In with the new.

This commit is contained in:
Sean Bowe 2017-01-08 00:08:49 -07:00
parent c506c48c91
commit 2321ead995
17 changed files with 4184 additions and 5 deletions

@ -9,4 +9,10 @@ repository = "https://github.com/ebfull/bellman"
version = "0.0.1"
[dependencies]
rand = "0.3.15"
rand = "0.3.*"
rayon = "0.6.*"
byteorder = "1.*"
serde = "0.9.*"
[dev-dependencies.bincode]
git = "https://github.com/TyOverby/bincode.git"

@ -1,7 +1,3 @@
# bellman [![Build status](https://api.travis-ci.org/ebfull/bellman.svg)](https://travis-ci.org/ebfull/bellman) [![Crates.io](https://img.shields.io/crates/v/bellman.svg)](https://crates.io/crates/bellman) #
This is a Rust language zk-SNARK crate. (You should not use this in production for anything yet.)
------
This is a research project being built for [Zcash](https://z.cash/).

235
benches/curve.rs Normal file

@ -0,0 +1,235 @@
#![feature(test)]
#![allow(unused_mut)]
extern crate rand;
extern crate bellman;
extern crate test;
use bellman::curves::*;
use bellman::curves::bls381::*;
const SAMPLES: usize = 30;
macro_rules! benchmark(
($name:ident, $engine:ident, $input:ident($rng:ident) = $pre:expr; $post:expr) => (
#[bench]
fn $name(b: &mut test::Bencher) {
let $rng = &mut rand::thread_rng();
let $engine = &Bls381::new();
let $input: Vec<_> = (0..SAMPLES).map(|_| $pre).collect();
let mut c = 0;
b.iter(|| {
c += 1;
let mut $input = $input[c % SAMPLES].clone();
$post
})
}
)
);
benchmark!(g1_multiexp, e,
input(rng) = {
let mut g = G1::random(e, rng);
let mut a = G1::random(e, rng);
(
(0..1000).map(|_| {
g.add_assign(e, &a);
a.double(e);
g.to_affine(e)
}).collect::<Vec<_>>(),
(0..1000).map(|_| Fr::random(e, rng)).collect::<Vec<_>>(),
)
};
e.multiexp::<G1>(&input.0, &input.1)
);
benchmark!(g2_multiexp, e,
input(rng) = {
let mut g = G2::random(e, rng);
let mut a = G2::random(e, rng);
(
(0..1000).map(|_| {
g.add_assign(e, &a);
a.double(e);
g.to_affine(e)
}).collect::<Vec<_>>(),
(0..1000).map(|_| Fr::random(e, rng)).collect::<Vec<_>>(),
)
};
e.multiexp::<G2>(&input.0, &input.1)
);
benchmark!(full_pairing, e,
input(rng) = (G1::random(e, rng), G2::random(e, rng));
e.pairing(&input.0, &input.1)
);
benchmark!(g1_pairing_preparation, e,
input(rng) = G1::random(e, rng);
input.prepare(e)
);
benchmark!(g2_pairing_preparation, e,
input(rng) = G2::random(e, rng);
input.prepare(e)
);
benchmark!(miller_loop, e,
input(rng) = (G1::random(e, rng).prepare(e), G2::random(e, rng).prepare(e));
e.miller_loop([(&input.0, &input.1)].into_iter())
);
benchmark!(double_miller_loop, e,
input(rng) = (G1::random(e, rng).prepare(e), G2::random(e, rng).prepare(e), G1::random(e, rng).prepare(e), G2::random(e, rng).prepare(e));
e.miller_loop([
(&input.0, &input.1),
(&input.2, &input.3),
].into_iter())
);
benchmark!(final_exponentiation, e,
input(rng) = e.miller_loop([
(&G1::random(e, rng).prepare(e), &G2::random(e, rng).prepare(e)),
].into_iter());
e.final_exponentiation(&input)
);
macro_rules! group_tests(
(
$name:ident,
$mul:ident,
$mul_mixed:ident,
$add:ident
) => {
benchmark!($mul, e,
input(rng) = ($name::random(e, rng), Fr::random(e, rng));
{input.0.mul_assign(e, &input.1); input.0}
);
benchmark!($mul_mixed, e,
input(rng) = ($name::random(e, rng).to_affine(e), Fr::random(e, rng));
{input.0.mul(e, &input.1)}
);
benchmark!($add, e,
input(rng) = ($name::random(e, rng), $name::random(e, rng));
{input.0.add_assign(e, &input.1); input.0}
);
};
);
macro_rules! field_tests(
(
@nosqrt,
$name:ident,
$mul:ident,
$square:ident,
$add:ident,
$inverse:ident
) => {
benchmark!($mul, e,
input(rng) = ($name::random(e, rng), $name::random(e, rng));
{input.0.mul_assign(e, &input.1); input.0}
);
benchmark!($square, e,
input(rng) = $name::random(e, rng);
{input.square(e); input}
);
benchmark!($add, e,
input(rng) = ($name::random(e, rng), $name::random(e, rng));
{input.0.add_assign(e, &input.1); input.0}
);
benchmark!($inverse, e,
input(rng) = $name::random(e, rng);
{input.inverse(e)}
);
};
(
$name:ident,
$mul:ident,
$square:ident,
$add:ident,
$inverse:ident,
$sqrt:ident
) => {
field_tests!(@nosqrt, $name, $mul, $square, $add, $inverse);
benchmark!($sqrt, e,
input(rng) = {let mut tmp = $name::random(e, rng); tmp.square(e); tmp};
{input.sqrt(e)}
);
};
);
field_tests!(
Fr,
fr_multiplication,
fr_squaring,
fr_addition,
fr_inverse,
fr_sqrt
);
field_tests!(
Fq,
fq_multiplication,
fq_squaring,
fq_addition,
fq_inverse,
fq_sqrt
);
field_tests!(
Fq2,
fq2_multiplication,
fq2_squaring,
fq2_addition,
fq2_inverse,
fq2_sqrt
);
field_tests!(
@nosqrt,
Fq12,
fq12_multiplication,
fq12_squaring,
fq12_addition,
fq12_inverse
);
group_tests!(
G1,
g1_multiplication,
g1_multiplication_mixed,
g1_addition
);
group_tests!(
G2,
g2_multiplication,
g2_multiplication_mixed,
g2_addition
);

