||||
use super::fq2::Fq2;
|
||||
use super::fq6::Fq6;
|
||||
use ff::Field;
|
||||
use rand::{Rand, Rng};
|
||||
use Field;
|
||||
|
||||
/// An element of Fq12, represented by c0 + c1 * w.
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
@ -182,7 +182,7 @@ fn test_fq12_mul_by_014() {
|
||||
|
||||
#[test]
|
||||
fn fq12_field_tests() {
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
::tests::field::random_field_tests::<Fq12>();
|
||||
::tests::field::random_frobenius_tests::<Fq12, _>(super::fq::Fq::char(), 13);
|
||||
|
@ -1,6 +1,6 @@
|
||||
use super::fq::{FROBENIUS_COEFF_FQ2_C1, Fq, NEGATIVE_ONE};
|
||||
use ff::{Field, SqrtField};
|
||||
use rand::{Rand, Rng};
|
||||
use {Field, SqrtField};
|
||||
|
||||
use std::cmp::Ordering;
|
||||
|
||||
@ -160,7 +160,7 @@ impl Field for Fq2 {
|
||||
}
|
||||
|
||||
impl SqrtField for Fq2 {
|
||||
fn legendre(&self) -> ::LegendreSymbol {
|
||||
fn legendre(&self) -> ::ff::LegendreSymbol {
|
||||
self.norm().legendre()
|
||||
}
|
||||
|
||||
@ -263,16 +263,18 @@ fn test_fq2_basics() {
|
||||
);
|
||||
assert!(Fq2::zero().is_zero());
|
||||
assert!(!Fq2::one().is_zero());
|
||||
assert!(!Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::one(),
|
||||
}.is_zero());
|
||||
assert!(
|
||||
!Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::one(),
|
||||
}.is_zero()
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_squaring() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::one(),
|
||||
@ -346,7 +348,7 @@ fn test_fq2_squaring() {
|
||||
#[test]
|
||||
fn test_fq2_mul() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
@ -410,7 +412,7 @@ fn test_fq2_mul() {
|
||||
#[test]
|
||||
fn test_fq2_inverse() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
assert!(Fq2::zero().inverse().is_none());
|
||||
|
||||
@ -459,7 +461,7 @@ fn test_fq2_inverse() {
|
||||
#[test]
|
||||
fn test_fq2_addition() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
@ -523,7 +525,7 @@ fn test_fq2_addition() {
|
||||
#[test]
|
||||
fn test_fq2_subtraction() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
@ -587,7 +589,7 @@ fn test_fq2_subtraction() {
|
||||
#[test]
|
||||
fn test_fq2_negation() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
@ -634,7 +636,7 @@ fn test_fq2_negation() {
|
||||
#[test]
|
||||
fn test_fq2_doubling() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
@ -681,7 +683,7 @@ fn test_fq2_doubling() {
|
||||
#[test]
|
||||
fn test_fq2_frobenius_map() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
let mut a = Fq2 {
|
||||
c0: Fq::from_repr(FqRepr([
|
||||
@ -794,7 +796,7 @@ fn test_fq2_frobenius_map() {
|
||||
#[test]
|
||||
fn test_fq2_sqrt() {
|
||||
use super::fq::FqRepr;
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
assert_eq!(
|
||||
Fq2 {
|
||||
@ -865,7 +867,7 @@ fn test_fq2_sqrt() {
|
||||
|
||||
#[test]
|
||||
fn test_fq2_legendre() {
|
||||
use LegendreSymbol::*;
|
||||
use ff::LegendreSymbol::*;
|
||||
|
||||
assert_eq!(Zero, Fq2::zero().legendre());
|
||||
// i^2 = -1
|
||||
@ -900,7 +902,7 @@ fn test_fq2_mul_nonresidue() {
|
||||
|
||||
#[test]
|
||||
fn fq2_field_tests() {
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
::tests::field::random_field_tests::<Fq2>();
|
||||
::tests::field::random_sqrt_tests::<Fq2>();
|
||||
|
@ -1,7 +1,7 @@
|
||||
use super::fq::{FROBENIUS_COEFF_FQ6_C1, FROBENIUS_COEFF_FQ6_C2};
|
||||
use super::fq2::Fq2;
|
||||
use ff::Field;
|
||||
use rand::{Rand, Rng};
|
||||
use Field;
|
||||
|
||||
/// An element of Fq6, represented by c0 + c1 * v + c2 * v^(2).
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
@ -367,7 +367,7 @@ fn test_fq6_mul_by_01() {
|
||||
|
||||
#[test]
|
||||
fn fq6_field_tests() {
|
||||
use PrimeField;
|
||||
use ff::PrimeField;
|
||||
|
||||
::tests::field::random_field_tests::<Fq6>();
|
||||
::tests::field::random_frobenius_tests::<Fq6, _>(super::fq::Fq::char(), 13);
|
||||
|
@ -1,647 +1,10 @@
|
||||
use LegendreSymbol::*;
|
||||
use {Field, PrimeField, PrimeFieldDecodingError, PrimeFieldRepr, SqrtField};
|
||||
use ff::{Field, PrimeField, PrimeFieldDecodingError, PrimeFieldRepr};
|
||||
|
||||
// r = 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
||||
const MODULUS: FrRepr = FrRepr([
|
||||
0xffffffff00000001,
|
||||
0x53bda402fffe5bfe,
|
||||
0x3339d80809a1d805,
|
||||
0x73eda753299d7d48,
|
||||
]);
|
||||
|
||||
// The number of bits needed to represent the modulus.
|
||||
const MODULUS_BITS: u32 = 255;
|
||||
|
||||
// The number of bits that must be shaved from the beginning of
|
||||
// the representation when randomly sampling.
