Use ff crate for Field traits
This commit is contained in:
parent
09b6e6f921
commit
1db099f1cc
@ -15,6 +15,7 @@ repository = "https://github.com/ebfull/pairing"
|
||||
rand = "0.4"
|
||||
byteorder = "1"
|
||||
clippy = { version = "0.0.200", optional = true }
|
||||
ff = "0.3"
|
||||
|
||||
[features]
|
||||
unstable-features = ["expose-arith"]
|
||||
|
@ -1,7 +1,7 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use ff::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
|
||||
#[bench]
|
||||
fn bench_fq_repr_add_nocarry(b: &mut ::test::Bencher) {
|
||||
|
@ -1,7 +1,7 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use ff::Field;
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::Field;
|
||||
|
||||
#[bench]
|
||||
fn bench_fq12_add_assign(b: &mut ::test::Bencher) {
|
||||
|
@ -1,7 +1,7 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use ff::{Field, SqrtField};
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::{Field, SqrtField};
|
||||
|
||||
#[bench]
|
||||
fn bench_fq2_add_assign(b: &mut ::test::Bencher) {
|
||||
|
@ -1,7 +1,7 @@
|
||||
use rand::{Rand, SeedableRng, XorShiftRng};
|
||||
|
||||
use ff::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
use pairing::bls12_381::*;
|
||||
use pairing::{Field, PrimeField, PrimeFieldRepr, SqrtField};
|
||||
|
||||
#[bench]
|
||||
fn bench_fr_repr_add_nocarry(b: &mut ::test::Bencher) {
|
||||
|
@ -1,5 +1,6 @@
|
||||
#![feature(test)]
|
||||
|
||||
extern crate ff;
|
||||
extern crate pairing;
|
||||
extern crate rand;
|
||||
extern crate test;
|
||||
|
457
src/lib.rs
457
src/lib.rs
@ -14,6 +14,7 @@
|
||||
#![deny(missing_debug_implementations)]
|
||||
|
||||
extern crate byteorder;
|
||||
extern crate ff;
|
||||
extern crate rand;
|
||||
|
||||
#[cfg(test)]
|
||||
@ -24,9 +25,9 @@ pub mod bls12_381;
|
||||
mod wnaf;
|
||||
pub use self::wnaf::Wnaf;
|
||||
|
||||
use ff::*;
|
||||
use std::error::Error;
|
||||
use std::fmt;
|
||||
use std::io::{self, Read, Write};
|
||||
|
||||
/// An "engine" is a collection of types (fields, elliptic curve groups, etc.)
|
||||
/// with well-defined relationships. In particular, the G1/G2 curve groups are
|
||||
@ -263,208 +264,6 @@ pub trait EncodedPoint:
|
||||
fn from_affine(affine: Self::Affine) -> Self;
|
||||
}
|
||||
|
||||
/// This trait represents an element of a field.
|
||||
pub trait Field:
|
||||
Sized + Eq + Copy + Clone + Send + Sync + fmt::Debug + fmt::Display + 'static + rand::Rand
|
||||
{
|
||||
/// Returns the zero element of the field, the additive identity.
|
||||
fn zero() -> Self;
|
||||
|
||||
/// Returns the one element of the field, the multiplicative identity.
|
||||
fn one() -> Self;
|
||||
|
||||
/// Returns true iff this element is zero.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Squares this element.
|
||||
fn square(&mut self);
|
||||
|
||||
/// Doubles this element.
|
||||
fn double(&mut self);
|
||||
|
||||
/// Negates this element.
|
||||
fn negate(&mut self);
|
||||
|
||||
/// Adds another element to this element.
|
||||
fn add_assign(&mut self, other: &Self);
|
||||
|
||||
/// Subtracts another element from this element.
|
||||
fn sub_assign(&mut self, other: &Self);
|
||||
|
||||
/// Multiplies another element by this element.