398
src/curves/bls381/ec.rs Normal file

@ -0,0 +1,398 @@
macro_rules! curve_impl {
(
$engine:ident,
$name:ident,
$name_affine:ident,
$name_prepared:ident,
$name_uncompressed:ident,
$params_name:ident,
$params_field:ident,
$basefield:ident,
$scalarfield:ident
) => {
#[repr(C)]
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct $name_affine {
x: $basefield,
y: $basefield,
infinity: bool
}
#[repr(C)]
#[derive(Copy, Clone, Debug)]
pub struct $name {
x: $basefield,
y: $basefield,
z: $basefield
}
struct $params_name {
zero: $name,
one: $name,
coeff_b: $basefield,
windows: Vec<usize>
}
impl Convert<$name_affine, $engine> for $name {
type Target = $name_affine;
fn convert(&self, engine: &$engine) -> Cow<$name_affine> {
Cow::Owned(self.to_affine(engine))
}
}
impl GroupAffine<$engine, $name> for $name_affine {
type Uncompressed = $name_uncompressed;
fn is_valid(&self, e: &$engine) -> bool {
if self.is_zero() {
true
} else {
// Check that the point is on the curve
let mut y2 = self.y;
y2.square(e);
let mut x3b = self.x;
x3b.square(e);
x3b.mul_assign(e, &self.x);
x3b.add_assign(e, &e.$params_field.coeff_b);
if y2 == x3b {
// Check that the point is in the correct subgroup
if self.mul(e, &$scalarfield::char(e)).is_zero() {
true
} else {
false
}
} else {
false
}
}
}
fn to_uncompressed(&self, engine: &$engine) -> Self::Uncompressed {
$name_uncompressed::from_affine(self, engine)
}
fn to_jacobian(&self, engine: &$engine) -> $name {
if self.infinity {
$name::zero(engine)
} else {
$name {
x: self.x,
y: self.y,
z: $basefield::one(engine)
}
}
}
fn prepare(self, e: &$engine) -> $name_prepared {
$name_prepared::from_engine(e, self)
}
fn is_zero(&self) -> bool {
self.infinity
}
fn mul<S: Convert<[u64], $engine>>(&self, e: &$engine, other: &S) -> $name {
let mut res = $name::zero(e);
for i in BitIterator::from((*other.convert(e)).borrow())
{
res.double(e);
if i {
res.add_assign_mixed(e, self);
}
}
res
}
fn negate(&mut self, e: &$engine) {
if !self.is_zero() {
self.y.negate(e);
}
}
}
impl Group<$engine> for $name {
type Affine = $name_affine;
type Prepared = $name_prepared;
fn optimal_window(engine: &$engine, scalar_bits: usize) -> Option<usize> {
for (i, bits) in engine.$params_field.windows.iter().enumerate().rev() {
if &scalar_bits >= bits {
return Some(i + 2);
}
}
None
}
fn zero(engine: &$engine) -> Self {
engine.$params_field.zero
}
fn one(engine: &$engine) -> Self {
engine.$params_field.one
}
fn random<R: rand::Rng>(engine: &$engine, rng: &mut R) -> Self {
let mut tmp = Self::one(engine);
tmp.mul_assign(engine, &$scalarfield::random(engine, rng));
tmp
}
fn is_zero(&self) -> bool {
self.z.is_zero()
}
fn is_equal(&self, engine: &$engine, other: &Self) -> bool {
if self.is_zero() {
return other.is_zero();
}
if other.is_zero() {
return false;
}
let mut z1 = self.z;
z1.square(engine);
let mut z2 = other.z;
z2.square(engine);
let mut tmp1 = self.x;
tmp1.mul_assign(engine, &z2);
let mut tmp2 = other.x;
tmp2.mul_assign(engine, &z1);
if tmp1 != tmp2 {
return false;
}
z1.mul_assign(engine, &self.z);
z2.mul_assign(engine, &other.z);
z2.mul_assign(engine, &self.y);
z1.mul_assign(engine, &other.y);
if z1 != z2 {
return false;
}
true
}
fn to_affine(&self, engine: &$engine) -> Self::Affine {
if self.is_zero() {
$name_affine {
x: $basefield::zero(),
y: $basefield::one(engine),
infinity: true
}
} else {
let zinv = self.z.inverse(engine).unwrap();
let mut zinv_powered = zinv;
zinv_powered.square(engine);
let mut x = self.x;
x.mul_assign(engine, &zinv_powered);
let mut y = self.y;
zinv_powered.mul_assign(engine, &zinv);
y.mul_assign(engine, &zinv_powered);
$name_affine {
x: x,
y: y,
infinity: false
}
}
}
fn prepare(&self, e: &$engine) -> $name_prepared {
self.to_affine(e).prepare(e)
}
fn double(&mut self, engine: &$engine) {
if self.is_zero() {
return;
}
let mut a = self.x;
a.square(engine);
let mut c = self.y;
c.square(engine);
let mut d = c;
c.square(engine);
d.add_assign(engine, &self.x);
d.square(engine);
d.sub_assign(engine, &a);
d.sub_assign(engine, &c);
d.double(engine);
let mut e = a;
e.add_assign(engine, &a);
e.add_assign(engine, &a);
self.x = e;
self.x.square(engine);
self.x.sub_assign(engine, &d);
self.x.sub_assign(engine, &d);
c.double(engine);
c.double(engine);
c.double(engine);
self.z.mul_assign(engine, &self.y);
self.z.double(engine);
self.y = d;
self.y.sub_assign(engine, &self.x);
self.y.mul_assign(engine, &e);
self.y.sub_assign(engine, &c);
}
fn negate(&mut self, engine: &$engine) {
if !self.is_zero() {
self.y.negate(engine)
}
}
fn mul_assign<S: Convert<[u64], $engine>>(&mut self, engine: &$engine, other: &S) {
let mut res = Self::zero(engine);
for i in BitIterator::from((*other.convert(engine)).borrow())
{
res.double(engine);
if i {
res.add_assign(engine, self);
}
}
*self = res;
}
fn sub_assign(&mut self, engine: &$engine, other: &Self) {
let mut tmp = *other;
tmp.negate(engine);
self.add_assign(engine, &tmp);
}
fn add_assign_mixed(&mut self, e: &$engine, other: &$name_affine) {
if other.is_zero() {
return;
}
if self.is_zero() {
self.x = other.x;
self.y = other.y;
self.z = $basefield::one(e);
return;
}
let mut z1z1 = self.z;
z1z1.square(e);
let mut u2 = other.x;
u2.mul_assign(e, &z1z1);
let mut z1cubed = self.z;
z1cubed.mul_assign(e, &z1z1);
let mut s2 = other.y;
s2.mul_assign(e, &z1cubed);
if self.x == u2 && self.y == s2 {
self.double(e);
return;
}
let mut h = u2;
h.sub_assign(e, &self.x);
let mut hh = h;
hh.square(e);
let mut i = hh;
i.double(e);
i.double(e);
let mut j = h;
j.mul_assign(e, &i);
let mut r = s2;
r.sub_assign(e, &self.y);
r.double(e);
let mut v = self.x;
v.mul_assign(e, &i);
self.x = r;
self.x.square(e);
self.x.sub_assign(e, &j);
self.x.sub_assign(e, &v);
self.x.sub_assign(e, &v);
self.y.mul_assign(e, &j);
let mut tmp = v;
tmp.sub_assign(e, &self.x);
tmp.mul_assign(e, &r);
tmp.sub_assign(e, &self.y);
tmp.sub_assign(e, &self.y);
self.y = tmp;
self.z.add_assign(e, &h);
self.z.square(e);
self.z.sub_assign(e, &z1z1);
self.z.sub_assign(e, &hh);
}
fn add_assign(&mut self, engine: &$engine, other: &Self) {
if self.is_zero() {
*self = *other;
return;
}
if other.is_zero() {
return;
}
let mut z1_squared = self.z;
z1_squared.square(engine);
let mut z2_squared = other.z;
z2_squared.square(engine);
let mut u1 = self.x;
u1.mul_assign(engine, &z2_squared);
let mut u2 = other.x;
u2.mul_assign(engine, &z1_squared);
let mut s1 = other.z;
s1.mul_assign(engine, &z2_squared);
s1.mul_assign(engine, &self.y);
let mut s2 = self.z;
s2.mul_assign(engine, &z1_squared);
s2.mul_assign(engine, &other.y);
if u1 == u2 && s1 == s2 {
self.double(engine);
} else {
u2.sub_assign(engine, &u1);
s2.sub_assign(engine, &s1);
s2.double(engine);
let mut i = u2;
i.double(engine);
i.square(engine);
let mut v = i;
v.mul_assign(engine, &u1);
i.mul_assign(engine, &u2);
s1.mul_assign(engine, &i);
s1.double(engine);
self.x = s2;
self.x.square(engine);
self.x.sub_assign(engine, &i);
self.x.sub_assign(engine, &v);
self.x.sub_assign(engine, &v);
self.y = v;
self.y.sub_assign(engine, &self.x);
self.y.mul_assign(engine, &s2);
self.y.sub_assign(engine, &s1);
self.z.add_assign(engine, &other.z);
self.z.square(engine);
self.z.sub_assign(engine, &z1_squared);
self.z.sub_assign(engine, &z2_squared);
self.z.mul_assign(engine, &u2);
}
}
}
}
}