|
||||
const REPR_SHAVE_BITS: u32 = 1;
|
||||
|
||||
// R = 2**256 % r
|
||||
const R: FrRepr = FrRepr([
|
||||
0x1fffffffe,
|
||||
0x5884b7fa00034802,
|
||||
0x998c4fefecbc4ff5,
|
||||
0x1824b159acc5056f,
|
||||
]);
|
||||
|
||||
// R2 = R^2 % r
|
||||
const R2: FrRepr = FrRepr([
|
||||
0xc999e990f3f29c6d,
|
||||
0x2b6cedcb87925c23,
|
||||
0x5d314967254398f,
|
||||
0x748d9d99f59ff11,
|
||||
]);
|
||||
|
||||
// INV = -(r^{-1} mod 2^64) mod 2^64
|
||||
const INV: u64 = 0xfffffffeffffffff;
|
||||
|
||||
// GENERATOR = 7 (multiplicative generator of r-1 order, that is also quadratic nonresidue)
|
||||
const GENERATOR: FrRepr = FrRepr([
|
||||
0xefffffff1,
|
||||
0x17e363d300189c0f,
|
||||
0xff9c57876f8457b0,
|
||||
0x351332208fc5a8c4,
|
||||
]);
|
||||
|
||||
// 2^s * t = MODULUS - 1 with t odd
|
||||
const S: u32 = 32;
|
||||
|
||||
// 2^s root of unity computed by GENERATOR^t
|
||||
const ROOT_OF_UNITY: FrRepr = FrRepr([
|
||||
0xb9b58d8c5f0e466a,
|
||||
0x5b1b4c801819d7ec,
|
||||
0xaf53ae352a31e64,
|
||||
0x5bf3adda19e9b27b,
|
||||
]);
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Default, Debug)]
|
||||
pub struct FrRepr(pub [u64; 4]);
|
||||
|
||||
impl ::rand::Rand for FrRepr {
|
||||
#[inline(always)]
|
||||
fn rand<R: ::rand::Rng>(rng: &mut R) -> Self {
|
||||
FrRepr(rng.gen())
|
||||
}
|
||||
}
|
||||
|
||||
impl ::std::fmt::Display for FrRepr {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
|
||||
try!(write!(f, "0x"));
|
||||
for i in self.0.iter().rev() {
|
||||
try!(write!(f, "{:016x}", *i));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl AsRef<[u64]> for FrRepr {
|
||||
#[inline(always)]
|
||||
fn as_ref(&self) -> &[u64] {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl AsMut<[u64]> for FrRepr {
|
||||
#[inline(always)]
|
||||
fn as_mut(&mut self) -> &mut [u64] {
|
||||
&mut self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl From<u64> for FrRepr {
|
||||
#[inline(always)]
|
||||
fn from(val: u64) -> FrRepr {
|
||||
let mut repr = Self::default();
|
||||
repr.0[0] = val;
|
||||
repr
|
||||
}
|
||||
}
|
||||
|
||||
impl Ord for FrRepr {
|
||||
#[inline(always)]
|
||||
fn cmp(&self, other: &FrRepr) -> ::std::cmp::Ordering {
|
||||
for (a, b) in self.0.iter().rev().zip(other.0.iter().rev()) {
|
||||
if a < b {
|
||||
return ::std::cmp::Ordering::Less;
|
||||
} else if a > b {
|
||||
return ::std::cmp::Ordering::Greater;
|
||||
}
|
||||
}
|
||||
|
||||
::std::cmp::Ordering::Equal
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for FrRepr {
|
||||
#[inline(always)]
|
||||
fn partial_cmp(&self, other: &FrRepr) -> Option<::std::cmp::Ordering> {
|
||||
Some(self.cmp(other))
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeFieldRepr for FrRepr {
|
||||
#[inline(always)]
|
||||
fn is_odd(&self) -> bool {
|
||||
self.0[0] & 1 == 1
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn is_even(&self) -> bool {
|
||||
!self.is_odd()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn is_zero(&self) -> bool {
|
||||
self.0.iter().all(|&e| e == 0)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn shr(&mut self, mut n: u32) {
|
||||
if n >= 64 * 4 {
|
||||
*self = Self::from(0);
|
||||
return;
|
||||
}
|
||||
|
||||
while n >= 64 {
|
||||
let mut t = 0;
|
||||
for i in self.0.iter_mut().rev() {
|
||||
::std::mem::swap(&mut t, i);
|
||||
}
|
||||
n -= 64;
|
||||
}
|
||||
|
||||
if n > 0 {
|
||||
let mut t = 0;
|
||||
for i in self.0.iter_mut().rev() {
|
||||
let t2 = *i << (64 - n);
|
||||
*i >>= n;
|
||||
*i |= t;
|
||||
t = t2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn div2(&mut self) {
|
||||
let mut t = 0;
|
||||
for i in self.0.iter_mut().rev() {
|
||||
let t2 = *i << 63;
|
||||
*i >>= 1;
|
||||
*i |= t;
|
||||
t = t2;
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mul2(&mut self) {
|
||||
let mut last = 0;
|
||||
for i in &mut self.0 {
|
||||
let tmp = *i >> 63;
|
||||
*i <<= 1;
|
||||
*i |= last;
|
||||
last = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn shl(&mut self, mut n: u32) {
|
||||
if n >= 64 * 4 {
|
||||
*self = Self::from(0);
|
||||
return;
|
||||
}
|
||||
|
||||
while n >= 64 {
|
||||
let mut t = 0;
|
||||
for i in &mut self.0 {
|
||||
::std::mem::swap(&mut t, i);
|
||||
}
|
||||
n -= 64;
|
||||
}
|
||||
|
||||
if n > 0 {
|
||||
let mut t = 0;
|
||||
for i in &mut self.0 {
|
||||
let t2 = *i >> (64 - n);
|
||||
*i <<= n;
|
||||
*i |= t;
|
||||
t = t2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn num_bits(&self) -> u32 {
|
||||
let mut ret = (4 as u32) * 64;
|
||||
for i in self.0.iter().rev() {
|
||||
let leading = i.leading_zeros();
|
||||
ret -= leading;
|
||||
if leading != 64 {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
ret
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn add_nocarry(&mut self, other: &FrRepr) {
|
||||
let mut carry = 0;
|
||||
|
||||
for (a, b) in self.0.iter_mut().zip(other.0.iter()) {
|
||||
*a = ::adc(*a, *b, &mut carry);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn sub_noborrow(&mut self, other: &FrRepr) {
|
||||
let mut borrow = 0;
|
||||
|
||||
for (a, b) in self.0.iter_mut().zip(other.0.iter()) {
|
||||
*a = ::sbb(*a, *b, &mut borrow);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||
#[derive(PrimeField)]
|
||||
#[PrimeFieldModulus = "52435875175126190479447740508185965837690552500527637822603658699938581184513"]
|
||||
#[PrimeFieldGenerator = "7"]
|
||||
pub struct Fr(FrRepr);
|
||||
|
||||
impl ::std::fmt::Display for Fr {
|
||||
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
|
||||
write!(f, "Fr({})", self.into_repr())
|
||||
}
|
||||
}
|
||||
|
||||
impl ::rand::Rand for Fr {
|
||||
fn rand<R: ::rand::Rng>(rng: &mut R) -> Self {
|
||||
loop {
|
||||
let mut tmp = Fr(FrRepr::rand(rng));
|
||||
|
||||
// Mask away the unused bits at the beginning.
