In with the new.
This commit is contained in:
parent
c506c48c91
commit
2321ead995
@ -9,4 +9,10 @@ repository = "https://github.com/ebfull/bellman"
|
||||
version = "0.0.1"
|
||||
|
||||
[dependencies]
|
||||
rand = "0.3.15"
|
||||
rand = "0.3.*"
|
||||
rayon = "0.6.*"
|
||||
byteorder = "1.*"
|
||||
serde = "0.9.*"
|
||||
|
||||
[dev-dependencies.bincode]
|
||||
git = "https://github.com/TyOverby/bincode.git"
|
||||
|
@ -1,7 +1,3 @@
|
||||
# bellman [![Build status](https://api.travis-ci.org/ebfull/bellman.svg)](https://travis-ci.org/ebfull/bellman) [![Crates.io](https://img.shields.io/crates/v/bellman.svg)](https://crates.io/crates/bellman) #
|
||||
|
||||
This is a Rust language zk-SNARK crate. (You should not use this in production for anything yet.)
|
||||
|
||||
------
|
||||
|
||||
This is a research project being built for [Zcash](https://z.cash/).
|
||||
|
235
benches/curve.rs
Normal file
235
benches/curve.rs
Normal file
@ -0,0 +1,235 @@
|
||||
#![feature(test)]
|
||||
#![allow(unused_mut)]
|
||||
|
||||
extern crate rand;
|
||||
extern crate bellman;
|
||||
extern crate test;
|
||||
|
||||
use bellman::curves::*;
|
||||
use bellman::curves::bls381::*;
|
||||
|
||||
const SAMPLES: usize = 30;
|
||||
|
||||
macro_rules! benchmark(
|
||||
($name:ident, $engine:ident, $input:ident($rng:ident) = $pre:expr; $post:expr) => (
|
||||
#[bench]
|
||||
fn $name(b: &mut test::Bencher) {
|
||||
let $rng = &mut rand::thread_rng();
|
||||
let $engine = &Bls381::new();
|
||||
let $input: Vec<_> = (0..SAMPLES).map(|_| $pre).collect();
|
||||
|
||||
let mut c = 0;
|
||||
|
||||
b.iter(|| {
|
||||
c += 1;
|
||||
|
||||
let mut $input = $input[c % SAMPLES].clone();
|
||||
|
||||
$post
|
||||
})
|
||||
}
|
||||
)
|
||||
);
|
||||
|
||||
benchmark!(g1_multiexp, e,
|
||||
input(rng) = {
|
||||
let mut g = G1::random(e, rng);
|
||||
let mut a = G1::random(e, rng);
|
||||
(
|
||||
(0..1000).map(|_| {
|
||||
g.add_assign(e, &a);
|
||||
a.double(e);
|
||||
g.to_affine(e)
|
||||
}).collect::<Vec<_>>(),
|
||||
(0..1000).map(|_| Fr::random(e, rng)).collect::<Vec<_>>(),
|
||||
)
|
||||
};
|
||||
|
||||
e.multiexp::<G1>(&input.0, &input.1)
|
||||
);
|
||||
|
||||
benchmark!(g2_multiexp, e,
|
||||
input(rng) = {
|
||||
let mut g = G2::random(e, rng);
|
||||
let mut a = G2::random(e, rng);
|
||||
(
|
||||
(0..1000).map(|_| {
|
||||
g.add_assign(e, &a);
|
||||
a.double(e);
|
||||
g.to_affine(e)
|
||||
}).collect::<Vec<_>>(),
|
||||
(0..1000).map(|_| Fr::random(e, rng)).collect::<Vec<_>>(),
|
||||
)
|
||||
};
|
||||
|
||||
e.multiexp::<G2>(&input.0, &input.1)
|
||||
);
|
||||
|
||||
benchmark!(full_pairing, e,
|
||||
input(rng) = (G1::random(e, rng), G2::random(e, rng));
|
||||
|
||||
e.pairing(&input.0, &input.1)
|
||||
);
|
||||
|
||||
benchmark!(g1_pairing_preparation, e,
|
||||
input(rng) = G1::random(e, rng);
|
||||
|
||||
input.prepare(e)
|
||||
);
|
||||
|
||||
benchmark!(g2_pairing_preparation, e,
|
||||
input(rng) = G2::random(e, rng);
|
||||
|
||||
input.prepare(e)
|
||||
);
|
||||
|
||||
benchmark!(miller_loop, e,
|
||||
input(rng) = (G1::random(e, rng).prepare(e), G2::random(e, rng).prepare(e));
|
||||
|
||||
e.miller_loop([(&input.0, &input.1)].into_iter())
|
||||
);
|
||||
|
||||
benchmark!(double_miller_loop, e,
|
||||
input(rng) = (G1::random(e, rng).prepare(e), G2::random(e, rng).prepare(e), G1::random(e, rng).prepare(e), G2::random(e, rng).prepare(e));
|
||||
|
||||
e.miller_loop([
|
||||
(&input.0, &input.1),
|
||||
(&input.2, &input.3),
|
||||
].into_iter())
|
||||
);
|
||||
|
||||
benchmark!(final_exponentiation, e,
|
||||
input(rng) = e.miller_loop([
|
||||
(&G1::random(e, rng).prepare(e), &G2::random(e, rng).prepare(e)),
|
||||
].into_iter());
|
||||
|
||||
e.final_exponentiation(&input)
|
||||
);
|
||||
|
||||
macro_rules! group_tests(
|
||||
(
|
||||
$name:ident,
|
||||
$mul:ident,
|
||||
$mul_mixed:ident,
|
||||
$add:ident
|
||||
) => {
|
||||
benchmark!($mul, e,
|
||||
input(rng) = ($name::random(e, rng), Fr::random(e, rng));
|
||||
|
||||
{input.0.mul_assign(e, &input.1); input.0}
|
||||
);
|
||||
|
||||
benchmark!($mul_mixed, e,
|
||||
input(rng) = ($name::random(e, rng).to_affine(e), Fr::random(e, rng));
|
||||
|
||||
{input.0.mul(e, &input.1)}
|
||||
);
|
||||
|
||||
benchmark!($add, e,
|
||||
input(rng) = ($name::random(e, rng), $name::random(e, rng));
|
||||
|
||||
{input.0.add_assign(e, &input.1); input.0}
|
||||
);
|
||||
};
|
||||
);
|
||||
|
||||
macro_rules! field_tests(
|
||||
(
|
||||
@nosqrt,
|
||||
$name:ident,
|
||||
$mul:ident,
|
||||
$square:ident,
|
||||
$add:ident,
|
||||
$inverse:ident
|
||||
) => {
|
||||
benchmark!($mul, e,
|
||||
input(rng) = ($name::random(e, rng), $name::random(e, rng));
|
||||
|
||||
{input.0.mul_assign(e, &input.1); input.0}
|
||||
);
|
||||
|
||||
benchmark!($square, e,
|
||||
input(rng) = $name::random(e, rng);
|
||||
|
||||
{input.square(e); input}
|
||||
);
|
||||
|
||||
benchmark!($add, e,
|
||||
input(rng) = ($name::random(e, rng), $name::random(e, rng));
|
||||
|
||||
{input.0.add_assign(e, &input.1); input.0}
|
||||
);
|
||||
|
||||
benchmark!($inverse, e,
|
||||
input(rng) = $name::random(e, rng);
|
||||
|
||||
{input.inverse(e)}
|
||||
);
|
||||
};
|
||||
(
|
||||
$name:ident,
|
||||
$mul:ident,
|
||||
$square:ident,
|
||||
$add:ident,
|
||||
$inverse:ident,
|
||||
$sqrt:ident
|
||||
) => {
|
||||
field_tests!(@nosqrt, $name, $mul, $square, $add, $inverse);
|
||||
|
||||
benchmark!($sqrt, e,
|
||||
input(rng) = {let mut tmp = $name::random(e, rng); tmp.square(e); tmp};
|
||||
|
||||
{input.sqrt(e)}
|
||||
);
|
||||
};
|
||||
);
|
||||
|
||||
field_tests!(
|
||||
Fr,
|
||||
fr_multiplication,
|
||||
fr_squaring,
|
||||
fr_addition,
|
||||
fr_inverse,
|
||||
fr_sqrt
|
||||
);
|
||||
|
||||
field_tests!(
|
||||
Fq,
|
||||
fq_multiplication,
|
||||
fq_squaring,
|
||||
fq_addition,
|
||||
fq_inverse,
|
||||
fq_sqrt
|
||||
);
|
||||
|
||||
field_tests!(
|
||||
Fq2,
|
||||
fq2_multiplication,
|
||||
fq2_squaring,
|
||||
fq2_addition,
|
||||
fq2_inverse,
|
||||
fq2_sqrt
|
||||
);
|
||||
|
||||
field_tests!(
|
||||
@nosqrt,
|
||||
Fq12,
|
||||
fq12_multiplication,
|
||||
fq12_squaring,
|
||||
fq12_addition,
|
||||
fq12_inverse
|
||||
);
|
||||
|
||||
group_tests!(
|
||||
G1,
|
||||
g1_multiplication,
|
||||
g1_multiplication_mixed,
|
||||
g1_addition
|
||||
);
|
||||
|
||||
group_tests!(
|
||||
G2,
|
||||
g2_multiplication,
|
||||
g2_multiplication_mixed,
|
||||
g2_addition
|
||||
);
|
398
src/curves/bls381/ec.rs
Normal file
398
src/curves/bls381/ec.rs
Normal file
@ -0,0 +1,398 @@
|
||||
macro_rules! curve_impl {
|
||||
(
|
||||
$engine:ident,
|
||||
$name:ident,
|
||||
$name_affine:ident,
|
||||
$name_prepared:ident,
|
||||
$name_uncompressed:ident,
|
||||
$params_name:ident,
|
||||
$params_field:ident,
|
||||
$basefield:ident,
|
||||
$scalarfield:ident
|
||||
) => {
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||
pub struct $name_affine {
|
||||
x: $basefield,
|
||||
y: $basefield,
|
||||
infinity: bool
|
||||
}
|
||||
|
||||
#[repr(C)]
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct $name {
|
||||
x: $basefield,
|
||||
y: $basefield,
|
||||
z: $basefield
|
||||
}
|
||||
|
||||
struct $params_name {
|
||||
zero: $name,
|
||||
one: $name,
|
||||
coeff_b: $basefield,
|
||||
windows: Vec<usize>
|
||||
}
|
||||
|
||||
impl Convert<$name_affine, $engine> for $name {
|
||||
type Target = $name_affine;
|
||||
|
||||
fn convert(&self, engine: &$engine) -> Cow<$name_affine> {
|
||||
Cow::Owned(self.to_affine(engine))
|
||||
}
|
||||
}
|
||||
|
||||
impl GroupAffine<$engine, $name> for $name_affine {
|
||||
type Uncompressed = $name_uncompressed;
|
||||
|
||||
fn is_valid(&self, e: &$engine) -> bool {
|
||||
if self.is_zero() {
|
||||
true
|
||||
} else {
|
||||
// Check that the point is on the curve
|
||||
let mut y2 = self.y;
|
||||
y2.square(e);
|
||||
|
||||
let mut x3b = self.x;
|
||||
x3b.square(e);
|
||||
x3b.mul_assign(e, &self.x);
|
||||
x3b.add_assign(e, &e.$params_field.coeff_b);
|
||||
|
||||
if y2 == x3b {
|
||||
// Check that the point is in the correct subgroup
|
||||
if self.mul(e, &$scalarfield::char(e)).is_zero() {
|
||||
true
|
||||
} else {
|
||||
false
|
||||
}
|
||||
} else {
|
||||
false
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn to_uncompressed(&self, engine: &$engine) -> Self::Uncompressed {
|
||||
$name_uncompressed::from_affine(self, engine)
|
||||
}
|
||||
|
||||
fn to_jacobian(&self, engine: &$engine) -> $name {
|
||||
if self.infinity {
|
||||
$name::zero(engine)
|
||||
} else {
|
||||
$name {
|
||||
x: self.x,
|
||||
y: self.y,
|
||||
z: $basefield::one(engine)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn prepare(self, e: &$engine) -> $name_prepared {
|
||||
$name_prepared::from_engine(e, self)
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.infinity
|
||||
}
|
||||
|
||||
fn mul<S: Convert<[u64], $engine>>(&self, e: &$engine, other: &S) -> $name {
|
||||
let mut res = $name::zero(e);
|
||||
|
||||
for i in BitIterator::from((*other.convert(e)).borrow())
|
||||
{
|
||||
res.double(e);
|
||||
|
||||
if i {
|
||||
res.add_assign_mixed(e, self);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