714
src/curves/bls381/fp.rs Normal file

@ -0,0 +1,714 @@
macro_rules! fp_params_impl {
(
$name:ident = (3 mod 4),
engine = $engine:ident,
params = $params_field:ident : $params_name:ident,
limbs = $limbs:expr,
modulus = $modulus:expr,
r1 = $r1:expr,
r2 = $r2:expr,
modulus_minus_3_over_4 = $modulus_minus_3_over_4:expr,
modulus_minus_1_over_2 = $modulus_minus_1_over_2:expr,
inv = $inv:expr
) => {
struct $params_name {
modulus: [u64; $limbs],
r1: $name,
r2: $name,
inv: u64,
one: $name,
num_bits: usize,
modulus_minus_3_over_4: [u64; $limbs],
modulus_minus_1_over_2: [u64; $limbs],
base10: [$name; 11]
}
impl $params_name {
fn partial_init() -> $params_name {
let mut tmp = $params_name {
modulus: $modulus,
r1: $name($r1),
r2: $name($r2),
inv: $inv,
one: $name::zero(),
num_bits: 0,
modulus_minus_3_over_4: $modulus_minus_3_over_4,
modulus_minus_1_over_2: $modulus_minus_1_over_2,
base10: [$name::zero(); 11]
};
tmp.one.0[0] = 1;
tmp
}
}
};
(
$name:ident = (1 mod 16),
engine = $engine:ident,
params = $params_field:ident : $params_name:ident,
limbs = $limbs:expr,
modulus = $modulus:expr,
r1 = $r1:expr,
r2 = $r2:expr,
modulus_minus_1_over_2 = $modulus_minus_1_over_2:expr,
s = $s:expr,
t = $t:expr,
t_plus_1_over_2 = $t_plus_1_over_2:expr,
inv = $inv:expr
) => {
struct $params_name {
modulus: [u64; $limbs],
r1: $name,
r2: $name,
inv: u64,
one: $name,
num_bits: usize,
modulus_minus_1_over_2: [u64; $limbs],
s: u64,
t: [u64; $limbs],
t_plus_1_over_2: [u64; $limbs],
root_of_unity: $name,
multiplicative_generator: $name,
base10: [$name; 11]
}
impl $params_name {
fn partial_init() -> $params_name {
let mut tmp = $params_name {
modulus: $modulus,
r1: $name($r1),
r2: $name($r2),
inv: $inv,
one: $name::zero(),
num_bits: 0,
modulus_minus_1_over_2: $modulus_minus_1_over_2,
s: $s,
t: $t,
t_plus_1_over_2: $t_plus_1_over_2,
root_of_unity: $name::zero(),
multiplicative_generator: $name::zero(),
base10: [$name::zero(); 11]
};
tmp.one.0[0] = 1;
tmp
}
}
};
}
macro_rules! fp_sqrt_impl {
(
$name:ident = (3 mod 4),
engine = $engine:ident,
params = $params_field:ident : $params_name:ident
) => {
impl SqrtField<$engine> for $name {
fn sqrt(&self, engine: &$engine) -> Option<Self> {
let mut a1 = self.pow(engine, &engine.$params_field.modulus_minus_3_over_4);
let mut a0 = a1;
a0.square(engine);
a0.mul_assign(engine, self);
let mut neg1 = Self::one(engine);
neg1.negate(engine);
if a0 == neg1 {
None
} else {
a1.mul_assign(engine, self);
Some(a1)
}
}
}
};
(
$name:ident = (1 mod 16),
engine = $engine:ident,
params = $params_field:ident : $params_name:ident
) => {
impl SqrtField<$engine> for $name {
fn sqrt(&self, engine: &$engine) -> Option<Self> {
if self.is_zero() {
return Some(*self);
}
if self.pow(engine, &engine.$params_field.modulus_minus_1_over_2) != $name::one(engine) {
None
} else {
let mut c = engine.$params_field.root_of_unity;
let mut r = self.pow(engine, &engine.$params_field.t_plus_1_over_2);
let mut t = self.pow(engine, &engine.$params_field.t);
let mut m = engine.$params_field.s;
while t != Self::one(engine) {
let mut i = 1;
{
let mut t2i = t;
t2i.square(engine);
loop {
if t2i == Self::one(engine) {
break;
}
t2i.square(engine);
i += 1;
}
}
for _ in 0..(m - i - 1) {
c.square(engine);
}
r.mul_assign(engine, &c);
c.square(engine);
t.mul_assign(engine, &c);
m = i;
}
Some(r)
}
}
}
};
}
macro_rules! fp_impl {
(
$name:ident = ($($congruency:tt)*),
engine = $engine:ident,
params = $params_field:ident : $params_name:ident,
arith = $arith_mod:ident,
limbs = $limbs:expr,
$($params:tt)*
) => {
fp_params_impl!(
$name = ($($congruency)*),
engine = $engine,
params = $params_field : $params_name,
limbs = $limbs,
$($params)*
);
impl $params_name {
fn base10(e: &$engine) -> [$name; 11] {
let mut ret = [$name::zero(); 11];
let mut acc = $name::zero();
for i in 0..11 {
ret[i] = acc;
acc.add_assign(e, &$name::one(e));
}
ret
}
}
fp_sqrt_impl!(
$name = ($($congruency)*),
engine = $engine,
params = $params_field : $params_name
);
#[derive(Copy, Clone, PartialEq, Eq)]
#[repr(C)]
pub struct $name([u64; $limbs]);
impl fmt::Debug for $name
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
ENGINE.with(|e| {
let mut repr = self.into_repr(&e);
repr.reverse();
try!(write!(f, "Fp(0x"));
for i in &repr {
try!(write!(f, "{:016x}", *i));
}
write!(f, ")")
})
}
}
impl $name
{
#[inline]
fn mont_reduce(&mut self, engine: &$engine, res: &mut [u64; $limbs*2]) {
// The Montgomery reduction here is based on Algorithm 14.32 in
// Handbook of Applied Cryptography
// <http://cacr.uwaterloo.ca/hac/about/chap14.pdf>.
for i in 0..$limbs {
let k = res[i].wrapping_mul(engine.$params_field.inv);
$arith_mod::mac_digit(&mut res[i..], &engine.$params_field.modulus, k);
}
self.0.copy_from_slice(&res[$limbs..]);
self.reduce(engine);
}
#[inline]
fn reduce(&mut self, engine: &$engine) {
if !$arith_mod::lt(&self.0, &engine.$params_field.modulus) {
$arith_mod::sub_noborrow(&mut self.0, &engine.$params_field.modulus);
}
}
}
impl Convert<[u64], $engine> for $name
{
type Target = [u64; $limbs];
fn convert(&self, engine: &$engine) -> Cow<[u64; $limbs]> {
Cow::Owned(self.into_repr(engine))
}
}
impl PrimeField<$engine> for $name
{
type Repr = [u64; $limbs];
fn from_repr(engine: &$engine, repr: Self::Repr) -> Result<Self, ()> {
let mut tmp = $name(repr);
if $arith_mod::lt(&tmp.0, &engine.$params_field.modulus) {
tmp.mul_assign(engine, &engine.$params_field.r2);
Ok(tmp)
} else {
Err(())
}
}
fn into_repr(&self, engine: &$engine) -> Self::Repr {
let mut tmp = *self;
tmp.mul_assign(engine, &engine.$params_field.one);
tmp.0
}
fn from_u64(engine: &$engine, n: u64) -> Self {
let mut r = [0; $limbs];
r[0] = n;
Self::from_repr(engine, r).unwrap()
}
fn from_str(engine: &$engine, s: &str) -> Result<Self, ()> {
let mut res = Self::zero();
for c in s.chars() {
match c.to_digit(10) {
Some(d) => {
res.mul_assign(engine, &engine.$params_field.base10[10]);
res.add_assign(engine, &engine.$params_field.base10[d as usize]);
},
None => {
return Err(());
}
}
}
Ok(res)
}
fn bits(&self, engine: &$engine) -> BitIterator<Self::Repr> {
self.into_repr(engine).into()
}
fn char(engine: &$engine) -> Self::Repr {
engine.$params_field.modulus
}
fn num_bits(engine: &$engine) -> usize {
engine.$params_field.num_bits
}
fn capacity(engine: &$engine) -> usize {
Self::num_bits(engine) - 1
}
}
impl Field<$engine> for $name
{
fn zero() -> Self {
$name([0; $limbs])
}
fn one(engine: &$engine) -> Self {
engine.$params_field.r1
}
fn random<R: rand::Rng>(engine: &$engine, rng: &mut R) -> Self {
let mut tmp = [0; $limbs*2];
for i in &mut tmp {
*i = rng.gen();
}
$name($arith_mod::divrem(&tmp, &engine.$params_field.modulus).1)
}
fn is_zero(&self) -> bool {
self.0.iter().all(|&e| e==0)
}
fn double(&mut self, engine: &$engine) {
$arith_mod::mul2(&mut self.0);
self.reduce(engine);
}
fn frobenius_map(&mut self, _: &$engine, _: usize)
{
// This is the identity function for a prime field.
}
fn negate(&mut self, engine: &$engine) {
if !self.is_zero() {
let mut tmp = engine.$params_field.modulus;
$arith_mod::sub_noborrow(&mut tmp, &self.0);
self.0 = tmp;
}
}
fn add_assign(&mut self, engine: &$engine, other: &Self) {
$arith_mod::add_nocarry(&mut self.0, &other.0);
self.reduce(engine);
}
fn sub_assign(&mut self, engine: &$engine, other: &Self) {
if $arith_mod::lt(&self.0, &other.0) {
$arith_mod::add_nocarry(&mut self.0, &engine.$params_field.modulus);
}
$arith_mod::sub_noborrow(&mut self.0, &other.0);
}
fn square(&mut self, engine: &$engine)
{
let mut res = [0; $limbs*2];
$arith_mod::mac3(&mut res, &self.0, &self.0);
self.mont_reduce(engine, &mut res);
}
fn mul_assign(&mut self, engine: &$engine, other: &Self) {
let mut res = [0; $limbs*2];
$arith_mod::mac3(&mut res, &self.0, &other.0);
self.mont_reduce(engine, &mut res);
}
fn inverse(&self, engine: &$engine) -> Option<Self> {
if self.is_zero() {
None
} else {
// Guajardo Kumar Paar Pelzl
// Efficient Software-Implementation of Finite Fields with Applications to Cryptography
// Algorithm 16 (BEA for Inversion in Fp)
let mut u = self.0;
let mut v = engine.$params_field.modulus;
let mut b = engine.$params_field.r2; // Avoids unnecessary reduction step.
let mut c = Self::zero();
while u != engine.$params_field.one.0 && v != engine.$params_field.one.0 {
while $arith_mod::even(&u) {
$arith_mod::div2(&mut u);
if $arith_mod::even(&b.0) {
$arith_mod::div2(&mut b.0);
} else {
$arith_mod::add_nocarry(&mut b.0, &engine.$params_field.modulus);
$arith_mod::div2(&mut b.0);
}
}
while $arith_mod::even(&v) {
$arith_mod::div2(&mut v);
if $arith_mod::even(&c.0) {
$arith_mod::div2(&mut c.0);
} else {
$arith_mod::add_nocarry(&mut c.0, &engine.$params_field.modulus);
$arith_mod::div2(&mut c.0);
}
}
if $arith_mod::lt(&v, &u) {
$arith_mod::sub_noborrow(&mut u, &v);
b.sub_assign(engine, &c);
} else {
$arith_mod::sub_noborrow(&mut v, &u);
c.sub_assign(engine, &b);
}
}
if u == engine.$params_field.one.0 {
Some(b)
} else {
Some(c)
}
}
}
}
mod $arith_mod {
use super::BitIterator;
// Arithmetic
#[allow(dead_code)]
pub fn num_bits(v: &[u64; $limbs]) -> usize
{
// TODO: optimize
for (i, b) in BitIterator::from(&v[..]).enumerate() {
if b {
return ($limbs*64) - i;
}
}
0
}
#[inline]
pub fn mac_digit(acc: &mut [u64], b: &[u64], c: u64)
{
#[inline]
fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
let tmp = (a as u128) + (b as u128) * (c as u128) + (*carry as u128);
*carry = (tmp >> 64) as u64;
tmp as u64
}
let mut b_iter = b.iter();
let mut carry = 0;
for ai in acc.iter_mut() {
if let Some(bi) = b_iter.next() {
*ai = mac_with_carry(*ai, *bi, c, &mut carry);
} else {
*ai = mac_with_carry(*ai, 0, c, &mut carry);
}
}
debug_assert!(carry == 0);
}
#[inline]
pub fn mac3_long(acc: &mut [u64], b: &[u64], c: &[u64]) {
for (i, xi) in b.iter().enumerate() {
mac_digit(&mut acc[i..], c, *xi);
}
}
#[inline]
pub fn mac3(acc: &mut [u64; $limbs*2], b: &[u64; $limbs], c: &[u64; $limbs]) {
if $limbs > 4 {
let (x0, x1) = b.split_at($limbs / 2);
let (y0, y1) = c.split_at($limbs / 2);
let mut p = [0; $limbs+1];
mac3_long(&mut p, x1, y1);
add_nocarry(&mut acc[$limbs/2..], &p);
add_nocarry(&mut acc[$limbs..], &p);
p = [0; $limbs+1];
mac3_long(&mut p, x0, y0);
add_nocarry(&mut acc[..], &p);
add_nocarry(&mut acc[$limbs/2..], &p);
let mut sign;
let mut j0 = [0; $limbs / 2];
let mut j1 = [0; $limbs / 2];
if lt(x1, x0) {
sign = false;
j0.copy_from_slice(x0);
sub_noborrow(&mut j0, x1);
} else {
sign = true;
j0.copy_from_slice(x1);
sub_noborrow(&mut j0, x0);
}
if lt(&y1, &y0) {
sign = sign == false;
j1.copy_from_slice(y0);
sub_noborrow(&mut j1, y1);
} else {
sign = sign == true;
j1.copy_from_slice(y1);
sub_noborrow(&mut j1, y0);
}
if sign {
p = [0; $limbs+1];
mac3_long(&mut p, &j0, &j1);
sub_noborrow(&mut acc[$limbs/2..], &p);
} else {
mac3_long(&mut acc[$limbs/2..], &j0, &j1);
}
} else {
mac3_long(acc, b, c);
}
}
#[inline]
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
let tmp = (a as u128) + (b as u128) + (*carry as u128);
*carry = (tmp >> 64) as u64;
tmp as u64
}
#[inline]
#[allow(dead_code)]
pub fn add_carry(a: &mut [u64], b: &[u64]) {
use std::iter;
let mut carry = 0;
for (a, b) in a.into_iter().zip(b.iter().chain(iter::repeat(&0))) {
*a = adc(*a, *b, &mut carry);
}
debug_assert!(0 == carry);
}
#[inline]
pub fn add_nocarry(a: &mut [u64], b: &[u64]) {
let mut carry = 0;
for (a, b) in a.into_iter().zip(b.iter()) {
*a = adc(*a, *b, &mut carry);
}
debug_assert!(0 == carry);
}
/// Returns true if a < b.
#[inline]
pub fn lt(a: &[u64], b: &[u64]) -> bool {
for (a, b) in a.iter().zip(b.iter()).rev() {
if *a > *b {
return false;
} else if *a < *b {
return true;
}
}
false
}
#[inline]
pub fn sub_noborrow(a: &mut [u64], b: &[u64]) {
#[inline]
fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
let tmp = (1u128 << 64) + (a as u128) - (b as u128) - (*borrow as u128);
*borrow = if tmp >> 64 == 0 { 1 } else { 0 };
tmp as u64
}
let mut borrow = 0;
for (a, b) in a.into_iter().zip(b.iter()) {
*a = sbb(*a, *b, &mut borrow);
}
debug_assert!(0 == borrow);
}
/// Returns if number is even.
#[inline(always)]
#[allow(dead_code)]
pub fn even(a: &[u64; $limbs]) -> bool {
a[0] & 1 == 0
}
#[inline(always)]
#[allow(dead_code)]
pub fn odd(a: &[u64; $limbs]) -> bool {
a[0] & 1 == 1
}
/// Divide by two
#[inline]
pub fn div2(a: &mut [u64; $limbs]) {
let mut t = 0;
for i in a.iter_mut().rev() {
let t2 = *i << 63;
*i >>= 1;
*i |= t;
t = t2;
}
}
#[inline]
pub fn mul2(a: &mut [u64; $limbs]) {
let mut last = 0;
for i in a {
let tmp = *i >> 63;
*i <<= 1;
*i |= last;
last = tmp;
}
}
fn get_bit(this: &[u64; $limbs*2], n: usize) -> bool {
let part = n / 64;
let bit = n - (64 * part);
this[part] & (1 << bit) > 0
}
fn set_bit(this: &mut [u64; $limbs], n: usize, to: bool) -> bool
{
let part = n / 64;
let bit = n - (64 * part);
match this.get_mut(part) {
Some(e) => {
if to {
*e |= 1 << bit;
} else {
*e &= !(1 << bit);
}
true
},
None => false
}
}
pub fn divrem(
this: &[u64; $limbs*2],
modulo: &[u64; $limbs]
) -> (Option<[u64; $limbs]>, [u64; $limbs])
{
let mut q = Some([0; $limbs]);
let mut r = [0; $limbs];
for i in (0..($limbs*2*64)).rev() {
// NB: modulo's first bit is unset so this will never
// destroy information
mul2(&mut r);
assert!(set_bit(&mut r, 0, get_bit(this, i)));
if !lt(&r, modulo) {
sub_noborrow(&mut r, modulo);
if q.is_some() && !set_bit(q.as_mut().unwrap(), i, true) {
q = None
}
}
}
if q.is_some() && !lt(q.as_ref().unwrap(), modulo) {
(None, r)
} else {
(q, r)
}
}
}
}
}