|
||||
tmp.0.as_mut()[3] &= 0xffffffffffffffff >> REPR_SHAVE_BITS;
|
||||
|
||||
if tmp.is_valid() {
|
||||
return tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<Fr> for FrRepr {
|
||||
fn from(e: Fr) -> FrRepr {
|
||||
e.into_repr()
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeField for Fr {
|
||||
type Repr = FrRepr;
|
||||
|
||||
fn from_repr(r: FrRepr) -> Result<Fr, PrimeFieldDecodingError> {
|
||||
let mut r = Fr(r);
|
||||
if r.is_valid() {
|
||||
r.mul_assign(&Fr(R2));
|
||||
|
||||
Ok(r)
|
||||
} else {
|
||||
Err(PrimeFieldDecodingError::NotInField(format!("{}", r.0)))
|
||||
}
|
||||
}
|
||||
|
||||
fn into_repr(&self) -> FrRepr {
|
||||
let mut r = *self;
|
||||
r.mont_reduce(
|
||||
(self.0).0[0],
|
||||
(self.0).0[1],
|
||||
(self.0).0[2],
|
||||
(self.0).0[3],
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
);
|
||||
r.0
|
||||
}
|
||||
|
||||
fn char() -> FrRepr {
|
||||
MODULUS
|
||||
}
|
||||
|
||||
const NUM_BITS: u32 = MODULUS_BITS;
|
||||
|
||||
const CAPACITY: u32 = Self::NUM_BITS - 1;
|
||||
|
||||
fn multiplicative_generator() -> Self {
|
||||
Fr(GENERATOR)
|
||||
}
|
||||
|
||||
const S: u32 = S;
|
||||
|
||||
fn root_of_unity() -> Self {
|
||||
Fr(ROOT_OF_UNITY)
|
||||
}
|
||||
}
|
||||
|
||||
impl Field for Fr {
|
||||
#[inline]
|
||||
fn zero() -> Self {
|
||||
Fr(FrRepr::from(0))
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn one() -> Self {
|
||||
Fr(R)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn is_zero(&self) -> bool {
|
||||
self.0.is_zero()
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn add_assign(&mut self, other: &Fr) {
|
||||
// This cannot exceed the backing capacity.
|
||||
self.0.add_nocarry(&other.0);
|
||||
|
||||
// However, it may need to be reduced.
|
||||
self.reduce();
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn double(&mut self) {
|
||||
// This cannot exceed the backing capacity.
|
||||
self.0.mul2();
|
||||
|
||||
// However, it may need to be reduced.
|
||||
self.reduce();
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn sub_assign(&mut self, other: &Fr) {
|
||||
// If `other` is larger than `self`, we'll need to add the modulus to self first.
|
||||
if other.0 > self.0 {
|
||||
self.0.add_nocarry(&MODULUS);
|
||||
}
|
||||
|
||||
self.0.sub_noborrow(&other.0);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn negate(&mut self) {
|
||||
if !self.is_zero() {
|
||||
let mut tmp = MODULUS;
|
||||
tmp.sub_noborrow(&self.0);
|
||||
self.0 = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
fn inverse(&self) -> Option<Self> {
|
||||
if self.is_zero() {
|
||||
None
|
||||
} else {
|
||||
// Guajardo Kumar Paar Pelzl
|
||||
// Efficient Software-Implementation of Finite Fields with Applications to Cryptography
|
||||
// Algorithm 16 (BEA for Inversion in Fp)
|
||||
|
||||
let one = FrRepr::from(1);
|
||||
|
||||
let mut u = self.0;
|
||||
let mut v = MODULUS;
|
||||
let mut b = Fr(R2); // Avoids unnecessary reduction step.
|
||||
let mut c = Self::zero();
|
||||
|
||||
while u != one && v != one {
|
||||
while u.is_even() {
|
||||
u.div2();
|
||||
|
||||
if b.0.is_even() {
|
||||
b.0.div2();
|
||||
} else {
|
||||
b.0.add_nocarry(&MODULUS);
|
||||
b.0.div2();
|
||||
}
|
||||
}
|
||||
|
||||
while v.is_even() {
|
||||
v.div2();
|
||||
|
||||
if c.0.is_even() {
|
||||
c.0.div2();
|
||||
} else {
|
||||
c.0.add_nocarry(&MODULUS);
|
||||
c.0.div2();
|
||||
}
|
||||
}
|
||||
|
||||
if v < u {
|
||||
u.sub_noborrow(&v);
|
||||
b.sub_assign(&c);
|
||||
} else {
|
||||
v.sub_noborrow(&u);
|
||||
c.sub_assign(&b);
|
||||
}
|
||||
}
|
||||
|
||||
if u == one {
|
||||
Some(b)
|
||||
} else {
|
||||
Some(c)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn frobenius_map(&mut self, _: usize) {
|
||||
// This has no effect in a prime field.