|
||||
fn negate(&mut self, e: &$engine) {
|
||||
if !self.is_zero() {
|
||||
self.y.negate(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Group<$engine> for $name {
|
||||
type Affine = $name_affine;
|
||||
type Prepared = $name_prepared;
|
||||
|
||||
fn optimal_window(engine: &$engine, scalar_bits: usize) -> Option<usize> {
|
||||
for (i, bits) in engine.$params_field.windows.iter().enumerate().rev() {
|
||||
if &scalar_bits >= bits {
|
||||
return Some(i + 2);
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
fn zero(engine: &$engine) -> Self {
|
||||
engine.$params_field.zero
|
||||
}
|
||||
|
||||
fn one(engine: &$engine) -> Self {
|
||||
engine.$params_field.one
|
||||
}
|
||||
|
||||
fn random<R: rand::Rng>(engine: &$engine, rng: &mut R) -> Self {
|
||||
let mut tmp = Self::one(engine);
|
||||
tmp.mul_assign(engine, &$scalarfield::random(engine, rng));
|
||||
|
||||
tmp
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.z.is_zero()
|
||||
}
|
||||
|
||||
fn is_equal(&self, engine: &$engine, other: &Self) -> bool {
|
||||
if self.is_zero() {
|
||||
return other.is_zero();
|
||||
}
|
||||
|
||||
if other.is_zero() {
|
||||
return false;
|
||||
}
|
||||
|
||||
let mut z1 = self.z;
|
||||
z1.square(engine);
|
||||
let mut z2 = other.z;
|
||||
z2.square(engine);
|
||||
|
||||
let mut tmp1 = self.x;
|
||||
tmp1.mul_assign(engine, &z2);
|
||||
|
||||
let mut tmp2 = other.x;
|
||||
tmp2.mul_assign(engine, &z1);
|
||||
|
||||
if tmp1 != tmp2 {
|
||||
return false;
|
||||
}
|
||||
|
||||
z1.mul_assign(engine, &self.z);
|
||||
z2.mul_assign(engine, &other.z);
|
||||
z2.mul_assign(engine, &self.y);
|
||||
z1.mul_assign(engine, &other.y);
|
||||
|
||||
if z1 != z2 {
|
||||
return false;
|
||||
}
|
||||
|
||||
true
|
||||
}
|
||||
|
||||
fn to_affine(&self, engine: &$engine) -> Self::Affine {
|
||||
if self.is_zero() {
|
||||
$name_affine {
|
||||
x: $basefield::zero(),
|
||||
y: $basefield::one(engine),
|
||||
infinity: true
|
||||
}
|
||||
} else {
|
||||
let zinv = self.z.inverse(engine).unwrap();
|
||||
let mut zinv_powered = zinv;
|
||||
zinv_powered.square(engine);
|
||||
|
||||
let mut x = self.x;
|
||||
x.mul_assign(engine, &zinv_powered);
|
||||
|
||||
let mut y = self.y;
|
||||
zinv_powered.mul_assign(engine, &zinv);
|
||||
y.mul_assign(engine, &zinv_powered);
|
||||
|
||||
$name_affine {
|
||||
x: x,
|
||||
y: y,
|
||||
infinity: false
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn prepare(&self, e: &$engine) -> $name_prepared {
|
||||
self.to_affine(e).prepare(e)
|
||||
}
|
||||
|
||||
fn double(&mut self, engine: &$engine) {
|
||||
if self.is_zero() {
|
||||
return;
|
||||
}
|
||||
|
||||
let mut a = self.x;
|
||||
a.square(engine);
|
||||
let mut c = self.y;
|
||||
c.square(engine);
|
||||
let mut d = c;
|
||||
c.square(engine);
|
||||
d.add_assign(engine, &self.x);
|
||||
d.square(engine);
|
||||
d.sub_assign(engine, &a);
|
||||
d.sub_assign(engine, &c);
|
||||
d.double(engine);
|
||||
let mut e = a;
|
||||
e.add_assign(engine, &a);
|
||||
e.add_assign(engine, &a);
|
||||
self.x = e;
|
||||
self.x.square(engine);
|
||||
self.x.sub_assign(engine, &d);
|
||||
self.x.sub_assign(engine, &d);
|
||||
c.double(engine);
|
||||
c.double(engine);
|
||||
c.double(engine);
|
||||
self.z.mul_assign(engine, &self.y);
|
||||
self.z.double(engine);
|
||||
self.y = d;
|
||||
self.y.sub_assign(engine, &self.x);
|
||||
self.y.mul_assign(engine, &e);
|
||||
self.y.sub_assign(engine, &c);
|
||||
}
|
||||
|
||||
fn negate(&mut self, engine: &$engine) {
|
||||
if !self.is_zero() {
|
||||
self.y.negate(engine)
|
||||
}
|
||||
}
|
||||
|
||||
fn mul_assign<S: Convert<[u64], $engine>>(&mut self, engine: &$engine, other: &S) {
|
||||
let mut res = Self::zero(engine);
|
||||
|
||||
for i in BitIterator::from((*other.convert(engine)).borrow())
|
||||
{
|
||||
res.double(engine);
|
||||
|
||||
if i {
|
||||
res.add_assign(engine, self);
|
||||
}
|
||||
}
|
||||
|
||||
*self = res;
|
||||
}
|
||||
|
||||
fn sub_assign(&mut self, engine: &$engine, other: &Self) {
|
||||
let mut tmp = *other;
|
||||
tmp.negate(engine);
|
||||
self.add_assign(engine, &tmp);
|
||||
}
|
||||
|
||||
fn add_assign_mixed(&mut self, e: &$engine, other: &$name_affine) {
|
||||
if other.is_zero() {
|
||||
return;
|
||||
}
|
||||
|
||||
if self.is_zero() {
|
||||
self.x = other.x;
|
||||
self.y = other.y;
|
||||
self.z = $basefield::one(e);
|
||||
return;
|
||||
}
|
||||
|
||||
let mut z1z1 = self.z;
|
||||
z1z1.square(e);
|
||||
let mut u2 = other.x;
|
||||
u2.mul_assign(e, &z1z1);
|
||||
let mut z1cubed = self.z;
|
||||
z1cubed.mul_assign(e, &z1z1);
|
||||
let mut s2 = other.y;
|
||||
s2.mul_assign(e, &z1cubed);
|
||||
|
||||
if self.x == u2 && self.y == s2 {
|
||||
self.double(e);
|
||||
return;
|
||||
}
|
||||
|
||||
let mut h = u2;
|
||||
h.sub_assign(e, &self.x);
|
||||
let mut hh = h;
|
||||
hh.square(e);
|
||||
let mut i = hh;
|
||||
i.double(e);
|
||||
i.double(e);
|
||||
let mut j = h;
|
||||
j.mul_assign(e, &i);
|
||||
let mut r = s2;
|
||||
r.sub_assign(e, &self.y);
|
||||
r.double(e);
|
||||
let mut v = self.x;
|
||||
v.mul_assign(e, &i);
|
||||
|
||||
self.x = r;
|
||||
self.x.square(e);
|
||||
self.x.sub_assign(e, &j);
|
||||
self.x.sub_assign(e, &v);
|
||||
self.x.sub_assign(e, &v);
|
||||
|
||||
self.y.mul_assign(e, &j);
|
||||
let mut tmp = v;
|
||||
tmp.sub_assign(e, &self.x);
|
||||
tmp.mul_assign(e, &r);
|
||||
tmp.sub_assign(e, &self.y);
|
||||
tmp.sub_assign(e, &self.y);
|
||||
self.y = tmp;
|
||||
|
||||
self.z.add_assign(e, &h);
|
||||
self.z.square(e);
|
||||
self.z.sub_assign(e, &z1z1);
|
||||
self.z.sub_assign(e, &hh);
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, engine: &$engine, other: &Self) {
|
||||
if self.is_zero() {
|
||||
*self = *other;
|
||||
return;
|
||||
}
|
||||
|
||||
if other.is_zero() {
|
||||
return;
|
||||
}
|
||||
|
||||
let mut z1_squared = self.z;
|
||||
z1_squared.square(engine);
|
||||
let mut z2_squared = other.z;
|
||||
z2_squared.square(engine);
|
||||
let mut u1 = self.x;
|
||||
u1.mul_assign(engine, &z2_squared);
|
||||
let mut u2 = other.x;
|
||||
u2.mul_assign(engine, &z1_squared);
|
||||
let mut s1 = other.z;
|
||||
s1.mul_assign(engine, &z2_squared);
|
||||
s1.mul_assign(engine, &self.y);
|
||||
let mut s2 = self.z;
|
||||
s2.mul_assign(engine, &z1_squared);
|
||||
s2.mul_assign(engine, &other.y);
|
||||
|
||||
if u1 == u2 && s1 == s2 {
|
||||
self.double(engine);
|
||||
} else {
|
||||
u2.sub_assign(engine, &u1);
|
||||
s2.sub_assign(engine, &s1);
|
||||
s2.double(engine);
|
||||
let mut i = u2;
|
||||
i.double(engine);
|
||||
i.square(engine);
|
||||
let mut v = i;
|
||||
v.mul_assign(engine, &u1);
|
||||
i.mul_assign(engine, &u2);
|
||||
s1.mul_assign(engine, &i);
|
||||
s1.double(engine);
|
||||
self.x = s2;
|
||||
self.x.square(engine);
|
||||
self.x.sub_assign(engine, &i);
|
||||
self.x.sub_assign(engine, &v);
|
||||
self.x.sub_assign(engine, &v);
|
||||
self.y = v;
|
||||
self.y.sub_assign(engine, &self.x);
|
||||
self.y.mul_assign(engine, &s2);
|
||||
self.y.sub_assign(engine, &s1);
|
||||
self.z.add_assign(engine, &other.z);
|
||||
self.z.square(engine);
|
||||
self.z.sub_assign(engine, &z1_squared);
|
||||
self.z.sub_assign(engine, &z2_squared);
|
||||
self.z.mul_assign(engine, &u2);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
714
src/curves/bls381/fp.rs
Normal file
714
src/curves/bls381/fp.rs
Normal file
@ -0,0 +1,714 @@
|
||||
macro_rules! fp_params_impl {
|
||||
(
|
||||
$name:ident = (3 mod 4),
|
||||
engine = $engine:ident,
|
||||
params = $params_field:ident : $params_name:ident,
|
||||
limbs = $limbs:expr,
|
||||
modulus = $modulus:expr,
|
||||
r1 = $r1:expr,
|
||||
r2 = $r2:expr,
|
||||
modulus_minus_3_over_4 = $modulus_minus_3_over_4:expr,
|
||||
modulus_minus_1_over_2 = $modulus_minus_1_over_2:expr,
|
||||
inv = $inv:expr
|
||||
) => {
|
||||
struct $params_name {
|
||||
modulus: [u64; $limbs],
|
||||
r1: $name,
|
||||
r2: $name,
|
||||
inv: u64,
|
||||
one: $name,
|
||||
num_bits: usize,
|
||||
modulus_minus_3_over_4: [u64; $limbs],
|
||||
modulus_minus_1_over_2: [u64; $limbs],
|
||||
base10: [$name; 11]
|
||||
}
|
||||
|
||||
impl $params_name {
|
||||
fn partial_init() -> $params_name {
|
||||
let mut tmp = $params_name {
|
||||
modulus: $modulus,
|
||||
r1: $name($r1),
|
||||
r2: $name($r2),
|
||||
inv: $inv,
|
||||
one: $name::zero(),
|
||||
num_bits: 0,
|
||||
modulus_minus_3_over_4: $modulus_minus_3_over_4,
|
||||
modulus_minus_1_over_2: $modulus_minus_1_over_2,
|
||||
base10: [$name::zero(); 11]
|
||||
};
|
||||
|
||||
tmp.one.0[0] = 1;
|
||||
|
||||
tmp
|
||||
}
|
||||
}
|
||||
};
|
||||
(
|
||||
$name:ident = (1 mod 16),
|
||||
engine = $engine:ident,
|
||||
params = $params_field:ident : $params_name:ident,
|
||||
limbs = $limbs:expr,
|
||||
modulus = $modulus:expr,
|
||||
r1 = $r1:expr,
|
||||
r2 = $r2:expr,
|
||||
modulus_minus_1_over_2 = $modulus_minus_1_over_2:expr,
|
||||
s = $s:expr,
|
||||
t = $t:expr,
|
||||
t_plus_1_over_2 = $t_plus_1_over_2:expr,
|
||||
inv = $inv:expr
|
||||
) => {
|
||||
struct $params_name {
|
||||
modulus: [u64; $limbs],
|
||||
r1: $name,
|
||||
r2: $name,
|
||||
inv: u64,
|
||||
one: $name,