151
src/curves/bls381/fq12.rs Normal file

@ -0,0 +1,151 @@
use super::{Bls381, Fq2, Fq6};
use rand;
use super::Field;
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Fq12 {
pub c0: Fq6,
pub c1: Fq6
}
impl Fq12 {
pub fn unitary_inverse(&mut self, e: &Bls381)
{
self.c1.negate(e);
}
pub fn mul_by_015(
&mut self,
e: &Bls381,
a: &Fq2,
b: &Fq2,
c: &Fq2
)
{
let mut aa = self.c0;
aa.mul_by_01(e, a, b);
let mut bb = self.c1;
bb.mul_by_1(e, c);
let mut o = *b;
o.add_assign(e, &c);
self.c1.add_assign(e, &self.c0);
self.c1.mul_by_01(e, a, &o);
self.c1.sub_assign(e, &aa);
self.c1.sub_assign(e, &bb);
self.c0 = bb;
self.c0.mul_by_nonresidue(e);
self.c0.add_assign(e, &aa);
}
}
impl Field<Bls381> for Fq12
{
fn zero() -> Self {
Fq12 {
c0: Fq6::zero(),
c1: Fq6::zero()
}
}
fn one(engine: &Bls381) -> Self {
Fq12 {
c0: Fq6::one(engine),
c1: Fq6::zero()
}
}
fn random<R: rand::Rng>(engine: &Bls381, rng: &mut R) -> Self {
Fq12 {
c0: Fq6::random(engine, rng),
c1: Fq6::random(engine, rng)
}
}
fn is_zero(&self) -> bool {
self.c0.is_zero() && self.c1.is_zero()
}
fn double(&mut self, engine: &Bls381) {
self.c0.double(engine);
self.c1.double(engine);
}
fn negate(&mut self, engine: &Bls381) {
self.c0.negate(engine);
self.c1.negate(engine);
}
fn add_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.add_assign(engine, &other.c0);
self.c1.add_assign(engine, &other.c1);
}
fn sub_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.sub_assign(engine, &other.c0);
self.c1.sub_assign(engine, &other.c1);
}
fn frobenius_map(&mut self, e: &Bls381, power: usize)
{
self.c0.frobenius_map(e, power);
self.c1.frobenius_map(e, power);
self.c1.c0.mul_assign(e, &e.frobenius_coeff_fq12[power % 12]);
self.c1.c1.mul_assign(e, &e.frobenius_coeff_fq12[power % 12]);
self.c1.c2.mul_assign(e, &e.frobenius_coeff_fq12[power % 12]);
}
fn square(&mut self, e: &Bls381) {
let mut ab = self.c0;
ab.mul_assign(e, &self.c1);
let mut c0c1 = self.c0;
c0c1.add_assign(e, &self.c1);
let mut c0 = self.c1;
c0.mul_by_nonresidue(e);
c0.add_assign(e, &self.c0);
c0.mul_assign(e, &c0c1);
c0.sub_assign(e, &ab);
self.c1 = ab;
self.c1.add_assign(e, &ab);
ab.mul_by_nonresidue(e);
c0.sub_assign(e, &ab);
self.c0 = c0;
}
fn mul_assign(&mut self, e: &Bls381, other: &Self) {
let mut aa = self.c0;
aa.mul_assign(e, &other.c0);
let mut bb = self.c1;
bb.mul_assign(e, &other.c1);
let mut o = other.c0;
o.add_assign(e, &other.c1);
self.c1.add_assign(e, &self.c0);
self.c1.mul_assign(e, &o);
self.c1.sub_assign(e, &aa);
self.c1.sub_assign(e, &bb);
self.c0 = bb;
self.c0.mul_by_nonresidue(e);
self.c0.add_assign(e, &aa);
}
fn inverse(&self, e: &Bls381) -> Option<Self> {
let mut c0s = self.c0;
c0s.square(e);
let mut c1s = self.c1;
c1s.square(e);
c1s.mul_by_nonresidue(e);
c0s.sub_assign(e, &c1s);
c0s.inverse(e).map(|t| {
let mut tmp = Fq12 {
c0: t,
c1: t
};
tmp.c0.mul_assign(e, &self.c0);
tmp.c1.mul_assign(e, &self.c1);
tmp.c1.negate(e);
tmp
})
}
}