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mul_assign(&mut self, other: &Fr) {
|
||||
let mut carry = 0;
|
||||
let r0 = ::mac_with_carry(0, (self.0).0[0], (other.0).0[0], &mut carry);
|
||||
let r1 = ::mac_with_carry(0, (self.0).0[0], (other.0).0[1], &mut carry);
|
||||
let r2 = ::mac_with_carry(0, (self.0).0[0], (other.0).0[2], &mut carry);
|
||||
let r3 = ::mac_with_carry(0, (self.0).0[0], (other.0).0[3], &mut carry);
|
||||
let r4 = carry;
|
||||
let mut carry = 0;
|
||||
let r1 = ::mac_with_carry(r1, (self.0).0[1], (other.0).0[0], &mut carry);
|
||||
let r2 = ::mac_with_carry(r2, (self.0).0[1], (other.0).0[1], &mut carry);
|
||||
let r3 = ::mac_with_carry(r3, (self.0).0[1], (other.0).0[2], &mut carry);
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[1], (other.0).0[3], &mut carry);
|
||||
let r5 = carry;
|
||||
let mut carry = 0;
|
||||
let r2 = ::mac_with_carry(r2, (self.0).0[2], (other.0).0[0], &mut carry);
|
||||
let r3 = ::mac_with_carry(r3, (self.0).0[2], (other.0).0[1], &mut carry);
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[2], (other.0).0[2], &mut carry);
|
||||
let r5 = ::mac_with_carry(r5, (self.0).0[2], (other.0).0[3], &mut carry);
|
||||
let r6 = carry;
|
||||
let mut carry = 0;
|
||||
let r3 = ::mac_with_carry(r3, (self.0).0[3], (other.0).0[0], &mut carry);
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[3], (other.0).0[1], &mut carry);
|
||||
let r5 = ::mac_with_carry(r5, (self.0).0[3], (other.0).0[2], &mut carry);
|
||||
let r6 = ::mac_with_carry(r6, (self.0).0[3], (other.0).0[3], &mut carry);
|
||||
let r7 = carry;
|
||||
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn square(&mut self) {
|
||||
let mut carry = 0;
|
||||
let r1 = ::mac_with_carry(0, (self.0).0[0], (self.0).0[1], &mut carry);
|
||||
let r2 = ::mac_with_carry(0, (self.0).0[0], (self.0).0[2], &mut carry);
|
||||
let r3 = ::mac_with_carry(0, (self.0).0[0], (self.0).0[3], &mut carry);
|
||||
let r4 = carry;
|
||||
let mut carry = 0;
|
||||
let r3 = ::mac_with_carry(r3, (self.0).0[1], (self.0).0[2], &mut carry);
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[1], (self.0).0[3], &mut carry);
|
||||
let r5 = carry;
|
||||
let mut carry = 0;
|
||||
let r5 = ::mac_with_carry(r5, (self.0).0[2], (self.0).0[3], &mut carry);
|
||||
let r6 = carry;
|
||||
|
||||
let r7 = r6 >> 63;
|
||||
let r6 = (r6 << 1) | (r5 >> 63);
|
||||
let r5 = (r5 << 1) | (r4 >> 63);
|
||||
let r4 = (r4 << 1) | (r3 >> 63);
|
||||
let r3 = (r3 << 1) | (r2 >> 63);
|
||||
let r2 = (r2 << 1) | (r1 >> 63);
|
||||
let r1 = r1 << 1;
|
||||
|
||||
let mut carry = 0;
|
||||
let r0 = ::mac_with_carry(0, (self.0).0[0], (self.0).0[0], &mut carry);
|
||||
let r1 = ::adc(r1, 0, &mut carry);
|
||||
let r2 = ::mac_with_carry(r2, (self.0).0[1], (self.0).0[1], &mut carry);
|
||||
let r3 = ::adc(r3, 0, &mut carry);
|
||||
let r4 = ::mac_with_carry(r4, (self.0).0[2], (self.0).0[2], &mut carry);
|
||||
let r5 = ::adc(r5, 0, &mut carry);
|
||||
let r6 = ::mac_with_carry(r6, (self.0).0[3], (self.0).0[3], &mut carry);
|
||||
let r7 = ::adc(r7, 0, &mut carry);
|
||||
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
|
||||
}
|
||||
}
|
||||
|
||||
impl Fr {
|
||||
/// Determines if the element is really in the field. This is only used
|
||||
/// internally.
|
||||
#[inline(always)]
|
||||
fn is_valid(&self) -> bool {
|
||||
self.0 < MODULUS
|
||||
}
|
||||
|
||||
/// Subtracts the modulus from this element if this element is not in the
|
||||
/// field. Only used internally.
|
||||
#[inline(always)]
|
||||
fn reduce(&mut self) {
|
||||
if !self.is_valid() {
|
||||
self.0.sub_noborrow(&MODULUS);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn mont_reduce(
|
||||
&mut self,
|
||||
r0: u64,
|
||||
mut r1: u64,
|
||||
mut r2: u64,
|
||||
mut r3: u64,
|
||||
mut r4: u64,
|
||||
mut r5: u64,
|
||||
mut r6: u64,
|
||||
mut r7: u64,
|
||||
) {
|
||||
// The Montgomery reduction here is based on Algorithm 14.32 in
|
||||
// Handbook of Applied Cryptography
|
||||
// <http://cacr.uwaterloo.ca/hac/about/chap14.pdf>.
|
||||
|
||||
let k = r0.wrapping_mul(INV);
|
||||
let mut carry = 0;
|
||||
::mac_with_carry(r0, k, MODULUS.0[0], &mut carry);
|
||||
r1 = ::mac_with_carry(r1, k, MODULUS.0[1], &mut carry);
|
||||
r2 = ::mac_with_carry(r2, k, MODULUS.0[2], &mut carry);
|
||||
r3 = ::mac_with_carry(r3, k, MODULUS.0[3], &mut carry);
|
||||
r4 = ::adc(r4, 0, &mut carry);
|
||||
let carry2 = carry;
|
||||
let k = r1.wrapping_mul(INV);
|
||||
let mut carry = 0;
|
||||
::mac_with_carry(r1, k, MODULUS.0[0], &mut carry);
|
||||
r2 = ::mac_with_carry(r2, k, MODULUS.0[1], &mut carry);
|
||||
r3 = ::mac_with_carry(r3, k, MODULUS.0[2], &mut carry);
|
||||
r4 = ::mac_with_carry(r4, k, MODULUS.0[3], &mut carry);
|
||||
r5 = ::adc(r5, carry2, &mut carry);
|
||||
let carry2 = carry;
|
||||
let k = r2.wrapping_mul(INV);
|
||||
let mut carry = 0;
|
||||
::mac_with_carry(r2, k, MODULUS.0[0], &mut carry);
|
||||
r3 = ::mac_with_carry(r3, k, MODULUS.0[1], &mut carry);
|
||||
r4 = ::mac_with_carry(r4, k, MODULUS.0[2], &mut carry);
|
||||