|
||||
num_bits: usize,
|
||||
modulus_minus_1_over_2: [u64; $limbs],
|
||||
s: u64,
|
||||
t: [u64; $limbs],
|
||||
t_plus_1_over_2: [u64; $limbs],
|
||||
root_of_unity: $name,
|
||||
multiplicative_generator: $name,
|
||||
base10: [$name; 11]
|
||||
}
|
||||
|
||||
impl $params_name {
|
||||
fn partial_init() -> $params_name {
|
||||
let mut tmp = $params_name {
|
||||
modulus: $modulus,
|
||||
r1: $name($r1),
|
||||
r2: $name($r2),
|
||||
inv: $inv,
|
||||
one: $name::zero(),
|
||||
num_bits: 0,
|
||||
modulus_minus_1_over_2: $modulus_minus_1_over_2,
|
||||
s: $s,
|
||||
t: $t,
|
||||
t_plus_1_over_2: $t_plus_1_over_2,
|
||||
root_of_unity: $name::zero(),
|
||||
multiplicative_generator: $name::zero(),
|
||||
base10: [$name::zero(); 11]
|
||||
};
|
||||
|
||||
tmp.one.0[0] = 1;
|
||||
|
||||
tmp
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! fp_sqrt_impl {
|
||||
(
|
||||
$name:ident = (3 mod 4),
|
||||
engine = $engine:ident,
|
||||
params = $params_field:ident : $params_name:ident
|
||||
) => {
|
||||
impl SqrtField<$engine> for $name {
|
||||
fn sqrt(&self, engine: &$engine) -> Option<Self> {
|
||||
let mut a1 = self.pow(engine, &engine.$params_field.modulus_minus_3_over_4);
|
||||
|
||||
let mut a0 = a1;
|
||||
a0.square(engine);
|
||||
a0.mul_assign(engine, self);
|
||||
|
||||
let mut neg1 = Self::one(engine);
|
||||
neg1.negate(engine);
|
||||
|
||||
if a0 == neg1 {
|
||||
None
|
||||
} else {
|
||||
a1.mul_assign(engine, self);
|
||||
Some(a1)
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
(
|
||||
$name:ident = (1 mod 16),
|
||||
engine = $engine:ident,
|
||||
params = $params_field:ident : $params_name:ident
|
||||
) => {
|
||||
impl SqrtField<$engine> for $name {
|
||||
fn sqrt(&self, engine: &$engine) -> Option<Self> {
|
||||
if self.is_zero() {
|
||||
return Some(*self);
|
||||
}
|
||||
|
||||
if self.pow(engine, &engine.$params_field.modulus_minus_1_over_2) != $name::one(engine) {
|
||||
None
|
||||
} else {
|
||||
let mut c = engine.$params_field.root_of_unity;
|
||||
|
||||
let mut r = self.pow(engine, &engine.$params_field.t_plus_1_over_2);
|
||||
let mut t = self.pow(engine, &engine.$params_field.t);
|
||||
let mut m = engine.$params_field.s;
|
||||
|
||||
while t != Self::one(engine) {
|
||||
let mut i = 1;
|
||||
{
|
||||
let mut t2i = t;
|
||||
t2i.square(engine);
|
||||
loop {
|
||||
if t2i == Self::one(engine) {
|
||||
break;
|
||||
}
|
||||
t2i.square(engine);
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
|
||||
for _ in 0..(m - i - 1) {
|
||||
c.square(engine);
|
||||
}
|
||||
r.mul_assign(engine, &c);
|
||||
c.square(engine);
|
||||
t.mul_assign(engine, &c);
|
||||
m = i;
|
||||
}
|
||||
|
||||
Some(r)
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! fp_impl {
|
||||
(
|
||||
$name:ident = ($($congruency:tt)*),
|
||||
engine = $engine:ident,
|
||||
params = $params_field:ident : $params_name:ident,
|
||||
arith = $arith_mod:ident,
|
||||
limbs = $limbs:expr,
|
||||
$($params:tt)*
|
||||
) => {
|
||||
fp_params_impl!(
|
||||
$name = ($($congruency)*),
|
||||
engine = $engine,
|
||||
params = $params_field : $params_name,
|
||||
limbs = $limbs,
|
||||
$($params)*
|
||||
);
|
||||
|
||||
impl $params_name {
|
||||
fn base10(e: &$engine) -> [$name; 11] {
|
||||
let mut ret = [$name::zero(); 11];
|
||||
|
||||
let mut acc = $name::zero();
|
||||
for i in 0..11 {
|
||||
ret[i] = acc;
|
||||
acc.add_assign(e, &$name::one(e));
|
||||
}
|
||||
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
fp_sqrt_impl!(
|
||||
$name = ($($congruency)*),
|
||||
engine = $engine,
|
||||
params = $params_field : $params_name
|
||||
);
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq)]
|
||||
#[repr(C)]
|
||||
pub struct $name([u64; $limbs]);
|
||||
|
||||
impl fmt::Debug for $name
|
||||
{
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
ENGINE.with(|e| {
|
||||
let mut repr = self.into_repr(&e);
|
||||
repr.reverse();
|
||||
|
||||
try!(write!(f, "Fp(0x"));
|
||||
for i in &repr {
|
||||
try!(write!(f, "{:016x}", *i));
|
||||
}
|
||||
write!(f, ")")
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl $name
|
||||
{
|
||||
#[inline]
|
||||
fn mont_reduce(&mut self, engine: &$engine, res: &mut [u64; $limbs*2]) {
|
||||
// The Montgomery reduction here is based on Algorithm 14.32 in
|
||||
// Handbook of Applied Cryptography
|
||||
// <http://cacr.uwaterloo.ca/hac/about/chap14.pdf>.
|
||||
|
||||
for i in 0..$limbs {
|
||||
let k = res[i].wrapping_mul(engine.$params_field.inv);
|
||||
$arith_mod::mac_digit(&mut res[i..], &engine.$params_field.modulus, k);
|
||||
}
|
||||
|
||||
self.0.copy_from_slice(&res[$limbs..]);
|
||||
|
||||
self.reduce(engine);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn reduce(&mut self, engine: &$engine) {
|
||||
if !$arith_mod::lt(&self.0, &engine.$params_field.modulus) {
|
||||
$arith_mod::sub_noborrow(&mut self.0, &engine.$params_field.modulus);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Convert<[u64], $engine> for $name
|
||||
{
|
||||
type Target = [u64; $limbs];
|
||||
|
||||
fn convert(&self, engine: &$engine) -> Cow<[u64; $limbs]> {
|
||||
Cow::Owned(self.into_repr(engine))
|
||||
}
|
||||
}
|
||||
|
||||
impl PrimeField<$engine> for $name
|
||||
{
|
||||
type Repr = [u64; $limbs];
|
||||
|
||||
fn from_repr(engine: &$engine, repr: Self::Repr) -> Result<Self, ()> {
|
||||
let mut tmp = $name(repr);
|
||||
if $arith_mod::lt(&tmp.0, &engine.$params_field.modulus) {
|
||||
tmp.mul_assign(engine, &engine.$params_field.r2);
|
||||
Ok(tmp)
|
||||
} else {
|
||||
Err(())
|
||||
}
|
||||
}
|
||||
|
||||
fn into_repr(&self, engine: &$engine) -> Self::Repr {
|
||||
let mut tmp = *self;
|
||||
tmp.mul_assign(engine, &engine.$params_field.one);
|
||||
tmp.0
|
||||
}
|
||||
|
||||
fn from_u64(engine: &$engine, n: u64) -> Self {
|
||||
let mut r = [0; $limbs];
|
||||
r[0] = n;
|
||||
|
||||
Self::from_repr(engine, r).unwrap()
|
||||
}
|
||||
|
||||
fn from_str(engine: &$engine, s: &str) -> Result<Self, ()> {
|
||||
let mut res = Self::zero();
|
||||
for c in s.chars() {
|
||||
match c.to_digit(10) {
|
||||
Some(d) => {
|
||||
res.mul_assign(engine, &engine.$params_field.base10[10]);
|
||||
res.add_assign(engine, &engine.$params_field.base10[d as usize]);
|
||||
},
|
||||
None => {
|
||||
return Err(());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
fn bits(&self, engine: &$engine) -> BitIterator<Self::Repr> {
|
||||
self.into_repr(engine).into()
|
||||
}
|
||||
|
||||
fn char(engine: &$engine) -> Self::Repr {
|
||||
engine.$params_field.modulus
|
||||
}
|
||||
|
||||
fn num_bits(engine: &$engine) -> usize {
|
||||
engine.$params_field.num_bits
|
||||
}
|
||||
|
||||
fn capacity(engine: &$engine) -> usize {
|
||||
Self::num_bits(engine) - 1
|
||||
}
|
||||
}
|
||||
|
||||
impl Field<$engine> for $name
|
||||
{
|
||||
fn zero() -> Self {
|
||||
$name([0; $limbs])
|
||||
}
|
||||
|
||||
fn one(engine: &$engine) -> Self {
|
||||
engine.$params_field.r1
|
||||
}
|
||||
|
||||
fn random<R: rand::Rng>(engine: &$engine, rng: &mut R) -> Self {
|
||||
let mut tmp = [0; $limbs*2];
|
||||
for i in &mut tmp {
|
||||
*i = rng.gen();
|
||||
}
|
||||
|
||||
$name($arith_mod::divrem(&tmp, &engine.$params_field.modulus).1)
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.0.iter().all(|&e| e==0)
|
||||
}
|
||||
|
||||
fn double(&mut self, engine: &$engine) {
|
||||
$arith_mod::mul2(&mut self.0);
|
||||
|
||||
self.reduce(engine);
|
||||
}
|
||||
|
||||
fn frobenius_map(&mut self, _: &$engine, _: usize)
|
||||
{
|
||||
// This is the identity function for a prime field.
|
||||
}
|
||||
|
||||
fn negate(&mut self, engine: &$engine) {
|
||||
if !self.is_zero() {
|
||||
let mut tmp = engine.$params_field.modulus;
|
||||
$arith_mod::sub_noborrow(&mut tmp, &self.0);
|
||||
|
||||
self.0 = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, engine: &$engine, other: &Self) {
|
||||
$arith_mod::add_nocarry(&mut self.0, &other.0);
|
||||
|
||||
self.reduce(engine);
|
||||
}
|
||||
|
||||
fn sub_assign(&mut self, engine: &$engine, other: &Self) {
|
||||
if $arith_mod::lt(&self.0, &other.0) {
|
||||
$arith_mod::add_nocarry(&mut self.0, &engine.$params_field.modulus);
|
||||
}
|
||||
|
||||
$arith_mod::sub_noborrow(&mut self.0, &other.0);
|
||||
}
|
||||
|
||||
fn square(&mut self, engine: &$engine)
|
||||
{
|
||||
let mut res = [0; $limbs*2];
|
||||
$arith_mod::mac3(&mut res, &self.0, &self.0);
|
||||
|
||||
self.mont_reduce(engine, &mut res);
|
||||
}
|
||||
|
||||
fn mul_assign(&mut self, engine: &$engine, other: &Self) {
|
||||
let mut res = [0; $limbs*2];
|
||||
$arith_mod::mac3(&mut res, &self.0, &other.0);
|
||||
|
||||
self.mont_reduce(engine, &mut res);
|
||||
}
|
||||
|
||||
fn inverse(&self, engine: &$engine) -> Option<Self> {
|
||||
if self.is_zero() {
|
||||
None
|
||||
} else {
|
||||
// Guajardo Kumar Paar Pelzl
|
||||
// Efficient Software-Implementation of Finite Fields with Applications to Cryptography
|
||||
// Algorithm 16 (BEA for Inversion in Fp)
|
||||
|
||||
let mut u = self.0;
|
||||
let mut v = engine.$params_field.modulus;
|
||||
let mut b = engine.$params_field.r2; // Avoids unnecessary reduction step.