156
src/curves/bls381/fq2.rs Normal file

@ -0,0 +1,156 @@
use super::{Bls381, Fq};
use rand;
use super::{Field, SqrtField};
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Fq2 {
pub c0: Fq,
pub c1: Fq
}
impl Fq2 {
pub fn mul_by_nonresidue(&mut self, e: &Bls381) {
let t0 = self.c0;
self.c0.sub_assign(e, &self.c1);
self.c1.add_assign(e, &t0);
}
}
impl SqrtField<Bls381> for Fq2 {
fn sqrt(&self, engine: &Bls381) -> Option<Self> {
// Algorithm 9, https://eprint.iacr.org/2012/685.pdf
if self.is_zero() {
return Some(Self::zero());
} else {
let mut a1 = self.pow(engine, &engine.fqparams.modulus_minus_3_over_4);
let mut alpha = a1;
alpha.square(engine);
alpha.mul_assign(engine, self);
let mut a0 = alpha.pow(engine, &engine.fqparams.modulus);
a0.mul_assign(engine, &alpha);
let mut neg1 = Self::one(engine);
neg1.negate(engine);
if a0 == neg1 {
None
} else {
a1.mul_assign(engine, self);
if alpha == neg1 {
a1.mul_assign(engine, &Fq2{c0: Fq::zero(), c1: Fq::one(engine)});
} else {
alpha.add_assign(engine, &Fq2::one(engine));
alpha = alpha.pow(engine, &engine.fqparams.modulus_minus_1_over_2);
a1.mul_assign(engine, &alpha);
}
Some(a1)
}
}
}
}
impl Field<Bls381> for Fq2
{
fn zero() -> Self {
Fq2 {
c0: Fq::zero(),
c1: Fq::zero()
}
}
fn one(engine: &Bls381) -> Self {
Fq2 {
c0: Fq::one(engine),
c1: Fq::zero()
}
}
fn random<R: rand::Rng>(engine: &Bls381, rng: &mut R) -> Self {
Fq2 {
c0: Fq::random(engine, rng),
c1: Fq::random(engine, rng)
}
}
fn is_zero(&self) -> bool {
self.c0.is_zero() && self.c1.is_zero()
}
fn double(&mut self, engine: &Bls381) {
self.c0.double(engine);
self.c1.double(engine);
}
fn negate(&mut self, engine: &Bls381) {
self.c0.negate(engine);
self.c1.negate(engine);
}
fn add_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.add_assign(engine, &other.c0);
self.c1.add_assign(engine, &other.c1);
}
fn sub_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.sub_assign(engine, &other.c0);
self.c1.sub_assign(engine, &other.c1);
}
fn frobenius_map(&mut self, e: &Bls381, power: usize)
{
self.c1.mul_assign(e, &e.frobenius_coeff_fq2[power % 2]);
}
fn square(&mut self, engine: &Bls381) {
let mut ab = self.c0;
ab.mul_assign(engine, &self.c1);
let mut c0c1 = self.c0;
c0c1.add_assign(engine, &self.c1);
let mut c0 = self.c1;
c0.negate(engine);
c0.add_assign(engine, &self.c0);
c0.mul_assign(engine, &c0c1);
c0.sub_assign(engine, &ab);
self.c1 = ab;
self.c1.add_assign(engine, &ab);
c0.add_assign(engine, &ab);
self.c0 = c0;
}
fn mul_assign(&mut self, engine: &Bls381, other: &Self) {
let mut aa = self.c0;
aa.mul_assign(engine, &other.c0);
let mut bb = self.c1;
bb.mul_assign(engine, &other.c1);
let mut o = other.c0;
o.add_assign(engine, &other.c1);
self.c1.add_assign(engine, &self.c0);
self.c1.mul_assign(engine, &o);
self.c1.sub_assign(engine, &aa);
self.c1.sub_assign(engine, &bb);
self.c0 = aa;
self.c0.sub_assign(engine, &bb);
}
fn inverse(&self, engine: &Bls381) -> Option<Self> {
let mut t1 = self.c1;
t1.square(engine);
let mut t0 = self.c0;
t0.square(engine);
t0.add_assign(engine, &t1);
t0.inverse(engine).map(|t| {
let mut tmp = Fq2 {
c0: self.c0,
c1: self.c1
};
tmp.c0.mul_assign(engine, &t);
tmp.c1.mul_assign(engine, &t);
tmp.c1.negate(engine);
tmp
})
}
}

295
src/curves/bls381/fq6.rs Normal file

@ -0,0 +1,295 @@
use super::{Bls381, Fq2};
use rand;
use super::Field;
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Fq6 {
pub c0: Fq2,
pub c1: Fq2,
pub c2: Fq2
}
impl Fq6 {
pub fn mul_by_nonresidue(&mut self, e: &Bls381) {
use std::mem::swap;
swap(&mut self.c0, &mut self.c1);
swap(&mut self.c0, &mut self.c2);
self.c0.mul_by_nonresidue(e);
}
pub fn mul_by_1(&mut self, e: &Bls381, c1: &Fq2)
{
let mut b_b = self.c1;
b_b.mul_assign(e, c1);
let mut t1 = *c1;
{
let mut tmp = self.c1;
tmp.add_assign(e, &self.c2);
t1.mul_assign(e, &tmp);
t1.sub_assign(e, &b_b);
t1.mul_by_nonresidue(e);
}
let mut t2 = *c1;
{
let mut tmp = self.c0;
tmp.add_assign(e, &self.c1);
t2.mul_assign(e, &tmp);
t2.sub_assign(e, &b_b);
}
self.c0 = t1;
self.c1 = t2;
self.c2 = b_b;
}
pub fn mul_by_01(&mut self, e: &Bls381, c0: &Fq2, c1: &Fq2)
{
let mut a_a = self.c0;
let mut b_b = self.c1;
a_a.mul_assign(e, c0);
b_b.mul_assign(e, c1);
let mut t1 = *c1;
{
let mut tmp = self.c1;
tmp.add_assign(e, &self.c2);
t1.mul_assign(e, &tmp);
t1.sub_assign(e, &b_b);
t1.mul_by_nonresidue(e);
t1.add_assign(e, &a_a);
}
let mut t3 = *c0;
{
let mut tmp = self.c0;
tmp.add_assign(e, &self.c2);
t3.mul_assign(e, &tmp);
t3.sub_assign(e, &a_a);
t3.add_assign(e, &b_b);
}
let mut t2 = *c0;
t2.add_assign(e, c1);
{
let mut tmp = self.c0;
tmp.add_assign(e, &self.c1);
t2.mul_assign(e, &tmp);
t2.sub_assign(e, &a_a);
t2.sub_assign(e, &b_b);
}
self.c0 = t1;
self.c1 = t2;
self.c2 = t3;
}
}
impl Field<Bls381> for Fq6
{
fn zero() -> Self {
Fq6 {
c0: Fq2::zero(),
c1: Fq2::zero(),
c2: Fq2::zero()
}
}
fn one(engine: &Bls381) -> Self {
Fq6 {
c0: Fq2::one(engine),
c1: Fq2::zero(),
c2: Fq2::zero()
}
}
fn random<R: rand::Rng>(engine: &Bls381, rng: &mut R) -> Self {
Fq6 {
c0: Fq2::random(engine, rng),
c1: Fq2::random(engine, rng),
c2: Fq2::random(engine, rng)
}
}
fn is_zero(&self) -> bool {
self.c0.is_zero() && self.c1.is_zero() && self.c2.is_zero()
}
fn double(&mut self, engine: &Bls381) {
self.c0.double(engine);
self.c1.double(engine);
self.c2.double(engine);
}
fn negate(&mut self, engine: &Bls381) {
self.c0.negate(engine);
self.c1.negate(engine);
self.c2.negate(engine);
}
fn add_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.add_assign(engine, &other.c0);
self.c1.add_assign(engine, &other.c1);
self.c2.add_assign(engine, &other.c2);
}
fn sub_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.sub_assign(engine, &other.c0);
self.c1.sub_assign(engine, &other.c1);
self.c2.sub_assign(engine, &other.c2);
}
fn frobenius_map(&mut self, e: &Bls381, power: usize)
{
self.c0.frobenius_map(e, power);
self.c1.frobenius_map(e, power);
self.c2.frobenius_map(e, power);
self.c1.mul_assign(e, &e.frobenius_coeff_fq6_c1[power % 6]);
self.c2.mul_assign(e, &e.frobenius_coeff_fq6_c2[power % 6]);
}
fn square(&mut self, e: &Bls381) {
let mut s0 = self.c0;
s0.square(e);
let mut ab = self.c0;
ab.mul_assign(e, &self.c1);
let mut s1 = ab;
s1.double(e);
let mut s2 = self.c0;
s2.sub_assign(e, &self.c1);
s2.add_assign(e, &self.c2);
s2.square(e);
let mut bc = self.c1;
bc.mul_assign(e, &self.c2);
let mut s3 = bc;
s3.double(e);
let mut s4 = self.c2;
s4.square(e);
self.c0 = s3;
self.c0.mul_by_nonresidue(e);
self.c0.add_assign(e, &s0);
self.c1 = s4;
self.c1.mul_by_nonresidue(e);
self.c1.add_assign(e, &s1);
self.c2 = s1;
self.c2.add_assign(e, &s2);
self.c2.add_assign(e, &s3);
self.c2.sub_assign(e, &s0);
self.c2.sub_assign(e, &s4);
}
fn mul_assign(&mut self, e: &Bls381, other: &Self) {
let mut a_a = self.c0;
let mut b_b = self.c1;
let mut c_c = self.c2;
a_a.mul_assign(e, &other.c0);
b_b.mul_assign(e, &other.c1);
c_c.mul_assign(e, &other.c2);
let mut t1 = other.c1;
t1.add_assign(e, &other.c2);
{
let mut tmp = self.c1;
tmp.add_assign(e, &self.c2);
t1.mul_assign(e, &tmp);
t1.sub_assign(e, &b_b);
t1.sub_assign(e, &c_c);
t1.mul_by_nonresidue(e);
t1.add_assign(e, &a_a);
}
let mut t3 = other.c0;
t3.add_assign(e, &other.c2);
{
let mut tmp = self.c0;
tmp.add_assign(e, &self.c2);
t3.mul_assign(e, &tmp);
t3.sub_assign(e, &a_a);
t3.add_assign(e, &b_b);
t3.sub_assign(e, &c_c);
}
let mut t2 = other.c0;
t2.add_assign(e, &other.c1);
{
let mut tmp = self.c0;
tmp.add_assign(e, &self.c1);
t2.mul_assign(e, &tmp);
t2.sub_assign(e, &a_a);
t2.sub_assign(e, &b_b);
c_c.mul_by_nonresidue(e);
t2.add_assign(e, &c_c);
}
self.c0 = t1;
self.c1 = t2;
self.c2 = t3;
}
fn inverse(&self, e: &Bls381) -> Option<Self> {
let mut c0 = self.c2;
c0.mul_by_nonresidue(e);
c0.mul_assign(e, &self.c1);
c0.negate(e);
{
let mut c0s = self.c0;
c0s.square(e);
c0.add_assign(e, &c0s);
}
let mut c1 = self.c2;
c1.square(e);
c1.mul_by_nonresidue(e);
{
let mut c01 = self.c0;
c01.mul_assign(e, &self.c1);
c1.sub_assign(e, &c01);
}
let mut c2 = self.c1;
c2.square(e);
{
let mut c02 = self.c0;
c02.mul_assign(e, &self.c2);
c2.sub_assign(e, &c02);
}
let mut tmp1 = self.c2;
tmp1.mul_assign(e, &c1);
let mut tmp2 = self.c1;
tmp2.mul_assign(e, &c2);
tmp1.add_assign(e, &tmp2);
tmp1.mul_by_nonresidue(e);
tmp2 = self.c0;
tmp2.mul_assign(e, &c0);
tmp1.add_assign(e, &tmp2);
match tmp1.inverse(e) {
Some(t) => {
let mut tmp = Fq6 {
c0: t,
c1: t,
c2: t
};
tmp.c0.mul_assign(e, &c0);
tmp.c1.mul_assign(e, &c1);
tmp.c2.mul_assign(e, &c2);
Some(tmp)
},
None => None
}
}
}