|
||||
fn mul_assign(&mut self, other: &Self);
|
||||
|
||||
/// Computes the multiplicative inverse of this element, if nonzero.
|
||||
fn inverse(&self) -> Option<Self>;
|
||||
|
||||
/// Exponentiates this element by a power of the base prime modulus via
|
||||
/// the Frobenius automorphism.
|
||||
fn frobenius_map(&mut self, power: usize);
|
||||
|
||||
/// Exponentiates this element by a number represented with `u64` limbs,
|
||||
/// least significant digit first.
|
||||
fn pow<S: AsRef<[u64]>>(&self, exp: S) -> Self {
|
||||
let mut res = Self::one();
|
||||
|
||||
let mut found_one = false;
|
||||
|
||||
for i in BitIterator::new(exp) {
|
||||
if found_one {
|
||||
res.square();
|
||||
} else {
|
||||
found_one = i;
|
||||
}
|
||||
|
||||
if i {
|
||||
res.mul_assign(self);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
/// This trait represents an element of a field that has a square root operation described for it.
|
||||
pub trait SqrtField: Field {
|
||||
/// Returns the Legendre symbol of the field element.
|
||||
fn legendre(&self) -> LegendreSymbol;
|
||||
|
||||
/// Returns the square root of the field element, if it is
|
||||
/// quadratic residue.
|
||||
fn sqrt(&self) -> Option<Self>;
|
||||
}
|
||||
|
||||
/// This trait represents a wrapper around a biginteger which can encode any element of a particular
|
||||
/// prime field. It is a smart wrapper around a sequence of `u64` limbs, least-significant digit
|
||||
/// first.
|
||||
pub trait PrimeFieldRepr:
|
||||
Sized
|
||||
+ Copy
|
||||
+ Clone
|
||||
+ Eq
|
||||
+ Ord
|
||||
+ Send
|
||||
+ Sync
|
||||
+ Default
|
||||
+ fmt::Debug
|
||||
+ fmt::Display
|
||||
+ 'static
|
||||
+ rand::Rand
|
||||
+ AsRef<[u64]>
|
||||
+ AsMut<[u64]>
|
||||
+ From<u64>
|
||||
{
|
||||
/// Subtract another represetation from this one.
|
||||
fn sub_noborrow(&mut self, other: &Self);
|
||||
|
||||
/// Add another representation to this one.
|
||||
fn add_nocarry(&mut self, other: &Self);
|
||||
|
||||
/// Compute the number of bits needed to encode this number. Always a
|
||||
/// multiple of 64.
|
||||
fn num_bits(&self) -> u32;
|
||||
|
||||
/// Returns true iff this number is zero.
|
||||
fn is_zero(&self) -> bool;
|
||||
|
||||
/// Returns true iff this number is odd.
|
||||
fn is_odd(&self) -> bool;
|
||||
|
||||
/// Returns true iff this number is even.
|
||||
fn is_even(&self) -> bool;
|
||||
|
||||
/// Performs a rightwise bitshift of this number, effectively dividing
|
||||
/// it by 2.
|
||||
fn div2(&mut self);
|
||||
|
||||
/// Performs a rightwise bitshift of this number by some amount.
|
||||
fn shr(&mut self, amt: u32);
|
||||
|
||||
/// Performs a leftwise bitshift of this number, effectively multiplying
|
||||
/// it by 2. Overflow is ignored.
|
||||
fn mul2(&mut self);
|
||||
|
||||
/// Performs a leftwise bitshift of this number by some amount.
|
||||
fn shl(&mut self, amt: u32);
|
||||
|
||||
/// Writes this `PrimeFieldRepr` as a big endian integer.
|
||||
fn write_be<W: Write>(&self, mut writer: W) -> io::Result<()> {
|
||||
use byteorder::{BigEndian, WriteBytesExt};
|
||||
|
||||
for digit in self.as_ref().iter().rev() {
|
||||
writer.write_u64::<BigEndian>(*digit)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Reads a big endian integer into this representation.