|
||||
let mut c = Self::zero();
|
||||
|
||||
while u != engine.$params_field.one.0 && v != engine.$params_field.one.0 {
|
||||
while $arith_mod::even(&u) {
|
||||
$arith_mod::div2(&mut u);
|
||||
|
||||
if $arith_mod::even(&b.0) {
|
||||
$arith_mod::div2(&mut b.0);
|
||||
} else {
|
||||
$arith_mod::add_nocarry(&mut b.0, &engine.$params_field.modulus);
|
||||
$arith_mod::div2(&mut b.0);
|
||||
}
|
||||
}
|
||||
|
||||
while $arith_mod::even(&v) {
|
||||
$arith_mod::div2(&mut v);
|
||||
|
||||
if $arith_mod::even(&c.0) {
|
||||
$arith_mod::div2(&mut c.0);
|
||||
} else {
|
||||
$arith_mod::add_nocarry(&mut c.0, &engine.$params_field.modulus);
|
||||
$arith_mod::div2(&mut c.0);
|
||||
}
|
||||
}
|
||||
|
||||
if $arith_mod::lt(&v, &u) {
|
||||
$arith_mod::sub_noborrow(&mut u, &v);
|
||||
b.sub_assign(engine, &c);
|
||||
} else {
|
||||
$arith_mod::sub_noborrow(&mut v, &u);
|
||||
c.sub_assign(engine, &b);
|
||||
}
|
||||
}
|
||||
|
||||
if u == engine.$params_field.one.0 {
|
||||
Some(b)
|
||||
} else {
|
||||
Some(c)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mod $arith_mod {
|
||||
use super::BitIterator;
|
||||
// Arithmetic
|
||||
#[allow(dead_code)]
|
||||
pub fn num_bits(v: &[u64; $limbs]) -> usize
|
||||
{
|
||||
// TODO: optimize
|
||||
for (i, b) in BitIterator::from(&v[..]).enumerate() {
|
||||
if b {
|
||||
return ($limbs*64) - i;
|
||||
}
|
||||
}
|
||||
|
||||
0
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn mac_digit(acc: &mut [u64], b: &[u64], c: u64)
|
||||
{
|
||||
#[inline]
|
||||
fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
|
||||
let tmp = (a as u128) + (b as u128) * (c as u128) + (*carry as u128);
|
||||
|
||||
*carry = (tmp >> 64) as u64;
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
|
||||
let mut b_iter = b.iter();
|
||||
let mut carry = 0;
|
||||
|
||||
for ai in acc.iter_mut() {
|
||||
if let Some(bi) = b_iter.next() {
|
||||
*ai = mac_with_carry(*ai, *bi, c, &mut carry);
|
||||
} else {
|
||||
*ai = mac_with_carry(*ai, 0, c, &mut carry);
|
||||
}
|
||||
}
|
||||
|
||||
debug_assert!(carry == 0);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn mac3_long(acc: &mut [u64], b: &[u64], c: &[u64]) {
|
||||
for (i, xi) in b.iter().enumerate() {
|
||||
mac_digit(&mut acc[i..], c, *xi);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn mac3(acc: &mut [u64; $limbs*2], b: &[u64; $limbs], c: &[u64; $limbs]) {
|
||||
if $limbs > 4 {
|
||||
let (x0, x1) = b.split_at($limbs / 2);
|
||||
let (y0, y1) = c.split_at($limbs / 2);
|
||||
|
||||
let mut p = [0; $limbs+1];
|
||||
mac3_long(&mut p, x1, y1);
|
||||
add_nocarry(&mut acc[$limbs/2..], &p);
|
||||
add_nocarry(&mut acc[$limbs..], &p);
|
||||
p = [0; $limbs+1];
|
||||
mac3_long(&mut p, x0, y0);
|
||||
add_nocarry(&mut acc[..], &p);
|
||||
add_nocarry(&mut acc[$limbs/2..], &p);
|
||||
|
||||
let mut sign;
|
||||
let mut j0 = [0; $limbs / 2];
|
||||
let mut j1 = [0; $limbs / 2];
|
||||
if lt(x1, x0) {
|
||||
sign = false;
|
||||
j0.copy_from_slice(x0);
|
||||
sub_noborrow(&mut j0, x1);
|
||||
} else {
|
||||
sign = true;
|
||||
j0.copy_from_slice(x1);
|
||||
sub_noborrow(&mut j0, x0);
|
||||
}
|
||||
if lt(&y1, &y0) {
|
||||
sign = sign == false;
|
||||
j1.copy_from_slice(y0);
|
||||
sub_noborrow(&mut j1, y1);
|
||||
} else {
|
||||
sign = sign == true;
|
||||
j1.copy_from_slice(y1);
|
||||
sub_noborrow(&mut j1, y0);
|
||||
}
|
||||
|
||||
if sign {
|
||||
p = [0; $limbs+1];
|
||||
mac3_long(&mut p, &j0, &j1);
|
||||
sub_noborrow(&mut acc[$limbs/2..], &p);
|
||||
} else {
|
||||
mac3_long(&mut acc[$limbs/2..], &j0, &j1);
|
||||
}
|
||||
} else {
|
||||
mac3_long(acc, b, c);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
|
||||
let tmp = (a as u128) + (b as u128) + (*carry as u128);
|
||||
|
||||
*carry = (tmp >> 64) as u64;
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
|
||||
#[inline]
|
||||
#[allow(dead_code)]
|
||||
pub fn add_carry(a: &mut [u64], b: &[u64]) {
|
||||
use std::iter;
|
||||
|
||||
let mut carry = 0;
|
||||
|
||||
for (a, b) in a.into_iter().zip(b.iter().chain(iter::repeat(&0))) {
|
||||
*a = adc(*a, *b, &mut carry);
|
||||
}
|
||||
|
||||
debug_assert!(0 == carry);
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn add_nocarry(a: &mut [u64], b: &[u64]) {
|
||||
let mut carry = 0;
|
||||
|
||||
for (a, b) in a.into_iter().zip(b.iter()) {
|
||||
*a = adc(*a, *b, &mut carry);
|
||||
}
|
||||
|
||||
debug_assert!(0 == carry);
|
||||
}
|
||||
|
||||
/// Returns true if a < b.
|
||||
#[inline]
|
||||
pub fn lt(a: &[u64], b: &[u64]) -> bool {
|
||||
for (a, b) in a.iter().zip(b.iter()).rev() {
|
||||
if *a > *b {
|
||||
return false;
|
||||
} else if *a < *b {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
false
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn sub_noborrow(a: &mut [u64], b: &[u64]) {
|
||||
#[inline]
|
||||
fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
|
||||
let tmp = (1u128 << 64) + (a as u128) - (b as u128) - (*borrow as u128);
|
||||
|
||||
*borrow = if tmp >> 64 == 0 { 1 } else { 0 };
|
||||
|
||||
tmp as u64
|
||||
}
|
||||
|
||||
let mut borrow = 0;
|
||||
|
||||
for (a, b) in a.into_iter().zip(b.iter()) {
|
||||
*a = sbb(*a, *b, &mut borrow);
|
||||
}
|
||||
|
||||
debug_assert!(0 == borrow);
|
||||
}
|
||||
|
||||
/// Returns if number is even.
|
||||
#[inline(always)]
|
||||
#[allow(dead_code)]
|
||||
pub fn even(a: &[u64; $limbs]) -> bool {
|
||||
a[0] & 1 == 0
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
#[allow(dead_code)]
|
||||
pub fn odd(a: &[u64; $limbs]) -> bool {
|
||||
a[0] & 1 == 1
|
||||
}
|
||||
|
||||
/// Divide by two
|
||||
#[inline]
|
||||
pub fn div2(a: &mut [u64; $limbs]) {
|
||||
let mut t = 0;
|
||||
for i in a.iter_mut().rev() {
|
||||
let t2 = *i << 63;
|
||||
*i >>= 1;
|
||||
*i |= t;
|
||||
t = t2;
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn mul2(a: &mut [u64; $limbs]) {
|
||||
let mut last = 0;
|
||||
for i in a {
|
||||
let tmp = *i >> 63;
|
||||
*i <<= 1;
|
||||
*i |= last;
|
||||
last = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
fn get_bit(this: &[u64; $limbs*2], n: usize) -> bool {
|
||||
let part = n / 64;
|
||||
let bit = n - (64 * part);
|
||||
|
||||
this[part] & (1 << bit) > 0
|
||||
}
|
||||
|
||||
fn set_bit(this: &mut [u64; $limbs], n: usize, to: bool) -> bool
|
||||
{
|
||||
let part = n / 64;
|
||||
let bit = n - (64 * part);
|
||||
|
||||
match this.get_mut(part) {
|
||||
Some(e) => {
|
||||
if to {
|
||||
*e |= 1 << bit;
|
||||
} else {
|
||||
*e &= !(1 << bit);
|
||||
}
|
||||
|
||||
true
|
||||
},
|
||||
None => false
|
||||
}
|
||||
}
|
||||
|
||||
pub fn divrem(
|
||||
this: &[u64; $limbs*2],
|
||||
modulo: &[u64; $limbs]
|
||||
) -> (Option<[u64; $limbs]>, [u64; $limbs])
|
||||
{
|
||||
let mut q = Some([0; $limbs]);
|
||||
let mut r = [0; $limbs];
|
||||
|
||||
for i in (0..($limbs*2*64)).rev() {
|
||||
// NB: modulo's first bit is unset so this will never
|
||||
// destroy information
|
||||
mul2(&mut r);
|
||||
assert!(set_bit(&mut r, 0, get_bit(this, i)));
|
||||
if !lt(&r, modulo) {
|
||||
sub_noborrow(&mut r, modulo);
|
||||
if q.is_some() && !set_bit(q.as_mut().unwrap(), i, true) {
|
||||
q = None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if q.is_some() && !lt(q.as_ref().unwrap(), modulo) {
|
||||
(None, r)
|
||||
} else {
|
||||
(q, r)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
151
src/curves/bls381/fq12.rs
Normal file
151
src/curves/bls381/fq12.rs
Normal file
@ -0,0 +1,151 @@
|
||||
use super::{Bls381, Fq2, Fq6};
|
||||
use rand;
|
||||
use super::Field;
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub struct Fq12 {
|
||||
pub c0: Fq6,
|
||||
pub c1: Fq6
|
||||
}
|
||||
|
||||
impl Fq12 {
|
||||
pub fn unitary_inverse(&mut self, e: &Bls381)
|
||||
{
|
||||
self.c1.negate(e);
|
||||
}
|
||||
|