r5 = ::mac_with_carry(r5, k, MODULUS.0[3], &mut carry);
|
||||
r6 = ::adc(r6, carry2, &mut carry);
|
||||
let carry2 = carry;
|
||||
let k = r3.wrapping_mul(INV);
|
||||
let mut carry = 0;
|
||||
::mac_with_carry(r3, k, MODULUS.0[0], &mut carry);
|
||||
r4 = ::mac_with_carry(r4, k, MODULUS.0[1], &mut carry);
|
||||
r5 = ::mac_with_carry(r5, k, MODULUS.0[2], &mut carry);
|
||||
r6 = ::mac_with_carry(r6, k, MODULUS.0[3], &mut carry);
|
||||
r7 = ::adc(r7, carry2, &mut carry);
|
||||
(self.0).0[0] = r4;
|
||||
(self.0).0[1] = r5;
|
||||
(self.0).0[2] = r6;
|
||||
(self.0).0[3] = r7;
|
||||
self.reduce();
|
||||
}
|
||||
}
|
||||
|
||||
impl SqrtField for Fr {
|
||||
fn legendre(&self) -> ::LegendreSymbol {
|
||||
// s = self^((r - 1) // 2)
|
||||
let s = self.pow([
|
||||
0x7fffffff80000000,
|
||||
0xa9ded2017fff2dff,
|
||||
0x199cec0404d0ec02,
|
||||
0x39f6d3a994cebea4,
|
||||
]);
|
||||
if s == Self::zero() {
|
||||
Zero
|
||||
} else if s == Self::one() {
|
||||
QuadraticResidue
|
||||
} else {
|
||||
QuadraticNonResidue
|
||||
}
|
||||
}
|
||||
|
||||
fn sqrt(&self) -> Option<Self> {
|
||||
// Tonelli-Shank's algorithm for q mod 16 = 1
|
||||
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
|
||||
match self.legendre() {
|
||||
Zero => Some(*self),
|
||||
QuadraticNonResidue => None,
|
||||
QuadraticResidue => {
|
||||
let mut c = Fr(ROOT_OF_UNITY);
|
||||
// r = self^((t + 1) // 2)
|
||||
let mut r = self.pow([
|
||||
0x7fff2dff80000000,
|
||||
0x4d0ec02a9ded201,
|
||||
0x94cebea4199cec04,
|
||||
0x39f6d3a9,
|
||||
]);
|
||||
// t = self^t
|
||||
let mut t = self.pow([
|
||||
0xfffe5bfeffffffff,
|
||||
0x9a1d80553bda402,
|
||||
0x299d7d483339d808,
|
||||
0x73eda753,
|
||||
]);
|
||||
let mut m = S;
|
||||
|
||||
while t != Self::one() {
|
||||
let mut i = 1;
|
||||
{
|
||||
let mut t2i = t;
|
||||
t2i.square();
|
||||
loop {
|
||||
if t2i == Self::one() {
|
||||
break;
|
||||
}
|
||||
t2i.square();
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
for _ in 0..(m - i - 1) {
|
||||
c.square();
|
||||
}
|
||||
r.mul_assign(&c);
|
||||
c.square();
|
||||
t.mul_assign(&c);
|
||||
m = i;
|
||||
}
|
||||
|
||||
Some(r)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
@ -909,6 +272,9 @@ fn test_fr_repr_sub_noborrow() {
|
||||
|
||||
#[test]
|
||||
fn test_fr_legendre() {
|
||||
use ff::LegendreSymbol::*;
|
||||
use ff::SqrtField;
|
||||
|
||||
assert_eq!(QuadraticResidue, Fr::one().legendre());
|
||||
assert_eq!(Zero, Fr::zero().legendre());
|
||||
|
||||
@ -1022,12 +388,14 @@ fn test_fr_is_valid() {
|
||||
0x73eda753299d7d48
|
||||
])).is_valid()
|
||||
);
|
||||
assert!(!Fr(FrRepr([
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff
|
||||
])).is_valid());
|
||||
assert!(
|
||||
!Fr(FrRepr([
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff,
|
||||
0xffffffffffffffff
|
||||
])).is_valid()
|
||||
);
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
@ -1417,6 +785,8 @@ fn test_fr_pow() {
|
||||
|
||||
#[test]
|
||||
fn test_fr_sqrt() {
|
||||
use ff::SqrtField;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
assert_eq!(Fr::zero().sqrt().unwrap(), Fr::zero());
|
||||
@ -1582,6 +952,8 @@ fn test_fr_num_bits() {
|
||||
|
||||
#[test]
|
||||
fn test_fr_root_of_unity() {
|
||||
use ff::SqrtField;
|
||||
|
||||
assert_eq!(Fr::S, 32);
|
||||
assert_eq!(
|
||||
Fr::multiplicative_generator(),
|
||||
|
@ -18,7 +18,9 @@ pub use self::fq2::Fq2;
|
||||
pub use self::fq6::Fq6;
|
||||
pub use self::fr::{Fr, FrRepr};
|
||||
|
||||
use super::{BitIterator, CurveAffine, Engine, Field};
|
||||
use super::{CurveAffine, Engine};
|
||||
|
||||
use ff::{BitIterator, Field, ScalarEngine};
|
||||
|
||||
// The BLS parameter x for BLS12-381 is -0xd201000000010000
|
||||
const BLS_X: u64 = 0xd201000000010000;
|
||||
@ -27,8 +29,11 @@ const BLS_X_IS_NEGATIVE: bool = true;
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Bls12;
|
||||
|
||||
impl Engine for Bls12 {
|
||||
impl ScalarEngine for Bls12 {
|
||||
type Fr = Fr;
|
||||
}
|
||||
|
||||
impl Engine for Bls12 {
|
||||
type G1 = G1;
|
||||
type G1Affine = G1Affine;
|
||||
type G2 = G2;
|
||||
|
483
src/lib.rs
483
src/lib.rs
@ -1,19 +1,19 @@
|
||||
// `clippy` is a code linting tool for improving code quality by catching
|
||||
// common mistakes or strange code patterns. If the `clippy` feature is
|
||||
// provided, it is enabled and all compiler warnings are prohibited.
|
||||
#![cfg_attr(feature = "clippy", deny(warnings))]
|
||||
#![cfg_attr(feature = "clippy", feature(plugin))]
|
||||
#![cfg_attr(feature = "clippy", plugin(clippy))]
|
||||
#![cfg_attr(feature = "clippy", allow(inline_always))]
|
||||
#![cfg_attr(feature = "clippy", allow(too_many_arguments))]
|
||||
#![cfg_attr(feature = "clippy", allow(unreadable_literal))]
|
||||
#![cfg_attr(feature = "clippy", allow(many_single_char_names))]
|
||||
#![cfg_attr(feature = "clippy", allow(new_without_default_derive))]
|
||||
#![cfg_attr(feature = "clippy", allow(write_literal))]
|
||||
// common mistakes or strange code patterns. If the `cargo-clippy` feature
|
||||
// is provided, all compiler warnings are prohibited.