1253
src/curves/bls381/mod.rs Normal file

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

@ -0,0 +1,41 @@
extern crate bincode;
use curves::*;
use super::*;
fn test_vectors<E: Engine, G: Group<E>>(e: &E, expected: &[u8]) {
let mut bytes = vec![];
let mut acc = G::zero(e);
let mut expected_reader = expected;
for _ in 0..10000 {
{
let acc = acc.to_affine(e);
let exp: <G::Affine as GroupAffine<E, G>>::Uncompressed =
bincode::deserialize_from(&mut expected_reader, bincode::SizeLimit::Infinite).unwrap();
assert!(acc == exp.to_affine(e).unwrap());
let acc = acc.to_uncompressed(e);
bincode::serialize_into(&mut bytes, &acc, bincode::SizeLimit::Infinite).unwrap();
}
acc.double(e);
acc.add_assign(e, &G::one(e));
}
assert_eq!(&bytes[..], expected);
}
#[test]
fn g1_serialization_test_vectors() {
let engine = Bls381::new();
test_vectors::<Bls381, G1>(&engine, include_bytes!("g1_serialized.bin"));
}
#[test]
fn g2_serialization_test_vectors() {
let engine = Bls381::new();
test_vectors::<Bls381, G2>(&engine, include_bytes!("g2_serialized.bin"));
}

294
src/curves/mod.rs Normal file

@ -0,0 +1,294 @@
use rand;
use std::fmt;
use serde::{Serialize, Deserialize};
pub mod bls381;
pub trait Engine: Sized
{
type Fq: PrimeField<Self>;
type Fr: SnarkField<Self>;
type Fqe: SqrtField<Self>;
type Fqk: Field<Self>;
type G1: Group<Self> + Convert<<Self::G1 as Group<Self>>::Affine, Self>;
type G2: Group<Self> + Convert<<Self::G2 as Group<Self>>::Affine, Self>;
fn new() -> Self;
fn pairing<G1, G2>(&self, p: &G1, q: &G2) -> Self::Fqk
where G1: Convert<<Self::G1 as Group<Self>>::Affine, Self>,
G2: Convert<<Self::G2 as Group<Self>>::Affine, Self>
{
self.final_exponentiation(&self.miller_loop(
[(
&(*p.convert(self)).borrow().prepare(self),
&(*q.convert(self)).borrow().prepare(self)
)].into_iter()
))
}
fn miller_loop<'a, I>(&self, I) -> Self::Fqk
where I: IntoIterator<Item=&'a (
&'a <Self::G1 as Group<Self>>::Prepared,
&'a <Self::G2 as Group<Self>>::Prepared
)>;
fn final_exponentiation(&self, &Self::Fqk) -> Self::Fqk;
fn multiexp<G: Group<Self>>(&self, &[G::Affine], &[Self::Fr]) -> G;
fn batch_baseexp<G: Group<Self>>(&self, base: &G, scalars: &[Self::Fr]) -> Vec<G::Affine>;
}
pub trait Group<E: Engine>: Sized +
Copy +
Clone +
Send +
Sync +
fmt::Debug +
'static
{
type Affine: GroupAffine<E, Self>;
type Prepared: Clone + Send + Sync + 'static;
fn zero(&E) -> Self;
fn one(&E) -> Self;
fn random<R: rand::Rng>(&E, &mut R) -> Self;
fn is_zero(&self) -> bool;
fn is_equal(&self, &E, other: &Self) -> bool;
fn to_affine(&self, &E) -> Self::Affine;
fn prepare(&self, &E) -> Self::Prepared;
fn double(&mut self, &E);
fn negate(&mut self, engine: &E);
fn add_assign(&mut self, &E, other: &Self);
fn sub_assign(&mut self, &E, other: &Self);
fn add_assign_mixed(&mut self, &E, other: &Self::Affine);
fn mul_assign<S: Convert<[u64], E>>(&mut self, &E, other: &S);
fn optimal_window(&E, scalar_bits: usize) -> Option<usize>;
}
pub trait GroupAffine<E: Engine, G: Group<E>>: Copy +
Clone +
Sized +
Send +
Sync +
fmt::Debug +
PartialEq +
Eq +
'static
{
type Uncompressed: GroupRepresentation<E, G>;
fn to_jacobian(&self, &E) -> G;
fn prepare(self, &E) -> G::Prepared;
fn is_zero(&self) -> bool;
fn mul<S: Convert<[u64], E>>(&self, &E, other: &S) -> G;
fn negate(&mut self, &E);
/// Returns true iff the point is on the curve and in the correct
/// subgroup. This is guaranteed to return true unless the user
/// invokes `to_affine_unchecked`.
fn is_valid(&self, &E) -> bool;
/// Produces an "uncompressed" representation of the curve point according
/// to IEEE standards.
fn to_uncompressed(&self, &E) -> Self::Uncompressed;
}
pub trait GroupRepresentation<E: Engine, G: Group<E>>: Serialize + Deserialize
{
/// If the point representation is valid (lies on the curve, correct
/// subgroup) this function will return it.
fn to_affine(&self, e: &E) -> Result<G::Affine, ()> {
let p = try!(self.to_affine_unchecked(e));
if p.is_valid(e) {
Ok(p)
} else {
Err(())
}
}
/// Returns the point under the assumption that it is valid. Undefined
/// behavior if `to_affine` would have rejected the point.
fn to_affine_unchecked(&self, &E) -> Result<G::Affine, ()>;
}
pub trait Field<E: Engine>: Sized +
Eq +
PartialEq +
Copy +
Clone +
Send +
Sync +
fmt::Debug +
'static
{
fn zero() -> Self;
fn one(&E) -> Self;
fn random<R: rand::Rng>(&E, &mut R) -> Self;
fn is_zero(&self) -> bool;
fn square(&mut self, engine: &E);
fn double(&mut self, engine: &E);
fn negate(&mut self, &E);
fn add_assign(&mut self, &E, other: &Self);
fn sub_assign(&mut self, &E, other: &Self);
fn mul_assign(&mut self, &E, other: &Self);
fn inverse(&self, &E) -> Option<Self>;
fn frobenius_map(&mut self, &E, power: usize);
fn pow<S: Convert<[u64], E>>(&self, engine: &E, exp: &S) -> Self
{
let mut res = Self::one(engine);
for i in BitIterator::from((*exp.convert(engine)).borrow()) {
res.square(engine);
if i {
res.mul_assign(engine, self);
}
}
res
}
}
pub trait SqrtField<E: Engine>: Field<E>
{
/// Returns the square root of the field element, if it is
/// quadratic residue.
fn sqrt(&self, engine: &E) -> Option<Self>;
}
pub trait PrimeField<E: Engine>: SqrtField<E> + Convert<[u64], E>
{
/// Little endian representation of a field element.
type Repr: Convert<[u64], E>;
fn from_u64(&E, u64) -> Self;
fn from_str(&E, s: &str) -> Result<Self, ()>;
fn from_repr(&E, Self::Repr) -> Result<Self, ()>;
fn into_repr(&self, &E) -> Self::Repr;
/// Returns an interator over all bits, most significant bit first.
fn bits(&self, &E) -> BitIterator<Self::Repr>;
/// Returns the field characteristic; the modulus.
fn char(&E) -> Self::Repr;
/// Returns how many bits are needed to represent an element of this
/// field.
fn num_bits(&E) -> usize;
/// Returns how many bits of information can be reliably stored in the
/// field element.
fn capacity(&E) -> usize;
}
pub trait SnarkField<E: Engine>: PrimeField<E>
{
fn s(&E) -> u64;
fn multiplicative_generator(&E) -> Self;
fn root_of_unity(&E) -> Self;
}
pub struct BitIterator<T> {
t: T,
n: usize
}
impl<T: AsRef<[u64]>> Iterator for BitIterator<T> {
type Item = bool;
fn next(&mut self) -> Option<bool> {
if self.n == 0 {
None
} else {
self.n -= 1;
let part = self.n / 64;
let bit = self.n - (64 * part);
Some(self.t.as_ref()[part] & (1 << bit) > 0)
}
}
}
impl<'a> From<&'a [u64]> for BitIterator<&'a [u64]>
{
fn from(v: &'a [u64]) -> Self {
assert!(v.len() < 100);
BitIterator {
t: v,
n: v.len() * 64
}
}
}
use std::ops::Deref;
use std::borrow::Borrow;
pub enum Cow<'a, T: 'a> {
Owned(T),
Borrowed(&'a T)
}
impl<'a, T: 'a> Deref for Cow<'a, T> {
type Target = T;
fn deref(&self) -> &T {
match *self {
Cow::Owned(ref v) => v,
Cow::Borrowed(v) => v
}
}
}
pub trait Convert<T: ?Sized, E> {
type Target: Borrow<T>;
fn convert(&self, &E) -> Cow<Self::Target>;
}
impl<T, E> Convert<T, E> for T {
type Target = T;
fn convert(&self, _: &E) -> Cow<T> {
Cow::Borrowed(self)
}
}
macro_rules! bit_iter_impl(
($n:expr) => {
impl From<[u64; $n]> for BitIterator<[u64; $n]> {
fn from(v: [u64; $n]) -> Self {
BitIterator {
t: v,
n: $n * 64
}
}
}
impl<E> Convert<[u64], E> for [u64; $n] {
type Target = [u64; $n];
fn convert(&self, _: &E) -> Cow<[u64; $n]> {
Cow::Borrowed(self)
}
}
};
);
bit_iter_impl!(1);
bit_iter_impl!(2);
bit_iter_impl!(3);
bit_iter_impl!(4);
bit_iter_impl!(5);
bit_iter_impl!(6);
#[cfg(test)]
mod tests;
#[test]
fn bls381_test_suite() {
tests::test_engine::<bls381::Bls381>();
}