||||
pub fn mul_by_015(
|
||||
&mut self,
|
||||
e: &Bls381,
|
||||
a: &Fq2,
|
||||
b: &Fq2,
|
||||
c: &Fq2
|
||||
)
|
||||
{
|
||||
let mut aa = self.c0;
|
||||
aa.mul_by_01(e, a, b);
|
||||
let mut bb = self.c1;
|
||||
bb.mul_by_1(e, c);
|
||||
let mut o = *b;
|
||||
o.add_assign(e, &c);
|
||||
self.c1.add_assign(e, &self.c0);
|
||||
self.c1.mul_by_01(e, a, &o);
|
||||
self.c1.sub_assign(e, &aa);
|
||||
self.c1.sub_assign(e, &bb);
|
||||
self.c0 = bb;
|
||||
self.c0.mul_by_nonresidue(e);
|
||||
self.c0.add_assign(e, &aa);
|
||||
}
|
||||
}
|
||||
|
||||
impl Field<Bls381> for Fq12
|
||||
{
|
||||
fn zero() -> Self {
|
||||
Fq12 {
|
||||
c0: Fq6::zero(),
|
||||
c1: Fq6::zero()
|
||||
}
|
||||
}
|
||||
|
||||
fn one(engine: &Bls381) -> Self {
|
||||
Fq12 {
|
||||
c0: Fq6::one(engine),
|
||||
c1: Fq6::zero()
|
||||
}
|
||||
}
|
||||
|
||||
fn random<R: rand::Rng>(engine: &Bls381, rng: &mut R) -> Self {
|
||||
Fq12 {
|
||||
c0: Fq6::random(engine, rng),
|
||||
c1: Fq6::random(engine, rng)
|
||||
}
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.c0.is_zero() && self.c1.is_zero()
|
||||
}
|
||||
|
||||
fn double(&mut self, engine: &Bls381) {
|
||||
self.c0.double(engine);
|
||||
self.c1.double(engine);
|
||||
}
|
||||
|
||||
fn negate(&mut self, engine: &Bls381) {
|
||||
self.c0.negate(engine);
|
||||
self.c1.negate(engine);
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, engine: &Bls381, other: &Self) {
|
||||
self.c0.add_assign(engine, &other.c0);
|
||||
self.c1.add_assign(engine, &other.c1);
|
||||
}
|
||||
|
||||
fn sub_assign(&mut self, engine: &Bls381, other: &Self) {
|
||||
self.c0.sub_assign(engine, &other.c0);
|
||||
self.c1.sub_assign(engine, &other.c1);
|
||||
}
|
||||
|
||||
fn frobenius_map(&mut self, e: &Bls381, power: usize)
|
||||
{
|
||||
self.c0.frobenius_map(e, power);
|
||||
self.c1.frobenius_map(e, power);
|
||||
|
||||
self.c1.c0.mul_assign(e, &e.frobenius_coeff_fq12[power % 12]);
|
||||
self.c1.c1.mul_assign(e, &e.frobenius_coeff_fq12[power % 12]);
|
||||
self.c1.c2.mul_assign(e, &e.frobenius_coeff_fq12[power % 12]);
|
||||
}
|
||||
|
||||
fn square(&mut self, e: &Bls381) {
|
||||
let mut ab = self.c0;
|
||||
ab.mul_assign(e, &self.c1);
|
||||
let mut c0c1 = self.c0;
|
||||
c0c1.add_assign(e, &self.c1);
|
||||
let mut c0 = self.c1;
|
||||
c0.mul_by_nonresidue(e);
|
||||
c0.add_assign(e, &self.c0);
|
||||
c0.mul_assign(e, &c0c1);
|
||||
c0.sub_assign(e, &ab);
|
||||
self.c1 = ab;
|
||||
self.c1.add_assign(e, &ab);
|
||||
ab.mul_by_nonresidue(e);
|
||||
c0.sub_assign(e, &ab);
|
||||
self.c0 = c0;
|
||||
}
|
||||
|
||||
fn mul_assign(&mut self, e: &Bls381, other: &Self) {
|
||||
let mut aa = self.c0;
|
||||
aa.mul_assign(e, &other.c0);
|
||||
let mut bb = self.c1;
|
||||
bb.mul_assign(e, &other.c1);
|
||||
let mut o = other.c0;
|
||||
o.add_assign(e, &other.c1);
|
||||
self.c1.add_assign(e, &self.c0);
|
||||
self.c1.mul_assign(e, &o);
|
||||
self.c1.sub_assign(e, &aa);
|
||||
self.c1.sub_assign(e, &bb);
|
||||
self.c0 = bb;
|
||||
self.c0.mul_by_nonresidue(e);
|
||||
self.c0.add_assign(e, &aa);
|
||||
}
|
||||
|
||||
fn inverse(&self, e: &Bls381) -> Option<Self> {
|
||||
let mut c0s = self.c0;
|
||||
c0s.square(e);
|
||||
let mut c1s = self.c1;
|
||||
c1s.square(e);
|
||||
c1s.mul_by_nonresidue(e);
|
||||
c0s.sub_assign(e, &c1s);
|
||||
|
||||
c0s.inverse(e).map(|t| {
|
||||
let mut tmp = Fq12 {
|
||||
c0: t,
|
||||
c1: t
|
||||
};
|
||||
tmp.c0.mul_assign(e, &self.c0);
|
||||
tmp.c1.mul_assign(e, &self.c1);
|
||||
tmp.c1.negate(e);
|
||||
|
||||
tmp
|
||||
})
|
||||
}
|
||||
}
|
156
src/curves/bls381/fq2.rs
Normal file
156
src/curves/bls381/fq2.rs
Normal file
@ -0,0 +1,156 @@
|
||||
use super::{Bls381, Fq};
|
||||
use rand;
|
||||
use super::{Field, SqrtField};
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub struct Fq2 {
|
||||
pub c0: Fq,
|
||||
pub c1: Fq
|
||||
}
|
||||
|
||||
impl Fq2 {
|
||||
pub fn mul_by_nonresidue(&mut self, e: &Bls381) {
|
||||
let t0 = self.c0;
|
||||
self.c0.sub_assign(e, &self.c1);
|
||||
self.c1.add_assign(e, &t0);
|
||||
}
|
||||
}
|
||||
|
||||
impl SqrtField<Bls381> for Fq2 {
|
||||
fn sqrt(&self, engine: &Bls381) -> Option<Self> {
|
||||
// Algorithm 9, https://eprint.iacr.org/2012/685.pdf
|
||||
|
||||
if self.is_zero() {
|
||||
return Some(Self::zero());
|
||||
} else {
|
||||
let mut a1 = self.pow(engine, &engine.fqparams.modulus_minus_3_over_4);
|
||||
let mut alpha = a1;
|
||||
alpha.square(engine);
|
||||
alpha.mul_assign(engine, self);
|
||||
let mut a0 = alpha.pow(engine, &engine.fqparams.modulus);
|
||||
a0.mul_assign(engine, &alpha);
|
||||
|
||||
let mut neg1 = Self::one(engine);
|
||||
neg1.negate(engine);
|
||||
|
||||
if a0 == neg1 {
|
||||
None
|
||||
} else {
|
||||
a1.mul_assign(engine, self);
|
||||
|
||||
if alpha == neg1 {
|
||||
a1.mul_assign(engine, &Fq2{c0: Fq::zero(), c1: Fq::one(engine)});
|
||||
} else {
|
||||
alpha.add_assign(engine, &Fq2::one(engine));
|
||||
alpha = alpha.pow(engine, &engine.fqparams.modulus_minus_1_over_2);
|
||||
a1.mul_assign(engine, &alpha);
|
||||
}
|
||||
|
||||
Some(a1)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Field<Bls381> for Fq2
|
||||
{
|
||||
fn zero() -> Self {
|
||||
Fq2 {
|
||||
c0: Fq::zero(),
|
||||
c1: Fq::zero()
|
||||
}
|
||||
}
|
||||
|
||||
fn one(engine: &Bls381) -> Self {
|
||||
Fq2 {
|
||||
c0: Fq::one(engine),
|
||||
c1: Fq::zero()
|
||||
}
|
||||
}
|
||||
|
||||
fn random<R: rand::Rng>(engine: &Bls381, rng: &mut R) -> Self {
|
||||
Fq2 {
|
||||
c0: Fq::random(engine, rng),
|
||||
c1: Fq::random(engine, rng)
|
||||
}
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.c0.is_zero() && self.c1.is_zero()
|
||||
}
|
||||
|
||||
fn double(&mut self, engine: &Bls381) {
|
||||
self.c0.double(engine);
|
||||
self.c1.double(engine);
|
||||
}
|
||||
|
||||
fn negate(&mut self, engine: &Bls381) {
|
||||
self.c0.negate(engine);
|
||||
self.c1.negate(engine);
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, engine: &Bls381, other: &Self) {
|
||||
self.c0.add_assign(engine, &other.c0);
|
||||
self.c1.add_assign(engine, &other.c1);
|
||||
}
|
||||
|
||||
fn sub_assign(&mut self, engine: &Bls381, other: &Self) {
|
||||
self.c0.sub_assign(engine, &other.c0);
|
||||
self.c1.sub_assign(engine, &other.c1);
|
||||
}
|
||||
|
||||
fn frobenius_map(&mut self, e: &Bls381, power: usize)
|
||||
{
|
||||
self.c1.mul_assign(e, &e.frobenius_coeff_fq2[power % 2]);
|
||||
}
|
||||
|
||||
fn square(&mut self, engine: &Bls381) {
|
||||
let mut ab = self.c0;
|
||||
ab.mul_assign(engine, &self.c1);
|
||||
let mut c0c1 = self.c0;
|
||||
c0c1.add_assign(engine, &self.c1);
|
||||
let mut c0 = self.c1;
|
||||
c0.negate(engine);
|
||||
c0.add_assign(engine, &self.c0);
|
||||
c0.mul_assign(engine, &c0c1);
|
||||
c0.sub_assign(engine, &ab);
|
||||
self.c1 = ab;
|
||||
self.c1.add_assign(engine, &ab);
|
||||
c0.add_assign(engine, &ab);
|
||||
self.c0 = c0;
|
||||
}
|
||||
|
||||
fn mul_assign(&mut self, engine: &Bls381, other: &Self) {
|
||||
let mut aa = self.c0;
|
||||
aa.mul_assign(engine, &other.c0);
|
||||
let mut bb = self.c1;
|
||||
bb.mul_assign(engine, &other.c1);
|
||||
let mut o = other.c0;
|
||||
o.add_assign(engine, &other.c1);
|
||||
self.c1.add_assign(engine, &self.c0);
|
||||
self.c1.mul_assign(engine, &o);
|
||||
self.c1.sub_assign(engine, &aa);
|
||||
self.c1.sub_assign(engine, &bb);
|
||||
self.c0 = aa;
|
||||
self.c0.sub_assign(engine, &bb);
|
||||
}
|
||||
|
||||
fn inverse(&self, engine: &Bls381) -> Option<Self> {
|
||||
let mut t1 = self.c1;
|
||||
t1.square(engine);
|
||||
let mut t0 = self.c0;
|
||||
t0.square(engine);
|
||||
t0.add_assign(engine, &t1);
|
||||
t0.inverse(engine).map(|t| {
|
||||
let mut tmp = Fq2 {
|
||||
c0: self.c0,
|
||||
c1: self.c1
|
||||
};
|
||||
tmp.c0.mul_assign(engine, &t);
|
||||
tmp.c1.mul_assign(engine, &t);
|