|
||||
#![cfg_attr(feature = "cargo-clippy", deny(warnings))]
|
||||
#![cfg_attr(feature = "cargo-clippy", allow(inline_always))]
|
||||
#![cfg_attr(feature = "cargo-clippy", allow(too_many_arguments))]
|
||||
#![cfg_attr(feature = "cargo-clippy", allow(unreadable_literal))]
|
||||
#![cfg_attr(feature = "cargo-clippy", allow(many_single_char_names))]
|
||||
#![cfg_attr(feature = "cargo-clippy", allow(new_without_default_derive))]
|
||||
#![cfg_attr(feature = "cargo-clippy", allow(write_literal))]
|
||||
// Force public structures to implement Debug
|
||||
#![deny(missing_debug_implementations)]
|
||||
|
||||
extern crate byteorder;
|
||||
#[macro_use]
|
||||
extern crate ff;
|
||||
extern crate rand;
|
||||
|
||||
#[cfg(test)]
|
||||
@ -24,17 +24,14 @@ pub mod bls12_381;
|
||||
mod wnaf;
|
||||
pub use self::wnaf::Wnaf;
|
||||
|
||||
use ff::{Field, PrimeField, PrimeFieldDecodingError, PrimeFieldRepr, ScalarEngine, SqrtField};
|
||||
use std::error::Error;
|
||||
use std::fmt;
|
||||
use std::io::{self, Read, Write};
|
||||
|
||||
/// An "engine" is a collection of types (fields, elliptic curve groups, etc.)
|
||||
/// with well-defined relationships. In particular, the G1/G2 curve groups are
|
||||
/// of prime order `r`, and are equipped with a bilinear pairing function.
|
||||
pub trait Engine: Sized + 'static + Clone {
|
||||
/// This is the scalar field of the G1/G2 groups.
|
||||
type Fr: PrimeField + SqrtField;
|
||||
|
||||
pub trait Engine: ScalarEngine {
|
||||
/// The projective representation of an element in G1.
|
||||
type G1: CurveProjective<
|
||||
Engine = Self,
|
||||
@ -263,208 +260,6 @@ pub trait EncodedPoint:
|
||||
fn from_affine(affine: Self::Affine) -> Self;
|
||||
}
|
||||
|
||||
/// This trait represents an element of a field.
|
||||
pub trait Field:
|
||||
Sized + Eq + Copy + Clone + Send + Sync + fmt::Debug + fmt::Display + 'static + rand::Rand
|
||||
{
|
||||
/// Returns the zero element of the field, the additive identity.
|
||||
fn zero() -> Self;
|
||||
|
||||
/// Returns the one element of the field, the multiplicative identity.
|
||||
fn one() -> Self;
|
||||
|
||||
/// Returns true iff this element is zero.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Squares this element.
|
||||
fn square(&mut self);
|
||||
|
||||
/// Doubles this element.
|
||||
fn double(&mut self);
|
||||
|
||||
/// Negates this element.
|
||||
fn negate(&mut self);
|
||||
|
||||
/// Adds another element to this element.
|
||||
fn add_assign(&mut self, other: &Self);
|
||||
|
||||
/// Subtracts another element from this element.
|
||||
fn sub_assign(&mut self, other: &Self);
|
||||
|
||||
/// Multiplies another element by this element.
|
||||
fn mul_assign(&mut self, other: &Self);
|
||||
|
||||
/// Computes the multiplicative inverse of this element, if nonzero.
|
||||
fn inverse(&self) -> Option<Self>;
|
||||
|
||||
/// Exponentiates this element by a power of the base prime modulus via
|
||||
/// the Frobenius automorphism.
|
||||
fn frobenius_map(&mut self, power: usize);
|
||||
|
||||
/// Exponentiates this element by a number represented with `u64` limbs,
|
||||
/// least significant digit first.
|
||||
fn pow<S: AsRef<[u64]>>(&self, exp: S) -> Self {
|
||||
let mut res = Self::one();
|
||||
|
||||
let mut found_one = false;
|
||||
|
||||
for i in BitIterator::new(exp) {
|
||||
if found_one {
|
||||
res.square();
|
||||
} else {
|
||||
found_one = i;
|
||||
}
|
||||
|
||||
if i {
|
||||
res.mul_assign(self);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
/// This trait represents an element of a field that has a square root operation described for it.
|
||||
pub trait SqrtField: Field {
|
||||
/// Returns the Legendre symbol of the field element.
|
||||
fn legendre(&self) -> LegendreSymbol;
|
||||
|
||||
/// Returns the square root of the field element, if it is
|
||||
/// quadratic residue.
|
||||
fn sqrt(&self) -> Option<Self>;
|
||||
}
|
||||
|
||||
/// This trait represents a wrapper around a biginteger which can encode any element of a particular
|
||||
/// prime field. It is a smart wrapper around a sequence of `u64` limbs, least-significant digit
|
||||
/// first.
|
||||
pub trait PrimeFieldRepr:
|
||||
Sized
|
||||
+ Copy
|
||||
+ Clone
|
||||
+ Eq
|
||||
+ Ord
|
||||
+ Send
|
||||
+ Sync
|
||||
+ Default
|
||||
+ fmt::Debug
|
||||
+ fmt::Display
|
||||
+ 'static
|
||||
+ rand::Rand
|
||||
+ AsRef<[u64]>
|
||||
+ AsMut<[u64]>
|
||||
+ From<u64>
|
||||
{
|
||||
/// Subtract another represetation from this one.
|
||||
fn sub_noborrow(&mut self, other: &Self);
|
||||
|
||||
/// Add another representation to this one.
|
||||
fn add_nocarry(&mut self, other: &Self);
|
||||
|
||||
/// Compute the number of bits needed to encode this number. Always a
|
||||
/// multiple of 64.
|
||||
fn num_bits(&self) -> u32;
|
||||
|
||||
/// Returns true iff this number is zero.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Returns true iff this number is odd.
|
||||
fn is_odd(&self) -> bool;
|
||||
|
||||
/// Returns true iff this number is even.
|
||||
fn is_even(&self) -> bool;
|
||||
|
||||
/// Performs a rightwise bitshift of this number, effectively dividing
|
||||
/// it by 2.
|
||||
fn div2(&mut self);
|
||||
|
||||
/// Performs a rightwise bitshift of this number by some amount.
|
||||
fn shr(&mut self, amt: u32);
|
||||
|
||||
/// Performs a leftwise bitshift of this number, effectively multiplying
|
||||
/// it by 2. Overflow is ignored.
|
||||
fn mul2(&mut self);
|
||||
|
||||
/// Performs a leftwise bitshift of this number by some amount.
|
||||
fn shl(&mut self, amt: u32);
|
||||
|
||||
/// Writes this `PrimeFieldRepr` as a big endian integer.
|
||||
fn write_be<W: Write>(&self, mut writer: W) -> io::Result<()> {
|
||||
use byteorder::{BigEndian, WriteBytesExt};
|
||||
|
||||
for digit in self.as_ref().iter().rev() {
|
||||
writer.write_u64::<BigEndian>(*digit)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Reads a big endian integer into this representation.