|
||||
fn read_be<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
|
||||
use byteorder::{BigEndian, ReadBytesExt};
|
||||
|
||||
for digit in self.as_mut().iter_mut().rev() {
|
||||
*digit = reader.read_u64::<BigEndian>()?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Writes this `PrimeFieldRepr` as a little endian integer.
|
||||
fn write_le<W: Write>(&self, mut writer: W) -> io::Result<()> {
|
||||
use byteorder::{LittleEndian, WriteBytesExt};
|
||||
|
||||
for digit in self.as_ref().iter() {
|
||||
writer.write_u64::<LittleEndian>(*digit)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Reads a little endian integer into this representation.
|
||||
fn read_le<R: Read>(&mut self, mut reader: R) -> io::Result<()> {
|
||||
use byteorder::{LittleEndian, ReadBytesExt};
|
||||
|
||||
for digit in self.as_mut().iter_mut() {
|
||||
*digit = reader.read_u64::<LittleEndian>()?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, PartialEq)]
|
||||
pub enum LegendreSymbol {
|
||||
Zero = 0,
|
||||
QuadraticResidue = 1,
|
||||
QuadraticNonResidue = -1,
|
||||
}
|
||||
|
||||
/// An error that may occur when trying to interpret a `PrimeFieldRepr` as a
|
||||
/// `PrimeField` element.
|
||||
#[derive(Debug)]
|
||||
pub enum PrimeFieldDecodingError {
|
||||
/// The encoded value is not in the field
|
||||
NotInField(String),
|
||||
}
|
||||
|
||||
impl Error for PrimeFieldDecodingError {
|
||||
fn description(&self) -> &str {
|
||||
match *self {
|
||||
PrimeFieldDecodingError::NotInField(..) => "not an element of the field",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for PrimeFieldDecodingError {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
match *self {
|
||||
PrimeFieldDecodingError::NotInField(ref repr) => {
|
||||
write!(f, "{} is not an element of the field", repr)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An error that may occur when trying to decode an `EncodedPoint`.
|
||||
#[derive(Debug)]
|
||||
pub enum GroupDecodingError {
|
||||
@ -504,255 +303,3 @@ impl fmt::Display for GroupDecodingError {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This represents an element of a prime field.
|
||||
pub trait PrimeField: Field {
|
||||
/// The prime field can be converted back and forth into this biginteger
|
||||
/// representation.
|
||||
type Repr: PrimeFieldRepr + From<Self>;
|
||||
|
||||
/// Interpret a string of numbers as a (congruent) prime field element.
|
||||
/// Does not accept unnecessary leading zeroes or a blank string.
|
||||
fn from_str(s: &str) -> Option<Self> {
|
||||
if s.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
if s == "0" {
|
||||
return Some(Self::zero());
|
||||
}
|
||||
|
||||
let mut res = Self::zero();
|
||||
|
||||
let ten = Self::from_repr(Self::Repr::from(10)).unwrap();
|
||||
|
||||
let mut first_digit = true;
|
||||
|
||||
for c in s.chars() {
|
||||
match c.to_digit(10) {
|
||||
Some(c) => {
|
||||
if first_digit {
|
||||
if c == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
first_digit = false;
|
||||
}
|
||||
|
||||
res.mul_assign(&ten);
|
||||
res.add_assign(&Self::from_repr(Self::Repr::from(u64::from(c))).unwrap());
|
||||
}
|
||||
None => {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Some(res)
|
||||
}
|
||||
|
||||
/// Convert this prime field element into a biginteger representation.
|
||||
fn from_repr(Self::Repr) -> Result<Self, PrimeFieldDecodingError>;
|
||||
|
||||
/// Convert a biginteger representation into a prime field element, if
|
||||
/// the number is an element of the field.
|
||||
fn into_repr(&self) -> Self::Repr;
|
||||
|
||||
/// Returns the field characteristic; the modulus.