||||
tmp.c1.negate(engine);
|
||||
|
||||
tmp
|
||||
})
|
||||
}
|
||||
}
|
295
src/curves/bls381/fq6.rs
Normal file
295
src/curves/bls381/fq6.rs
Normal file
@ -0,0 +1,295 @@
|
||||
use super::{Bls381, Fq2};
|
||||
use rand;
|
||||
use super::Field;
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
|
||||
pub struct Fq6 {
|
||||
pub c0: Fq2,
|
||||
pub c1: Fq2,
|
||||
pub c2: Fq2
|
||||
}
|
||||
|
||||
impl Fq6 {
|
||||
pub fn mul_by_nonresidue(&mut self, e: &Bls381) {
|
||||
use std::mem::swap;
|
||||
swap(&mut self.c0, &mut self.c1);
|
||||
swap(&mut self.c0, &mut self.c2);
|
||||
|
||||
self.c0.mul_by_nonresidue(e);
|
||||
}
|
||||
|
||||
pub fn mul_by_1(&mut self, e: &Bls381, c1: &Fq2)
|
||||
{
|
||||
let mut b_b = self.c1;
|
||||
b_b.mul_assign(e, c1);
|
||||
|
||||
let mut t1 = *c1;
|
||||
{
|
||||
let mut tmp = self.c1;
|
||||
tmp.add_assign(e, &self.c2);
|
||||
|
||||
t1.mul_assign(e, &tmp);
|
||||
t1.sub_assign(e, &b_b);
|
||||
t1.mul_by_nonresidue(e);
|
||||
}
|
||||
|
||||
let mut t2 = *c1;
|
||||
{
|
||||
let mut tmp = self.c0;
|
||||
tmp.add_assign(e, &self.c1);
|
||||
|
||||
t2.mul_assign(e, &tmp);
|
||||
t2.sub_assign(e, &b_b);
|
||||
}
|
||||
|
||||
self.c0 = t1;
|
||||
self.c1 = t2;
|
||||
self.c2 = b_b;
|
||||
}
|
||||
|
||||
pub fn mul_by_01(&mut self, e: &Bls381, c0: &Fq2, c1: &Fq2)
|
||||
{
|
||||
let mut a_a = self.c0;
|
||||
let mut b_b = self.c1;
|
||||
a_a.mul_assign(e, c0);
|
||||
b_b.mul_assign(e, c1);
|
||||
|
||||
let mut t1 = *c1;
|
||||
{
|
||||
let mut tmp = self.c1;
|
||||
tmp.add_assign(e, &self.c2);
|
||||
|
||||
t1.mul_assign(e, &tmp);
|
||||
t1.sub_assign(e, &b_b);
|
||||
t1.mul_by_nonresidue(e);
|
||||
t1.add_assign(e, &a_a);
|
||||
}
|
||||
|
||||
let mut t3 = *c0;
|
||||
{
|
||||
let mut tmp = self.c0;
|
||||
tmp.add_assign(e, &self.c2);
|
||||
|
||||
t3.mul_assign(e, &tmp);
|
||||
t3.sub_assign(e, &a_a);
|
||||
t3.add_assign(e, &b_b);
|
||||
}
|
||||
|
||||
let mut t2 = *c0;
|
||||
t2.add_assign(e, c1);
|
||||
{
|
||||
let mut tmp = self.c0;
|
||||
tmp.add_assign(e, &self.c1);
|
||||
|
||||
t2.mul_assign(e, &tmp);
|
||||
t2.sub_assign(e, &a_a);
|
||||
t2.sub_assign(e, &b_b);
|
||||
}
|
||||
|
||||
self.c0 = t1;
|
||||
self.c1 = t2;
|
||||
self.c2 = t3;
|
||||
}
|
||||
}
|
||||
|
||||
impl Field<Bls381> for Fq6
|
||||
{
|
||||
fn zero() -> Self {
|
||||
Fq6 {
|
||||
c0: Fq2::zero(),
|
||||
c1: Fq2::zero(),
|
||||
c2: Fq2::zero()
|
||||
}
|
||||
}
|
||||
|
||||
fn one(engine: &Bls381) -> Self {
|
||||
Fq6 {
|
||||
c0: Fq2::one(engine),
|
||||
c1: Fq2::zero(),
|
||||
c2: Fq2::zero()
|
||||
}
|
||||
}
|
||||
|
||||
fn random<R: rand::Rng>(engine: &Bls381, rng: &mut R) -> Self {
|
||||
Fq6 {
|
||||
c0: Fq2::random(engine, rng),
|
||||
c1: Fq2::random(engine, rng),
|
||||
c2: Fq2::random(engine, rng)
|
||||
}
|
||||
}
|
||||
|
||||
fn is_zero(&self) -> bool {
|
||||
self.c0.is_zero() && self.c1.is_zero() && self.c2.is_zero()
|
||||
}
|
||||
|
||||
fn double(&mut self, engine: &Bls381) {
|
||||
self.c0.double(engine);
|
||||
self.c1.double(engine);
|
||||
self.c2.double(engine);
|
||||
}
|
||||
|
||||
fn negate(&mut self, engine: &Bls381) {
|
||||
self.c0.negate(engine);
|
||||
self.c1.negate(engine);
|
||||
self.c2.negate(engine);
|
||||
}
|
||||
|
||||
fn add_assign(&mut self, engine: &Bls381, other: &Self) {
|
||||
self.c0.add_assign(engine, &other.c0);
|
||||
self.c1.add_assign(engine, &other.c1);
|
||||
self.c2.add_assign(engine, &other.c2);
|
||||
}
|
||||
|
||||
fn sub_assign(&mut self, engine: &Bls381, other: &Self) {
|
||||
self.c0.sub_assign(engine, &other.c0);
|
||||
self.c1.sub_assign(engine, &other.c1);
|
||||
self.c2.sub_assign(engine, &other.c2);
|
||||
}
|
||||
|
||||
fn frobenius_map(&mut self, e: &Bls381, power: usize)
|
||||
{
|
||||
self.c0.frobenius_map(e, power);
|
||||
self.c1.frobenius_map(e, power);
|
||||
self.c2.frobenius_map(e, power);
|
||||
|
||||
self.c1.mul_assign(e, &e.frobenius_coeff_fq6_c1[power % 6]);
|
||||
self.c2.mul_assign(e, &e.frobenius_coeff_fq6_c2[power % 6]);
|
||||
}
|
||||
|
||||
fn square(&mut self, e: &Bls381) {
|
||||
let mut s0 = self.c0;
|
||||
s0.square(e);
|
||||
let mut ab = self.c0;
|
||||
ab.mul_assign(e, &self.c1);
|
||||
let mut s1 = ab;
|
||||
s1.double(e);
|
||||
let mut s2 = self.c0;
|
||||
s2.sub_assign(e, &self.c1);
|
||||
s2.add_assign(e, &self.c2);
|
||||
s2.square(e);
|
||||
let mut bc = self.c1;
|
||||
bc.mul_assign(e, &self.c2);
|
||||
let mut s3 = bc;
|
||||
s3.double(e);
|
||||
let mut s4 = self.c2;
|
||||
s4.square(e);
|
||||
|
||||
self.c0 = s3;
|
||||
self.c0.mul_by_nonresidue(e);
|
||||
self.c0.add_assign(e, &s0);
|
||||
|
||||
self.c1 = s4;
|
||||
self.c1.mul_by_nonresidue(e);
|
||||
self.c1.add_assign(e, &s1);
|
||||
|
||||
self.c2 = s1;
|
||||
self.c2.add_assign(e, &s2);
|
||||
self.c2.add_assign(e, &s3);
|
||||
self.c2.sub_assign(e, &s0);
|
||||
self.c2.sub_assign(e, &s4);
|
||||
}
|
||||
|
||||
fn mul_assign(&mut self, e: &Bls381, other: &Self) {
|
||||
let mut a_a = self.c0;
|
||||
let mut b_b = self.c1;
|
||||
let mut c_c = self.c2;
|
||||
a_a.mul_assign(e, &other.c0);
|
||||
b_b.mul_assign(e, &other.c1);
|
||||
c_c.mul_assign(e, &other.c2);
|
||||
|
||||
let mut t1 = other.c1;
|
||||
t1.add_assign(e, &other.c2);
|
||||
{
|
||||
let mut tmp = self.c1;
|
||||
tmp.add_assign(e, &self.c2);
|
||||
|
||||
t1.mul_assign(e, &tmp);
|
||||
t1.sub_assign(e, &b_b);
|
||||
t1.sub_assign(e, &c_c);
|
||||
t1.mul_by_nonresidue(e);
|
||||
t1.add_assign(e, &a_a);
|
||||
}
|
||||
|
||||
let mut t3 = other.c0;
|
||||
t3.add_assign(e, &other.c2);
|
||||
{
|
||||
let mut tmp = self.c0;
|
||||
tmp.add_assign(e, &self.c2);
|
||||
|
||||
t3.mul_assign(e, &tmp);
|
||||
t3.sub_assign(e, &a_a);
|
||||
t3.add_assign(e, &b_b);
|
||||
t3.sub_assign(e, &c_c);
|
||||
}
|
||||
|
||||
let mut t2 = other.c0;
|
||||
t2.add_assign(e, &other.c1);
|
||||
{
|
||||
let mut tmp = self.c0;
|
||||
tmp.add_assign(e, &self.c1);
|
||||
|
||||
t2.mul_assign(e, &tmp);
|
||||
t2.sub_assign(e, &a_a);
|
||||
t2.sub_assign(e, &b_b);
|
||||
c_c.mul_by_nonresidue(e);
|
||||
t2.add_assign(e, &c_c);
|
||||
}
|
||||
|
||||
self.c0 = t1;
|
||||
self.c1 = t2;
|
||||
self.c2 = t3;
|
||||
}
|
||||
|
||||
fn inverse(&self, e: &Bls381) -> Option<Self> {
|
||||
let mut c0 = self.c2;
|
||||
c0.mul_by_nonresidue(e);
|
||||
c0.mul_assign(e, &self.c1);
|
||||
c0.negate(e);
|
||||
{
|
||||
let mut c0s = self.c0;
|
||||
c0s.square(e);
|
||||
c0.add_assign(e, &c0s);
|
||||
}
|
||||
let mut c1 = self.c2;
|
||||
c1.square(e);
|
||||
c1.mul_by_nonresidue(e);
|
||||
{
|
||||
let mut c01 = self.c0;
|
||||
c01.mul_assign(e, &self.c1);
|
||||
c1.sub_assign(e, &c01);
|
||||
}
|
||||
let mut c2 = self.c1;
|
||||
c2.square(e);
|
||||
{
|
||||
let mut c02 = self.c0;
|
||||
c02.mul_assign(e, &self.c2);
|
||||
c2.sub_assign(e, &c02);
|
||||
}
|
||||
|
||||
let mut tmp1 = self.c2;
|
||||
tmp1.mul_assign(e, &c1);
|
||||
let mut tmp2 = self.c1;
|
||||
tmp2.mul_assign(e, &c2);
|
||||
tmp1.add_assign(e, &tmp2);
|
||||
tmp1.mul_by_nonresidue(e);
|
||||
tmp2 = self.c0;
|
||||
tmp2.mul_assign(e, &c0);
|
||||
tmp1.add_assign(e, &tmp2);
|
||||
|
||||
match tmp1.inverse(e) {
|
||||
Some(t) => {
|
||||
let mut tmp = Fq6 {
|
||||
c0: t,
|
||||
c1: t,
|
||||
c2: t
|
||||
};
|
||||
tmp.c0.mul_assign(e, &c0);
|
||||
tmp.c1.mul_assign(e, &c1);
|
||||
tmp.c2.mul_assign(e, &c2);
|
||||
|
||||
Some(tmp)
|
||||
},
|
||||
None => None
|
||||
}
|
||||
}
|
||||
}
|
1253
src/curves/bls381/mod.rs
Normal file
1253
src/curves/bls381/mod.rs
Normal file
File diff suppressed because it is too large
Load Diff
BIN
src/curves/bls381/tests/g1_serialized.bin
Normal file
BIN
src/curves/bls381/tests/g1_serialized.bin
Normal file
Binary file not shown.
BIN
src/curves/bls381/tests/g2_serialized.bin
Normal file
BIN
src/curves/bls381/tests/g2_serialized.bin
Normal file
Binary file not shown.