|
||||
fn read_be<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
|
||||
use byteorder::{BigEndian, ReadBytesExt};
|
||||
|
||||
for digit in self.as_mut().iter_mut().rev() {
|
||||
*digit = reader.read_u64::<BigEndian>()?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Writes this `PrimeFieldRepr` as a little endian integer.
|
||||
fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
|
||||
use byteorder::{LittleEndian, WriteBytesExt};
|
||||
|
||||
for digit in self.as_ref().iter() {
|
||||
writer.write_u64::<LittleEndian>(*digit)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Reads a little endian integer into this representation.
|
||||
fn read_le<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
|
||||
for digit in self.as_mut().iter_mut() {
|
||||
*digit = reader.read_u64::<LittleEndian>()?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub enum LegendreSymbol {
|
||||
Zero = 0,
|
||||
QuadraticResidue = 1,
|
||||
QuadraticNonResidue = -1,
|
||||
}
|
||||
|
||||
/// An error that may occur when trying to interpret a `PrimeFieldRepr` as a
|
||||
/// `PrimeField` element.
|
||||
#[derive(Debug)]
|
||||
pub enum PrimeFieldDecodingError {
|
||||
/// The encoded value is not in the field
|
||||
NotInField(String),
|
||||
}
|
||||
|
||||
impl Error for PrimeFieldDecodingError {
|
||||
fn description(&self) -> &str {
|
||||
match *self {
|
||||
PrimeFieldDecodingError::NotInField(..) => "not an element of the field",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for PrimeFieldDecodingError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
match *self {
|
||||
PrimeFieldDecodingError::NotInField(ref repr) => {
|
||||
write!(f, "{} is not an element of the field", repr)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An error that may occur when trying to decode an `EncodedPoint`.
|
||||
#[derive(Debug)]
|
||||
pub enum GroupDecodingError {
|
||||
@ -504,255 +299,3 @@ impl fmt::Display for GroupDecodingError {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This represents an element of a prime field.
|
||||
pub trait PrimeField: Field {
|
||||
/// The prime field can be converted back and forth into this biginteger
|
||||
/// representation.
|
||||
type Repr: PrimeFieldRepr + From<Self>;
|
||||
|
||||
/// Interpret a string of numbers as a (congruent) prime field element.
|
||||
/// Does not accept unnecessary leading zeroes or a blank string.
|
||||
fn from_str(s: &str) -> Option<Self> {
|
||||
if s.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
if s == "0" {
|
||||
return Some(Self::zero());
|
||||
}
|
||||
|
||||
let mut res = Self::zero();
|
||||
|
||||
let ten = Self::from_repr(Self::Repr::from(10)).unwrap();
|
||||
|
||||
let mut first_digit = true;
|
||||
|
||||
for c in s.chars() {
|
||||
match c.to_digit(10) {
|
||||
Some(c) => {
|
||||
if first_digit {
|
||||
if c == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
first_digit = false;
|
||||
}
|
||||
|
||||
res.mul_assign(&ten);
|
||||
res.add_assign(&Self::from_repr(Self::Repr::from(u64::from(c))).unwrap());
|
||||
}
|
||||
None => {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Some(res)
|
||||
}
|
||||
|
||||
/// Convert this prime field element into a biginteger representation.
|
||||
fn from_repr(Self::Repr) -> Result<Self, PrimeFieldDecodingError>;
|
||||
|
||||
/// Convert a biginteger representation into a prime field element, if
|
||||
/// the number is an element of the field.
|
||||
fn into_repr(&self) -> Self::Repr;
|
||||
|
||||
/// Returns the field characteristic; the modulus.
|
||||
fn char() -> Self::Repr;
|
||||
|
||||
/// How many bits are needed to represent an element of this field.
|
||||
const NUM_BITS: u32;
|
||||
|
||||
/// How many bits of information can be reliably stored in the field element.
|
||||
const CAPACITY: u32;
|
||||
|
||||
/// Returns the multiplicative generator of `char()` - 1 order. This element
|
||||
/// must also be quadratic nonresidue.
|
||||
fn multiplicative_generator() -> Self;
|
||||
|
||||
/// 2^s * t = `char()` - 1 with t odd.
|
||||
const S: u32;
|
||||
|
||||
/// Returns the 2^s root of unity computed by exponentiating the `multiplicative_generator()`
|
||||
/// by t.
|
||||
fn root_of_unity() -> Self;
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct BitIterator<E> {
|
||||
t: E,
|
||||
n: usize,
|
||||
}
|
||||
|
||||
impl<E: AsRef<[u64]>> BitIterator<E> {
|
||||
pub fn new(t: E) -> Self {
|
||||
let n = t.as_ref().len() * 64;
|
||||
|
||||
BitIterator { t, n }
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: AsRef<[u64]>> Iterator for BitIterator<E> {
|
||||
type Item = bool;
|
||||
|
||||
fn next(&mut self) -> Option<bool> {
|
||||
if self.n == 0 {
|
||||
None
|
||||
} else {
|
||||
self.n -= 1;
|
||||
let part = self.n / 64;
|
||||
let bit = self.n - (64 * part);
|
||||
|
||||
Some(self.t.as_ref()[part] & (1 << bit) > 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bit_iterator() {
|
||||
let mut a = BitIterator::new([0xa953d79b83f6ab59, 0x6dea2059e200bd39]);
|
||||
let expected = "01101101111010100010000001011001111000100000000010111101001110011010100101010011110101111001101110000011111101101010101101011001";
|
||||
|
||||
for e in expected.chars() {
|
||||
assert!(a.next().unwrap() == (e == '1'));
|
||||
}
|
||||
|
||||
assert!(a.next().is_none());
|
||||
|
||||
let expected = "1010010101111110101010000101101011101000011101110101001000011001100100100011011010001011011011010001011011101100110100111011010010110001000011110100110001100110011101101000101100011100100100100100001010011101010111110011101011000011101000111011011101011001";
|
||||
|
||||
let mut a = BitIterator::new([
|
||||
0x429d5f3ac3a3b759,
|
||||
0xb10f4c66768b1c92,
|
||||
0x92368b6d16ecd3b4,
|
||||
0xa57ea85ae8775219,
|
||||
]);
|
||||
|
||||
for e in expected.chars() {
|
||||
assert!(a.next().unwrap() == (e == '1'));
|
||||
}
|
||||
|
||||
assert!(a.next().is_none());
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "expose-arith"))]
|
||||
use self::arith_impl::*;
|
||||
|
||||
#[cfg(feature = "expose-arith")]
|
||||
pub use self::arith_impl::*;
|
||||
|
||||
#[cfg(feature = "u128-support")]
|
||||
mod arith_impl {
|
||||
/// Calculate a - b - borrow, returning the result and modifying
|
||||
/// the borrow value.