219
src/curves/tests/fields.rs Normal file

@ -0,0 +1,219 @@
use rand::{self, Rng};
use super::super::{Engine, Field, SqrtField, PrimeField};
fn inversion_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
let mut a = F::one(e);
for _ in 0..10000 {
let mut b = a.inverse(e).unwrap();
b.mul_assign(e, &a);
assert_eq!(b, F::one(e));
a.add_assign(e, &F::one(e));
}
a = F::one(e);
a.negate(e);
for _ in 0..10000 {
let mut b = a.inverse(e).unwrap();
b.mul_assign(e, &a);
assert_eq!(b, F::one(e));
a.sub_assign(e, &F::one(e));
}
a = F::zero();
assert!(a.inverse(e).is_none());
for _ in 0..10000 {
let r = F::random(e, rng);
assert!(!r.is_zero());
let mut rinv = r.inverse(e).unwrap();
rinv.mul_assign(e, &r);
assert_eq!(rinv, F::one(e));
}
}
fn expansion_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
for _ in 0..100 {
let a = F::random(e, rng);
let b = F::random(e, rng);
let c = F::random(e, rng);
let d = F::random(e, rng);
let lhs;
{
let mut t0 = a;
t0.add_assign(e, &b);
let mut t1 = c;
t1.add_assign(e, &d);
t0.mul_assign(e, &t1);
lhs = t0;
}
let rhs;
{
let mut t0 = a;
t0.mul_assign(e, &c);
let mut t1 = b;
t1.mul_assign(e, &c);
let mut t2 = a;
t2.mul_assign(e, &d);
let mut t3 = b;
t3.mul_assign(e, &d);
t0.add_assign(e, &t1);
t0.add_assign(e, &t2);
t0.add_assign(e, &t3);
rhs = t0;
}
assert_eq!(lhs, rhs);
}
}
fn squaring_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
for _ in 0..100 {
let mut a = F::random(e, rng);
let mut b = a;
b.mul_assign(e, &a);
a.square(e);
assert_eq!(a, b);
}
let mut cur = F::zero();
for _ in 0..100 {
let mut a = cur;
a.square(e);
let mut b = cur;
b.mul_assign(e, &cur);
assert_eq!(a, b);
cur.add_assign(e, &F::one(e));
}
}
fn operation_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
{
let mut acc = F::zero();
for _ in 0..1000 {
let mut a = acc;
a.negate(e);
a.add_assign(e, &acc);
assert_eq!(a, F::zero());
acc.add_assign(e, &F::one(e));
}
}
{
for _ in 0..1000 {
let mut a = F::random(e, rng);
let mut at = a;
let mut b = F::random(e, rng);
a.sub_assign(e, &b);
b.negate(e);
at.add_assign(e, &b);
assert_eq!(a, at);
}
}
}
pub fn test_field<E: Engine, F: Field<E>>(e: &E) {
let rng = &mut rand::thread_rng();
inversion_tests::<E, F, _>(e, rng);
expansion_tests::<E, F, _>(e, rng);
squaring_tests::<E, F, _>(e, rng);
operation_tests::<E, F, _>(e, rng);
}
pub fn test_sqrt_field<E: Engine, F: SqrtField<E>>(e: &E) {
const SAMPLES: isize = 10000;
{
let mut acc = F::one(e);
for _ in 0..SAMPLES {
let mut b = acc;
b.square(e);
let mut c = b.sqrt(e).unwrap();
if c != acc {
c.negate(e);
}
assert_eq!(acc, c);
acc.add_assign(e, &F::one(e));
}
}
{
let mut acc = F::one(e);
for _ in 0..SAMPLES {
match acc.sqrt(e) {
Some(mut a) => {
a.square(e);
assert_eq!(a, acc);
},
None => {}
}
acc.add_assign(e, &F::one(e));
}
}
{
let rng = &mut rand::thread_rng();
for _ in 0..SAMPLES {
let a = F::random(e, rng);
let mut b = a;
b.square(e);
let mut c = b.sqrt(e).unwrap();
if c != a {
c.negate(e);
}
assert_eq!(a, c);
}
}
{
let rng = &mut rand::thread_rng();
let mut qr: isize = 0;
let mut nqr: isize = 0;
for _ in 0..SAMPLES {
let a = F::random(e, rng);
match a.sqrt(e) {
Some(mut b) => {
qr += 1;
b.square(e);
assert_eq!(a, b);
},
None => {
nqr += 1;
}
}
}
assert!((qr - nqr < (SAMPLES / 20)) || (qr - nqr > -(SAMPLES / 20)));
}
}
pub fn test_prime_field<E: Engine, F: PrimeField<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..100 {
let a = F::random(e, rng);
let b = F::random(e, rng);
let mut c = a;
c.mul_assign(e, &b);
let a = a.into_repr(e);
let b = b.into_repr(e);
let expected_a = F::from_repr(e, a).unwrap();
let expected_b = F::from_repr(e, b).unwrap();
let mut expected_c = expected_a;
expected_c.mul_assign(e, &expected_b);
assert_eq!(c, expected_c);
}
}