41
src/curves/bls381/tests/mod.rs
Normal file
41
src/curves/bls381/tests/mod.rs
Normal file
@ -0,0 +1,41 @@
|
||||
extern crate bincode;
|
||||
|
||||
use curves::*;
|
||||
use super::*;
|
||||
|
||||
fn test_vectors<E: Engine, G: Group<E>>(e: &E, expected: &[u8]) {
|
||||
let mut bytes = vec![];
|
||||
let mut acc = G::zero(e);
|
||||
let mut expected_reader = expected;
|
||||
|
||||
for _ in 0..10000 {
|
||||
{
|
||||
let acc = acc.to_affine(e);
|
||||
let exp: <G::Affine as GroupAffine<E, G>>::Uncompressed =
|
||||
bincode::deserialize_from(&mut expected_reader, bincode::SizeLimit::Infinite).unwrap();
|
||||
|
||||
assert!(acc == exp.to_affine(e).unwrap());
|
||||
|
||||
let acc = acc.to_uncompressed(e);
|
||||
bincode::serialize_into(&mut bytes, &acc, bincode::SizeLimit::Infinite).unwrap();
|
||||
}
|
||||
acc.double(e);
|
||||
acc.add_assign(e, &G::one(e));
|
||||
}
|
||||
|
||||
assert_eq!(&bytes[..], expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn g1_serialization_test_vectors() {
|
||||
let engine = Bls381::new();
|
||||
|
||||
test_vectors::<Bls381, G1>(&engine, include_bytes!("g1_serialized.bin"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn g2_serialization_test_vectors() {
|
||||
let engine = Bls381::new();
|
||||
|
||||
test_vectors::<Bls381, G2>(&engine, include_bytes!("g2_serialized.bin"));
|
||||
}
|
294
src/curves/mod.rs
Normal file
294
src/curves/mod.rs
Normal file
@ -0,0 +1,294 @@
|
||||
use rand;
|
||||
use std::fmt;
|
||||
|
||||
use serde::{Serialize, Deserialize};
|
||||
|
||||
pub mod bls381;
|
||||
|
||||
pub trait Engine: Sized
|
||||
{
|
||||
type Fq: PrimeField<Self>;
|
||||
type Fr: SnarkField<Self>;
|
||||
type Fqe: SqrtField<Self>;
|
||||
type Fqk: Field<Self>;
|
||||
type G1: Group<Self> + Convert<<Self::G1 as Group<Self>>::Affine, Self>;
|
||||
type G2: Group<Self> + Convert<<Self::G2 as Group<Self>>::Affine, Self>;
|
||||
|
||||
fn new() -> Self;
|
||||
|
||||
fn pairing<G1, G2>(&self, p: &G1, q: &G2) -> Self::Fqk
|
||||
where G1: Convert<<Self::G1 as Group<Self>>::Affine, Self>,
|
||||
G2: Convert<<Self::G2 as Group<Self>>::Affine, Self>
|
||||
{
|
||||
self.final_exponentiation(&self.miller_loop(
|
||||
[(
|
||||
&(*p.convert(self)).borrow().prepare(self),
|
||||
&(*q.convert(self)).borrow().prepare(self)
|
||||
)].into_iter()
|
||||
))
|
||||
}
|
||||
fn miller_loop<'a, I>(&self, I) -> Self::Fqk
|
||||
where I: IntoIterator<Item=&'a (
|
||||
&'a <Self::G1 as Group<Self>>::Prepared,
|
||||
&'a <Self::G2 as Group<Self>>::Prepared
|
||||
)>;
|
||||
fn final_exponentiation(&self, &Self::Fqk) -> Self::Fqk;
|
||||
|
||||
fn multiexp<G: Group<Self>>(&self, &[G::Affine], &[Self::Fr]) -> G;
|
||||
fn batch_baseexp<G: Group<Self>>(&self, base: &G, scalars: &[Self::Fr]) -> Vec<G::Affine>;
|
||||
}
|
||||
|
||||
pub trait Group<E: Engine>: Sized +
|
||||
Copy +
|
||||
Clone +
|
||||
Send +
|
||||
Sync +
|
||||
fmt::Debug +
|
||||
'static
|
||||
{
|
||||
type Affine: GroupAffine<E, Self>;
|
||||
type Prepared: Clone + Send + Sync + 'static;
|
||||
|
||||
fn zero(&E) -> Self;
|
||||
fn one(&E) -> Self;
|
||||
fn random<R: rand::Rng>(&E, &mut R) -> Self;
|
||||
|
||||
fn is_zero(&self) -> bool;
|
||||
fn is_equal(&self, &E, other: &Self) -> bool;
|
||||
|
||||
fn to_affine(&self, &E) -> Self::Affine;
|
||||
fn prepare(&self, &E) -> Self::Prepared;
|
||||
|
||||
fn double(&mut self, &E);
|
||||
fn negate(&mut self, engine: &E);
|
||||
fn add_assign(&mut self, &E, other: &Self);
|
||||
fn sub_assign(&mut self, &E, other: &Self);
|
||||
fn add_assign_mixed(&mut self, &E, other: &Self::Affine);
|
||||
fn mul_assign<S: Convert<[u64], E>>(&mut self, &E, other: &S);
|
||||
|
||||
fn optimal_window(&E, scalar_bits: usize) -> Option<usize>;
|
||||
}
|
||||
|
||||
pub trait GroupAffine<E: Engine, G: Group<E>>: Copy +
|
||||
Clone +
|
||||
Sized +
|
||||
Send +
|
||||
Sync +
|
||||
fmt::Debug +
|
||||
PartialEq +
|
||||
Eq +
|
||||
'static
|
||||
{
|
||||
type Uncompressed: GroupRepresentation<E, G>;
|
||||
|
||||
fn to_jacobian(&self, &E) -> G;
|
||||
fn prepare(self, &E) -> G::Prepared;
|
||||
fn is_zero(&self) -> bool;
|
||||
fn mul<S: Convert<[u64], E>>(&self, &E, other: &S) -> G;
|
||||
fn negate(&mut self, &E);
|
||||
|
||||
/// Returns true iff the point is on the curve and in the correct
|
||||
/// subgroup. This is guaranteed to return true unless the user
|
||||
/// invokes `to_affine_unchecked`.
|
||||
fn is_valid(&self, &E) -> bool;
|
||||
|
||||
/// Produces an "uncompressed" representation of the curve point according
|
||||
/// to IEEE standards.
|
||||
fn to_uncompressed(&self, &E) -> Self::Uncompressed;
|
||||
}
|
||||
|
||||
pub trait GroupRepresentation<E: Engine, G: Group<E>>: Serialize + Deserialize
|
||||
{
|
||||
/// If the point representation is valid (lies on the curve, correct
|
||||
/// subgroup) this function will return it.
|
||||
fn to_affine(&self, e: &E) -> Result<G::Affine, ()> {
|
||||
let p = try!(self.to_affine_unchecked(e));
|
||||
|
||||
if p.is_valid(e) {
|
||||
Ok(p)
|
||||
} else {
|
||||
Err(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the point under the assumption that it is valid. Undefined
|
||||
/// behavior if `to_affine` would have rejected the point.
|
||||
fn to_affine_unchecked(&self, &E) -> Result<G::Affine, ()>;
|
||||
}
|
||||
|
||||
pub trait Field<E: Engine>: Sized +
|
||||
Eq +
|
||||
PartialEq +
|
||||
Copy +
|
||||
Clone +
|
||||
Send +
|
||||
Sync +
|
||||
fmt::Debug +
|
||||
'static
|
||||
{
|
||||
fn zero() -> Self;
|
||||
fn one(&E) -> Self;
|
||||
fn random<R: rand::Rng>(&E, &mut R) -> Self;
|
||||
fn is_zero(&self) -> bool;
|
||||
fn square(&mut self, engine: &E);
|
||||
fn double(&mut self, engine: &E);
|
||||
fn negate(&mut self, &E);
|
||||
fn add_assign(&mut self, &E, other: &Self);
|
||||
fn sub_assign(&mut self, &E, other: &Self);
|
||||
fn mul_assign(&mut self, &E, other: &Self);
|
||||
fn inverse(&self, &E) -> Option<Self>;
|
||||
fn frobenius_map(&mut self, &E, power: usize);
|
||||
fn pow<S: Convert<[u64], E>>(&self, engine: &E, exp: &S) -> Self
|
||||
{
|
||||
let mut res = Self::one(engine);
|
||||
|
||||
for i in BitIterator::from((*exp.convert(engine)).borrow()) {
|
||||
res.square(engine);
|
||||
if i {
|
||||
res.mul_assign(engine, self);
|
||||
}
|
||||
}
|
||||
|
||||
res
|
||||
}
|
||||
}
|
||||
|
||||
pub trait SqrtField<E: Engine>: Field<E>
|
||||
{
|
||||
/// Returns the square root of the field element, if it is
|
||||
/// quadratic residue.
|
||||
fn sqrt(&self, engine: &E) -> Option<Self>;
|
||||
}
|
||||
|
||||
pub trait PrimeField<E: Engine>: SqrtField<E> + Convert<[u64], E>
|
||||
{
|
||||
/// Little endian representation of a field element.
|
||||
type Repr: Convert<[u64], E>;
|
||||
fn from_u64(&E, u64) -> Self;
|
||||
fn from_str(&E, s: &str) -> Result<Self, ()>;
|
||||
fn from_repr(&E, Self::Repr) -> Result<Self, ()>;
|
||||
fn into_repr(&self, &E) -> Self::Repr;
|
||||
|
||||
/// Returns an interator over all bits, most significant bit first.
|
||||
fn bits(&self, &E) -> BitIterator<Self::Repr>;
|
||||
|
||||
/// Returns the field characteristic; the modulus.
|
||||
fn char(&E) -> Self::Repr;
|
||||
|
||||
/// Returns how many bits are needed to represent an element of this
|
||||
/// field.
|
||||
fn num_bits(&E) -> usize;
|
||||
|
||||
/// Returns how many bits of information can be reliably stored in the
|
||||
/// field element.
|
||||
fn capacity(&E) -> usize;
|
||||
}
|
||||
|
||||
pub trait SnarkField<E: Engine>: PrimeField<E>
|
||||
{
|
||||
fn s(&E) -> u64;
|
||||
fn multiplicative_generator(&E) -> Self;
|
||||
fn root_of_unity(&E) -> Self;
|
||||
}
|
||||
|
||||
pub struct BitIterator<T> {
|
||||
t: T,
|
||||
n: usize
|
||||
}
|
||||
|
||||
impl<T: AsRef<[u64]>> Iterator for BitIterator<T> {
|
||||
type Item = bool;
|
||||
|
||||
fn next(&mut self) -> Option<bool> {
|
||||
if self.n == 0 {
|
||||
None
|
||||
} else {
|
||||
self.n -= 1;
|
||||
let part = self.n / 64;
|
||||
let bit = self.n - (64 * part);
|
||||
|
||||
Some(self.t.as_ref()[part] & (1 << bit) > 0)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> From<&'a [u64]> for BitIterator<&'a [u64]>
|
||||
{
|
||||
fn from(v: &'a [u64]) -> Self {
|
||||
assert!(v.len() < 100);
|
||||
|
||||
BitIterator {
|
||||
t: v,
|
||||
n: v.len() * 64
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
use std::ops::Deref;
|
||||
use std::borrow::Borrow;
|
||||
|
||||
pub enum Cow<'a, T: 'a> {
|
||||
Owned(T),
|
||||
Borrowed(&'a T)
|
||||
}
|
||||
|
||||
impl<'a, T: 'a> Deref for Cow<'a, T> {
|
||||
type Target = T;
|
||||
|
||||
fn deref(&self) -> &T {
|
||||
match *self {
|
||||
Cow::Owned(ref v) => v,
|
||||
Cow::Borrowed(v) => v
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Convert<T: ?Sized, E> {
|
||||
type Target: Borrow<T>;
|
||||
|
||||
fn convert(&self, &E) -> Cow<Self::Target>;
|
||||
}
|
||||
|
||||
impl<T, E> Convert<T, E> for T {
|
||||
type Target = T;
|
||||
|
||||
fn convert(&self, _: &E) -> Cow<T> {
|
||||
Cow::Borrowed(self)
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! bit_iter_impl(
|
||||
($n:expr) => {
|
||||
impl From<[u64; $n]> for BitIterator<[u64; $n]> {
|
||||
fn from(v: [u64; $n]) -> Self {
|
||||
BitIterator {
|
||||
t: v,
|
||||
n: $n * 64
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<E> Convert<[u64], E> for [u64; $n] {
|
||||
type Target = [u64; $n];
|
||||
|
||||
fn convert(&self, _: &E) -> Cow<[u64; $n]> {
|
||||
Cow::Borrowed(self)
|
||||
}
|
||||
}
|
||||
};
|
||||
);
|
||||
|
||||
bit_iter_impl!(1);
|
||||
bit_iter_impl!(2);
|
||||
bit_iter_impl!(3);
|
||||
bit_iter_impl!(4);
|
||||
bit_iter_impl!(5);
|
||||
bit_iter_impl!(6);
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
#[test]
|
||||
fn bls381_test_suite() {
|
||||
tests::test_engine::<bls381::Bls381>();
|
||||
}
|
219
src/curves/tests/fields.rs
Normal file
219
src/curves/tests/fields.rs
Normal file
@ -0,0 +1,219 @@
|
||||
use rand::{self, Rng};
|
||||
use super::super::{Engine, Field, SqrtField, PrimeField};
|
||||
|
||||
fn inversion_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
|
||||
let mut a = F::one(e);
|
||||
for _ in 0..10000 {