|
||||
#[inline(always)]
|
||||
pub fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
|
||||
let tmp = (1u128 << 64) + u128::from(a) - u128::from(b) - u128::from(*borrow);
|
||||
|
||||
*borrow = if tmp >> 64 == 0 { 1 } else { 0 };
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
|
||||
/// Calculate a + b + carry, returning the sum and modifying the
|
||||
/// carry value.
|
||||
#[inline(always)]
|
||||
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
|
||||
let tmp = u128::from(a) + u128::from(b) + u128::from(*carry);
|
||||
|
||||
*carry = (tmp >> 64) as u64;
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
|
||||
/// Calculate a + (b * c) + carry, returning the least significant digit
|
||||
/// and setting carry to the most significant digit.
|
||||
#[inline(always)]
|
||||
pub fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
|
||||
let tmp = (u128::from(a)) + u128::from(b) * u128::from(c) + u128::from(*carry);
|
||||
|
||||
*carry = (tmp >> 64) as u64;
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "u128-support"))]
|
||||
mod arith_impl {
|
||||
#[inline(always)]
|
||||
fn split_u64(i: u64) -> (u64, u64) {
|
||||
(i >> 32, i & 0xFFFFFFFF)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn combine_u64(hi: u64, lo: u64) -> u64 {
|
||||
(hi << 32) | lo
|
||||
}
|
||||
|
||||
/// Calculate a - b - borrow, returning the result and modifying
|
||||
/// the borrow value.
|
||||
#[inline(always)]
|
||||
pub fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
|
||||
let (a_hi, a_lo) = split_u64(a);
|
||||
let (b_hi, b_lo) = split_u64(b);
|
||||
let (b, r0) = split_u64((1 << 32) + a_lo - b_lo - *borrow);
|
||||
let (b, r1) = split_u64((1 << 32) + a_hi - b_hi - ((b == 0) as u64));
|
||||
|
||||
*borrow = (b == 0) as u64;
|
||||
|
||||
combine_u64(r1, r0)
|
||||
}
|
||||
|
||||
/// Calculate a + b + carry, returning the sum and modifying the
|
||||
/// carry value.
|
||||
#[inline(always)]
|
||||
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
|
||||
let (a_hi, a_lo) = split_u64(a);
|
||||
let (b_hi, b_lo) = split_u64(b);
|
||||
let (carry_hi, carry_lo) = split_u64(*carry);
|
||||
|
||||
let (t, r0) = split_u64(a_lo + b_lo + carry_lo);
|
||||
let (t, r1) = split_u64(t + a_hi + b_hi + carry_hi);
|
||||
|
||||
*carry = t;
|
||||
|
||||
combine_u64(r1, r0)
|
||||
}
|
||||
|
||||
/// Calculate a + (b * c) + carry, returning the least significant digit
|
||||
/// and setting carry to the most significant digit.
|
||||
#[inline(always)]
|
||||
pub fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
|
||||
/*
|
||||
[ b_hi | b_lo ]
|
||||
[ c_hi | c_lo ] *
|
||||
-------------------------------------------
|
||||
[ b_lo * c_lo ] <-- w
|
||||
[ b_hi * c_lo ] <-- x
|
||||
[ b_lo * c_hi ] <-- y
|
||||
[ b_hi * c_lo ] <-- z
|
||||
[ a_hi | a_lo ]
|
||||
[ C_hi | C_lo ]
|
||||
*/
|
||||
|
||||
let (a_hi, a_lo) = split_u64(a);
|
||||
let (b_hi, b_lo) = split_u64(b);
|
||||
let (c_hi, c_lo) = split_u64(c);
|
||||
let (carry_hi, carry_lo) = split_u64(*carry);
|
||||
|
||||
let (w_hi, w_lo) = split_u64(b_lo * c_lo);
|
||||
let (x_hi, x_lo) = split_u64(b_hi * c_lo);
|
||||
let (y_hi, y_lo) = split_u64(b_lo * c_hi);
|
||||
let (z_hi, z_lo) = split_u64(b_hi * c_hi);
|
||||
|
||||
let (t, r0) = split_u64(w_lo + a_lo + carry_lo);
|
||||
let (t, r1) = split_u64(t + w_hi + x_lo + y_lo + a_hi + carry_hi);
|
||||
let (t, r2) = split_u64(t + x_hi + y_hi + z_lo);
|
||||
let (_, r3) = split_u64(t + z_hi);
|
||||
|
||||
*carry = combine_u64(r3, r2);
|
||||
|
||||
combine_u64(r1, r0)
|
||||
}
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
use ff::Field;
|
||||
use rand::{Rand, Rng, SeedableRng, XorShiftRng};
|
||||
|
||||
use {CurveAffine, CurveProjective, EncodedPoint, Field};
|
||||
use {CurveAffine, CurveProjective, EncodedPoint};
|
||||
|
||||
pub fn curve_tests<G: CurveProjective>() {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
@ -66,8 +67,8 @@ pub fn curve_tests<G: CurveProjective>() {
|
||||
}
|
||||
|
||||
fn random_wnaf_tests<G: CurveProjective>() {
|
||||
use ff::PrimeField;
|
||||
use wnaf::*;
|
||||
use PrimeField;
|
||||
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
use ff::{Field, LegendreSymbol, PrimeField, SqrtField};
|
||||
use rand::{Rng, SeedableRng, XorShiftRng};
|
||||
use {Field, LegendreSymbol, PrimeField, SqrtField};
|
||||
|
||||
pub fn random_frobenius_tests<F: Field, C: AsRef<[u64]>>(characteristic: C, maxpower: usize) {
|
||||
let mut rng = XorShiftRng::from_seed([0x5dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
|
||||
|
@ -1,5 +1,5 @@
|
||||
use ff::PrimeFieldRepr;
|
||||
use rand::{SeedableRng, XorShiftRng};
|
||||
use PrimeFieldRepr;
|
||||
|
||||
pub fn random_repr_tests<R: PrimeFieldRepr>() {
|
||||
random_encoding_tests::<R>();
|
||||
|
Loading…
Reference in New Issue
Block a user