277
src/curves/tests/groups.rs Normal file

@ -0,0 +1,277 @@
use rand;
use super::super::{Engine, Field, PrimeField, Group, GroupAffine};
fn random_test_mixed_addition<E: Engine, G: Group<E>>(e: &E)
{
let rng = &mut rand::thread_rng();
// affine is zero
{
let a = G::zero(e).to_affine(e);
let mut b = G::random(e, rng);
let bcpy = b;
b.add_assign_mixed(e, &a);
assert!(bcpy.is_equal(e, &b));
assert_eq!(bcpy.to_affine(e), b.to_affine(e));
}
// self is zero
{
let a = G::random(e, rng).to_affine(e);
let mut b = G::zero(e);
let acpy = a.to_jacobian(e);
b.add_assign_mixed(e, &a);
assert!(acpy.is_equal(e, &b));
assert_eq!(acpy.to_affine(e), b.to_affine(e));
}
// both are zero
{
let a = G::zero(e).to_affine(e);
let mut b = G::zero(e);
let acpy = a.to_jacobian(e);
b.add_assign_mixed(e, &a);
assert!(acpy.is_equal(e, &b));
assert_eq!(acpy.to_affine(e), b.to_affine(e));
}
// one is negative of the other
{
let a = G::random(e, rng);
let mut b = a;
b.negate(e);
let a = a.to_affine(e);
b.add_assign_mixed(e, &a);
assert!(b.is_zero());
assert_eq!(b.to_affine(e), G::zero(e).to_affine(e));
}
// doubling case
{
let a = G::random(e, rng);
let b = a.to_affine(e);
let mut acpy = a;
acpy.add_assign_mixed(e, &b);
let mut t = a;
t.double(e);
assert!(acpy.is_equal(e, &t));
}
for _ in 0..100 {
let mut x = G::random(e, rng);
let mut y = x;
let b = G::random(e, rng);
let baffine = b.to_affine(e);
x.add_assign(e, &b);
y.add_assign_mixed(e, &baffine);
assert!(x.is_equal(e, &y));
}
}
fn random_test_addition<E: Engine, G: Group<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..50 {
let r1 = G::random(e, rng);
let r2 = G::random(e, rng);
let r3 = G::random(e, rng);
{
let mut tmp1 = r1;
tmp1.add_assign(e, &r2);
tmp1.add_assign(e, &r3);
let mut tmp2 = r2;
tmp2.add_assign(e, &r3);
tmp2.add_assign(e, &r1);
assert!(tmp1.is_equal(e, &tmp2));
}
{
let mut tmp = r1;
tmp.add_assign(e, &r2);
tmp.add_assign(e, &r3);
tmp.sub_assign(e, &r1);
tmp.sub_assign(e, &r2);
tmp.sub_assign(e, &r3);
assert!(tmp.is_zero());
}
}
}
fn random_test_doubling<E: Engine, G: Group<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..50 {
let r1 = G::random(e, rng);
let r2 = G::random(e, rng);
let ti = E::Fr::from_str(e, "2").unwrap().inverse(e).unwrap();
{
let mut tmp_1 = r1;
tmp_1.add_assign(e, &r2);
tmp_1.add_assign(e, &r1);
let mut tmp_2 = r1;
tmp_2.double(e);
tmp_2.add_assign(e, &r2);
assert!(tmp_1.is_equal(e, &tmp_2));
}
{
let mut tmp = r1;
tmp.double(e);
tmp.mul_assign(e, &ti);
assert!(tmp.is_equal(e, &r1));
}
}
}
fn random_test_dh<E: Engine, G: Group<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..50 {
let alice_sk = E::Fr::random(e, rng);
let bob_sk = E::Fr::random(e, rng);
let mut alice_pk = G::one(e);
alice_pk.mul_assign(e, &alice_sk);
let mut bob_pk = G::one(e);
bob_pk.mul_assign(e, &bob_sk);
let mut alice_shared = bob_pk;
alice_shared.mul_assign(e, &alice_sk);
let mut bob_shared = alice_pk;
bob_shared.mul_assign(e, &bob_sk);
assert!(alice_shared.is_equal(e, &bob_shared));
}
}
fn random_mixed_addition<E: Engine, G: Group<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..50 {
let a = G::random(e, rng);
let mut res = a;
res.double(e);
let affine = a.to_affine(e);
let mut jacobian = affine.to_jacobian(e);
jacobian.double(e);
assert!(jacobian.is_equal(e, &res));
}
}
fn random_test_equality<E: Engine, G: Group<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..50 {
let begin = G::random(e, rng);
let mut acc = begin;
let a = E::Fr::random(e, rng);
let b = G::random(e, rng);
let c = E::Fr::random(e, rng);
let d = G::random(e, rng);
for _ in 0..10 {
acc.mul_assign(e, &a);
acc.negate(e);
acc.add_assign(e, &b);
acc.mul_assign(e, &c);
acc.negate(e);
acc.sub_assign(e, &d);
acc.double(e);
}
assert!(!acc.is_equal(e, &begin));
let ai = a.inverse(e).unwrap();
let ci = c.inverse(e).unwrap();
let ti = E::Fr::from_str(e, "2").unwrap().inverse(e).unwrap();
for _ in 0..10 {
acc.mul_assign(e, &ti);
acc.add_assign(e, &d);
acc.negate(e);
acc.mul_assign(e, &ci);
acc.sub_assign(e, &b);
acc.negate(e);
acc.mul_assign(e, &ai);
}
assert!(acc.is_equal(e, &begin));
}
}
pub fn test_group<E: Engine, G: Group<E>>(e: &E) {
{
let rng = &mut rand::thread_rng();
let mut g = G::random(e, rng);
let order = <E::Fr as PrimeField<E>>::char(e);
g.mul_assign(e, &order);
assert!(g.is_zero());
}
{
let rng = &mut rand::thread_rng();
let mut neg1 = E::Fr::one(e);
neg1.negate(e);
for _ in 0..1000 {
let orig = G::random(e, rng);
let mut a = orig;
a.mul_assign(e, &neg1);
assert!(!a.is_zero());
a.add_assign(e, &orig);
assert!(a.is_zero());
}
}
{
let mut o = G::one(e);
o.sub_assign(e, &G::one(e));
assert!(o.is_zero());
}
{
let mut o = G::one(e);
o.add_assign(e, &G::one(e));
let mut r = G::one(e);
r.mul_assign(e, &E::Fr::from_str(e, "2").unwrap());
assert!(o.is_equal(e, &r));
}
{
let mut z = G::zero(e);
assert!(z.is_zero());
z.double(e);
assert!(z.is_zero());
let zaffine = z.to_affine(e);
let zjacobian = zaffine.to_jacobian(e);
assert!(zjacobian.is_zero());
}
random_test_equality::<E, G>(e);
random_test_dh::<E, G>(e);
random_test_doubling::<E, G>(e);
random_test_addition::<E, G>(e);
random_mixed_addition::<E, G>(e);
random_test_mixed_addition::<E, G>(e);
}

136
src/curves/tests/mod.rs Normal file

@ -0,0 +1,136 @@
use super::{Engine, Group, GroupAffine, Field, PrimeField};
use rand;
mod fields;
mod groups;
fn test_multiexp<E: Engine, G: Group<E>>(e: &E) {
fn naiveexp<E: Engine, G: Group<E>>(e: &E, g: &[G::Affine], s: &[E::Fr]) -> G
{
assert!(g.len() == s.len());
let mut expected = G::zero(e);
for (g, s) in g.iter().zip(s.iter()) {
expected.add_assign(e, &g.mul(e, s));
}
expected
}
{
let rng = &mut rand::thread_rng();
let g: Vec<G::Affine> = (0..1000).map(|_| G::random(e, rng).to_affine(e)).collect();
let s: Vec<E::Fr> = (0..1000).map(|_| E::Fr::random(e, rng)).collect();
let naive = naiveexp::<E, G>(e, &g, &s);
let multi = e.multiexp::<G>(&g, &s);
assert!(naive.is_equal(e, &multi));
assert!(multi.is_equal(e, &naive));
}
{
let rng = &mut rand::thread_rng();
let g: Vec<G::Affine> = (0..2).map(|_| G::random(e, rng).to_affine(e)).collect();
let s = vec![E::Fr::from_str(e, "3435973836800000000000000000000000").unwrap(), E::Fr::from_str(e, "3435973836700000000000000000000000").unwrap()];
let naive = naiveexp::<E, G>(e, &g, &s);
let multi = e.multiexp::<G>(&g, &s);
assert!(naive.is_equal(e, &multi));
assert!(multi.is_equal(e, &naive));
}
}
fn test_bilinearity<E: Engine>(e: &E) {
let rng = &mut rand::thread_rng();
let a = E::G1::random(e, rng);
let b = E::G2::random(e, rng);
let s = E::Fr::random(e, rng);
let mut a_s = a;
a_s.mul_assign(e, &s);
let mut b_s = b;
b_s.mul_assign(e, &s);
let test1 = e.pairing(&a_s, &b);
assert!(test1 != E::Fqk::one(e));
let test2 = e.pairing(&a, &b_s);
assert_eq!(test1, test2);
let mut test4 = e.pairing(&a, &b);
assert!(test4 != test1);
test4 = test4.pow(e, &s);
assert_eq!(test1, test4);
}
fn test_multimiller<E: Engine>(e: &E) {
let rng = &mut rand::thread_rng();
let a1 = E::G1::random(e, rng);
let a2 = E::G2::random(e, rng);
let b1 = E::G1::random(e, rng);
let b2 = E::G2::random(e, rng);
let mut p1 = e.pairing(&a1, &a2);
let p2 = e.pairing(&b1, &b2);
p1.mul_assign(e, &p2);
let mm = e.final_exponentiation(&e.miller_loop(
[
(&a1.prepare(e), &a2.prepare(e)),
(&b1.prepare(e), &b2.prepare(e))
].into_iter()
));
assert_eq!(p1, mm);
}
pub fn test_engine<E: Engine>() {
let engine = E::new();
fields::test_prime_field::<E, E::Fq>(&engine);
fields::test_prime_field::<E, E::Fr>(&engine);
fields::test_sqrt_field::<E, E::Fq>(&engine);
fields::test_sqrt_field::<E, E::Fr>(&engine);
fields::test_sqrt_field::<E, E::Fqe>(&engine);
fields::test_field::<E, E::Fq>(&engine);
fields::test_field::<E, E::Fr>(&engine);
fields::test_field::<E, E::Fqe>(&engine);
fields::test_field::<E, E::Fqk>(&engine);
groups::test_group::<E, E::G1>(&engine);
groups::test_group::<E, E::G2>(&engine);
test_bilinearity(&engine);
test_multimiller(&engine);
test_frobenius(&engine);
test_multiexp::<E, E::G1>(&engine);
test_multiexp::<E, E::G2>(&engine);
}
fn test_frobenius<E: Engine>(e: &E) {
let rng = &mut rand::thread_rng();
let modulus = E::Fq::char(e);
let a = E::Fqk::random(e, rng);
let mut acpy = a;
acpy.frobenius_map(e, 0);
assert_eq!(acpy, a);
let mut a_q = a.pow(e, &modulus);
for p in 1..12 {
acpy = a;
acpy.frobenius_map(e, p);
assert_eq!(acpy, a_q);
a_q = a_q.pow(e, &modulus);
}
}

@ -0,0 +1,8 @@
#![feature(i128_type)]
extern crate rand;
extern crate rayon;
extern crate byteorder;
extern crate serde;
pub mod curves;