|
||||
fn char() -> Self::Repr;
|
||||
|
||||
/// How many bits are needed to represent an element of this field.
|
||||
const NUM_BITS: u32;
|
||||
|
||||
/// How many bits of information can be reliably stored in the field element.
|
||||
const CAPACITY: u32;
|
||||
|
||||
/// Returns the multiplicative generator of `char()` - 1 order. This element
|
||||
/// must also be quadratic nonresidue.
|
||||
fn multiplicative_generator() -> Self;
|
||||
|
||||
/// 2^s * t = `char()` - 1 with t odd.
|
||||
const S: u32;
|
||||
|
||||
/// Returns the 2^s root of unity computed by exponentiating the `multiplicative_generator()`
|
||||
/// by t.
|
||||
fn root_of_unity() -> Self;
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct BitIterator<E> {
|
||||
t: E,
|
||||
n: usize,
|
||||
}
|
||||
|
||||
impl<E: AsRef<[u64]>> BitIterator<E> {
|
||||
pub fn new(t: E) -> Self {
|
||||
let n = t.as_ref().len() * 64;
|
||||
|
||||
BitIterator { t, n }
|
||||
}
|
||||
}
|
||||
|
||||
impl<E: AsRef<[u64]>> Iterator for BitIterator<E> {
|
||||
type Item = bool;
|
||||
|
||||
fn next(&mut self) -> Option<bool> {
|
||||
if self.n == 0 {
|
||||
None
|
||||
} else {
|
||||
self.n -= 1;
|
||||
let part = self.n / 64;
|
||||
let bit = self.n - (64 * part);
|
||||
|
||||
Some(self.t.as_ref()[part] & (1 << bit) > 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bit_iterator() {
|
||||
let mut a = BitIterator::new([0xa953d79b83f6ab59, 0x6dea2059e200bd39]);
|
||||
let expected = "01101101111010100010000001011001111000100000000010111101001110011010100101010011110101111001101110000011111101101010101101011001";
|
||||
|
||||
for e in expected.chars() {
|
||||
assert!(a.next().unwrap() == (e == '1'));
|
||||
}
|
||||
|
||||
assert!(a.next().is_none());
|
||||
|
||||
let expected = "1010010101111110101010000101101011101000011101110101001000011001100100100011011010001011011011010001011011101100110100111011010010110001000011110100110001100110011101101000101100011100100100100100001010011101010111110011101011000011101000111011011101011001";
|
||||
|
||||
let mut a = BitIterator::new([
|
||||
0x429d5f3ac3a3b759,
|
||||
0xb10f4c66768b1c92,
|
||||
0x92368b6d16ecd3b4,
|
||||
0xa57ea85ae8775219,
|
||||
]);
|
||||
|
||||
for e in expected.chars() {
|
||||
assert!(a.next().unwrap() == (e == '1'));
|
||||
}
|
||||
|
||||
assert!(a.next().is_none());
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "expose-arith"))]
|
||||
use self::arith_impl::*;
|
||||
|
||||
#[cfg(feature = "expose-arith")]
|
||||
pub use self::arith_impl::*;
|
||||
|
||||
#[cfg(feature = "u128-support")]
|
||||
mod arith_impl {
|
||||
/// Calculate a - b - borrow, returning the result and modifying
|
||||
/// the borrow value.
|
||||
#[inline(always)]
|
||||
pub fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
|
||||
let tmp = (1u128 << 64) + u128::from(a) - u128::from(b) - u128::from(*borrow);
|
||||
|
||||
*borrow = if tmp >> 64 == 0 { 1 } else { 0 };
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
|
||||
/// Calculate a + b + carry, returning the sum and modifying the
|
||||
/// carry value.
|
||||
#[inline(always)]
|
||||
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
|
||||
let tmp = u128::from(a) + u128::from(b) + u128::from(*carry);
|
||||
|
||||
*carry = (tmp >> 64) as u64;
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
|
||||
/// Calculate a + (b * c) + carry, returning the least significant digit
|
||||
/// and setting carry to the most significant digit.
|
||||
#[inline(always)]
|
||||
pub fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
|
||||
let tmp = (u128::from(a)) + u128::from(b) * u128::from(c) + u128::from(*carry);
|
||||
|
||||
*carry = (tmp >> 64) as u64;
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "u128-support"))]
|
||||
mod arith_impl {
|
||||
#[inline(always)]
|
||||
fn split_u64(i: u64) -> (u64, u64) {
|
||||
(i >> 32, i & 0xFFFFFFFF)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn combine_u64(hi: u64, lo: u64) -> u64 {
|
||||
(hi << 32) | lo
|
||||
}
|
||||
|
||||
/// Calculate a - b - borrow, returning the result and modifying
|
||||
/// the borrow value.
|
||||
#[inline(always)]
|
||||
pub fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
|
||||
let (a_hi, a_lo) = split_u64(a);
|
||||
let (b_hi, b_lo) = split_u64(b);
|
||||
let (b, r0) = split_u64((1 << 32) + a_lo - b_lo - *borrow);
|
||||
let (b, r1) = split_u64((1 << 32) + a_hi - b_hi - ((b == 0) as u64));
|
||||
|
||||
*borrow = (b == 0) as u64;
|
||||
|
||||
combine_u64(r1, r0)
|
||||
}
|
||||
|
||||
/// Calculate a + b + carry, returning the sum and modifying the
|
||||
/// carry value.
|
||||
#[inline(always)]
|
||||
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
|
||||
let (a_hi, a_lo) = split_u64(a);
|
||||
let (b_hi, b_lo) = split_u64(b);
|
||||
let (carry_hi, carry_lo) = split_u64(*carry);
|
||||
|
||||
let (t, r0) = split_u64(a_lo + b_lo + carry_lo);
|
||||
let (t, r1) = split_u64(t + a_hi + b_hi + carry_hi);
|
||||
|
||||
*carry = t;
|
||||
|
||||
combine_u64(r1, r0)
|
||||
}
|
||||
|
||||
/// Calculate a + (b * c) + carry, returning the least significant digit
|
||||
/// and setting carry to the most significant digit.
|
||||
#[inline(always)]
|
||||
pub fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
|
||||
/*
|
||||
[ b_hi | b_lo ]
|
||||
[ c_hi | c_lo ] *
|
||||
-------------------------------------------
|
||||
[ b_lo * c_lo ] <-- w
|
||||
[ b_hi * c_lo ] <-- x
|
||||
[ b_lo * c_hi ] <-- y
|
||||
[ b_hi * c_lo ] <-- z
|
||||
[ a_hi | a_lo ]
|
||||
[ C_hi | C_lo ]
|
||||
*/
|
||||
|
||||
let (a_hi, a_lo) = split_u64(a);
|
||||
let (b_hi, b_lo) = split_u64(b);
|
||||
let (c_hi, c_lo) = split_u64(c);
|
||||
let (carry_hi, carry_lo) = split_u64(*carry);
|
||||
|
||||
let (w_hi, w_lo) = split_u64(b_lo * c_lo);
|
||||
let (x_hi, x_lo) = split_u64(b_hi * c_lo);
|
||||
let (y_hi, y_lo) = split_u64(b_lo * c_hi);
|
||||
let (z_hi, z_lo) = split_u64(b_hi * c_hi);
|
||||
|
||||
let (t, r0) = split_u64(w_lo + a_lo + carry_lo);
|
||||
let (t, r1) = split_u64(t + w_hi + x_lo + y_lo + a_hi + carry_hi);
|
||||
let (t, r2) = split_u64(t + x_hi + y_hi + z_lo);
|
||||
let (_, r3) = split_u64(t + z_hi);
|
||||
|
||||
*carry = combine_u64(r3, r2);
|
||||
|
||||
combine_u64(r1, r0)
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user