|
||||
let mut b = a.inverse(e).unwrap();
|
||||
b.mul_assign(e, &a);
|
||||
assert_eq!(b, F::one(e));
|
||||
a.add_assign(e, &F::one(e));
|
||||
}
|
||||
a = F::one(e);
|
||||
a.negate(e);
|
||||
for _ in 0..10000 {
|
||||
let mut b = a.inverse(e).unwrap();
|
||||
b.mul_assign(e, &a);
|
||||
assert_eq!(b, F::one(e));
|
||||
a.sub_assign(e, &F::one(e));
|
||||
}
|
||||
a = F::zero();
|
||||
assert!(a.inverse(e).is_none());
|
||||
for _ in 0..10000 {
|
||||
let r = F::random(e, rng);
|
||||
assert!(!r.is_zero());
|
||||
let mut rinv = r.inverse(e).unwrap();
|
||||
rinv.mul_assign(e, &r);
|
||||
assert_eq!(rinv, F::one(e));
|
||||
}
|
||||
}
|
||||
|
||||
fn expansion_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
|
||||
for _ in 0..100 {
|
||||
let a = F::random(e, rng);
|
||||
let b = F::random(e, rng);
|
||||
let c = F::random(e, rng);
|
||||
let d = F::random(e, rng);
|
||||
|
||||
let lhs;
|
||||
{
|
||||
let mut t0 = a;
|
||||
t0.add_assign(e, &b);
|
||||
let mut t1 = c;
|
||||
t1.add_assign(e, &d);
|
||||
t0.mul_assign(e, &t1);
|
||||
lhs = t0;
|
||||
}
|
||||
|
||||
let rhs;
|
||||
{
|
||||
let mut t0 = a;
|
||||
t0.mul_assign(e, &c);
|
||||
let mut t1 = b;
|
||||
t1.mul_assign(e, &c);
|
||||
let mut t2 = a;
|
||||
t2.mul_assign(e, &d);
|
||||
let mut t3 = b;
|
||||
t3.mul_assign(e, &d);
|
||||
t0.add_assign(e, &t1);
|
||||
t0.add_assign(e, &t2);
|
||||
t0.add_assign(e, &t3);
|
||||
rhs = t0;
|
||||
}
|
||||
|
||||
assert_eq!(lhs, rhs);
|
||||
}
|
||||
}
|
||||
|
||||
fn squaring_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
|
||||
for _ in 0..100 {
|
||||
let mut a = F::random(e, rng);
|
||||
let mut b = a;
|
||||
b.mul_assign(e, &a);
|
||||
a.square(e);
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
|
||||
let mut cur = F::zero();
|
||||
for _ in 0..100 {
|
||||
let mut a = cur;
|
||||
a.square(e);
|
||||
let mut b = cur;
|
||||
b.mul_assign(e, &cur);
|
||||
|
||||
assert_eq!(a, b);
|
||||
|
||||
cur.add_assign(e, &F::one(e));
|
||||
}
|
||||
}
|
||||
|
||||
fn operation_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
|
||||
{
|
||||
let mut acc = F::zero();
|
||||
for _ in 0..1000 {
|
||||
let mut a = acc;
|
||||
a.negate(e);
|
||||
a.add_assign(e, &acc);
|
||||
|
||||
assert_eq!(a, F::zero());
|
||||
acc.add_assign(e, &F::one(e));
|
||||
}
|
||||
}
|
||||
{
|
||||
for _ in 0..1000 {
|
||||
let mut a = F::random(e, rng);
|
||||
let mut at = a;
|
||||
let mut b = F::random(e, rng);
|
||||
|
||||
a.sub_assign(e, &b);
|
||||
b.negate(e);
|
||||
at.add_assign(e, &b);
|
||||
|
||||
assert_eq!(a, at);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn test_field<E: Engine, F: Field<E>>(e: &E) {
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
inversion_tests::<E, F, _>(e, rng);
|
||||
expansion_tests::<E, F, _>(e, rng);
|
||||
squaring_tests::<E, F, _>(e, rng);
|
||||
operation_tests::<E, F, _>(e, rng);
|
||||
}
|
||||
|
||||
pub fn test_sqrt_field<E: Engine, F: SqrtField<E>>(e: &E) {
|
||||
const SAMPLES: isize = 10000;
|
||||
|
||||
{
|
||||
let mut acc = F::one(e);
|
||||
|
||||
for _ in 0..SAMPLES {
|
||||
let mut b = acc;
|
||||
b.square(e);
|
||||
let mut c = b.sqrt(e).unwrap();
|
||||
if c != acc {
|
||||
c.negate(e);
|
||||
}
|
||||
|
||||
assert_eq!(acc, c);
|
||||
|
||||
acc.add_assign(e, &F::one(e));
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let mut acc = F::one(e);
|
||||
|
||||
for _ in 0..SAMPLES {
|
||||
match acc.sqrt(e) {
|
||||
Some(mut a) => {
|
||||
a.square(e);
|
||||
|
||||
assert_eq!(a, acc);
|
||||
},
|
||||
None => {}
|
||||
}
|
||||
|
||||
acc.add_assign(e, &F::one(e));
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
for _ in 0..SAMPLES {
|
||||
let a = F::random(e, rng);
|
||||
let mut b = a;
|
||||
b.square(e);
|
||||
let mut c = b.sqrt(e).unwrap();
|
||||
if c != a {
|
||||
c.negate(e);
|
||||
}
|
||||
|
||||
assert_eq!(a, c);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
let mut qr: isize = 0;
|
||||
let mut nqr: isize = 0;
|
||||
for _ in 0..SAMPLES {
|
||||
let a = F::random(e, rng);
|
||||
match a.sqrt(e) {
|
||||
Some(mut b) => {
|
||||
qr += 1;
|
||||
b.square(e);
|
||||
assert_eq!(a, b);
|
||||
},
|
||||
None => {
|
||||
nqr += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
assert!((qr - nqr < (SAMPLES / 20)) || (qr - nqr > -(SAMPLES / 20)));
|
||||
}
|
||||
}
|
||||
|
||||
pub fn test_prime_field<E: Engine, F: PrimeField<E>>(e: &E) {
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
for _ in 0..100 {
|
||||
let a = F::random(e, rng);
|
||||
let b = F::random(e, rng);
|
||||
let mut c = a;
|
||||
c.mul_assign(e, &b);
|
||||
let a = a.into_repr(e);
|
||||
let b = b.into_repr(e);
|
||||
let expected_a = F::from_repr(e, a).unwrap();
|
||||
let expected_b = F::from_repr(e, b).unwrap();
|
||||
let mut expected_c = expected_a;
|
||||
expected_c.mul_assign(e, &expected_b);
|
||||
assert_eq!(c, expected_c);
|
||||
}
|
||||
}
|
277
src/curves/tests/groups.rs
Normal file
277
src/curves/tests/groups.rs
Normal file
@ -0,0 +1,277 @@
|
||||
use rand;
|
||||
use super::super::{Engine, Field, PrimeField, Group, GroupAffine};
|
||||
|
||||
fn random_test_mixed_addition<E: Engine, G: Group<E>>(e: &E)
|
||||
{
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
// affine is zero
|
||||
{
|
||||
let a = G::zero(e).to_affine(e);
|
||||
let mut b = G::random(e, rng);
|
||||
let bcpy = b;
|
||||
|
||||
b.add_assign_mixed(e, &a);
|
||||
|
||||
assert!(bcpy.is_equal(e, &b));
|
||||
assert_eq!(bcpy.to_affine(e), b.to_affine(e));
|
||||
}
|
||||
|
||||
// self is zero
|
||||
{
|
||||
let a = G::random(e, rng).to_affine(e);
|
||||
let mut b = G::zero(e);
|
||||
let acpy = a.to_jacobian(e);
|
||||
|
||||
b.add_assign_mixed(e, &a);
|
||||
|
||||
assert!(acpy.is_equal(e, &b));
|
||||
assert_eq!(acpy.to_affine(e), b.to_affine(e));
|
||||
}
|
||||
|
||||
// both are zero
|
||||
{
|
||||
let a = G::zero(e).to_affine(e);
|
||||
let mut b = G::zero(e);
|
||||
let acpy = a.to_jacobian(e);
|
||||
|
||||
b.add_assign_mixed(e, &a);
|
||||
|
||||
assert!(acpy.is_equal(e, &b));
|
||||
assert_eq!(acpy.to_affine(e), b.to_affine(e));
|
||||
}
|
||||
|
||||
// one is negative of the other
|
||||
{
|
||||
let a = G::random(e, rng);
|
||||
let mut b = a;
|
||||
b.negate(e);
|
||||
let a = a.to_affine(e);
|
||||
|
||||
b.add_assign_mixed(e, &a);
|
||||
assert!(b.is_zero());
|
||||
assert_eq!(b.to_affine(e), G::zero(e).to_affine(e));
|
||||
}
|
||||
|
||||
// doubling case
|
||||
{
|
||||
let a = G::random(e, rng);
|
||||
let b = a.to_affine(e);
|
||||
let mut acpy = a;
|
||||
acpy.add_assign_mixed(e, &b);
|
||||
|
||||
let mut t = a;
|
||||
t.double(e);
|
||||
assert!(acpy.is_equal(e, &t));
|
||||
}
|
||||
|
||||
for _ in 0..100 {
|
||||
let mut x = G::random(e, rng);
|
||||
let mut y = x;
|
||||
let b = G::random(e, rng);
|
||||
let baffine = b.to_affine(e);
|
||||
|
||||
x.add_assign(e, &b);
|
||||
y.add_assign_mixed(e, &baffine);
|
||||
|
||||
assert!(x.is_equal(e, &y));
|
||||
}
|
||||
}
|
||||
|
||||
fn random_test_addition<E: Engine, G: Group<E>>(e: &E) {
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
for _ in 0..50 {
|
||||
let r1 = G::random(e, rng);
|
||||
let r2 = G::random(e, rng);
|
||||
let r3 = G::random(e, rng);
|
||||
|
||||
{
|
||||
let mut tmp1 = r1;
|
||||
tmp1.add_assign(e, &r2);
|
||||
tmp1.add_assign(e, &r3);
|
||||
|
||||
let mut tmp2 = r2;
|
||||
tmp2.add_assign(e, &r3);
|
||||
tmp2.add_assign(e, &r1);
|
||||
|
||||
assert!(tmp1.is_equal(e, &tmp2));
|
||||
}
|
||||
|
||||
{
|
||||
let mut tmp = r1;
|
||||
tmp.add_assign(e, &r2);
|
||||
tmp.add_assign(e, &r3);
|
||||
tmp.sub_assign(e, &r1);
|
||||
tmp.sub_assign(e, &r2);
|
||||
tmp.sub_assign(e, &r3);
|
||||
|
||||
assert!(tmp.is_zero());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn random_test_doubling<E: Engine, G: Group<E>>(e: &E) {
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
for _ in 0..50 {
|
||||
let r1 = G::random(e, rng);
|
||||
let r2 = G::random(e, rng);
|
||||
let ti = E::Fr::from_str(e, "2").unwrap().inverse(e).unwrap();
|
||||
|
||||
{
|
||||
let mut tmp_1 = r1;
|
||||
tmp_1.add_assign(e, &r2);
|
||||
tmp_1.add_assign(e, &r1);
|
||||
|
||||
let mut tmp_2 = r1;
|
||||
tmp_2.double(e);
|
||||
tmp_2.add_assign(e, &r2);
|
||||
|
||||
assert!(tmp_1.is_equal(e, &tmp_2));
|
||||
}
|
||||
|
||||
{
|
||||
let mut tmp = r1;
|
||||
tmp.double(e);
|
||||
tmp.mul_assign(e, &ti);
|
||||
|
||||
assert!(tmp.is_equal(e, &r1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn random_test_dh<E: Engine, G: Group<E>>(e: &E) {
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
for _ in 0..50 {
|
||||
let alice_sk = E::Fr::random(e, rng);
|
||||
let bob_sk = E::Fr::random(e, rng);
|
||||
|
||||
let mut alice_pk = G::one(e);
|
||||
alice_pk.mul_assign(e, &alice_sk);
|
||||
let mut bob_pk = G::one(e);
|
||||
bob_pk.mul_assign(e, &bob_sk);
|
||||
|
||||
let mut alice_shared = bob_pk;
|
||||
alice_shared.mul_assign(e, &alice_sk);
|
||||
let mut bob_shared = alice_pk;
|
||||
bob_shared.mul_assign(e, &bob_sk);
|
||||
|
||||
assert!(alice_shared.is_equal(e, &bob_shared));
|
||||
}
|
||||
}
|
||||
|
||||
fn random_mixed_addition<E: Engine, G: Group<E>>(e: &E) {
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
for _ in 0..50 {
|
||||
let a = G::random(e, rng);
|
||||
|
||||
let mut res = a;
|
||||
res.double(e);
|
||||
|
||||
let affine = a.to_affine(e);
|
||||
let mut jacobian = affine.to_jacobian(e);
|
||||
jacobian.double(e);
|
||||
|
||||
assert!(jacobian.is_equal(e, &res));
|
||||
}
|
||||
}
|
||||
|
||||
fn random_test_equality<E: Engine, G: Group<E>>(e: &E) {
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
for _ in 0..50 {
|
||||
let begin = G::random(e, rng);
|
||||
|
||||
let mut acc = begin;
|
||||
|
||||
let a = E::Fr::random(e, rng);
|
||||
let b = G::random(e, rng);
|
||||
let c = E::Fr::random(e, rng);
|
||||
let d = G::random(e, rng);
|
||||
|
||||
for _ in 0..10 {
|
||||
acc.mul_assign(e, &a);
|
||||
acc.negate(e);
|
||||
acc.add_assign(e, &b);
|
||||
acc.mul_assign(e, &c);
|
||||
acc.negate(e);
|
||||
acc.sub_assign(e, &d);
|
||||
acc.double(e);
|
||||
}
|
||||
|
||||
assert!(!acc.is_equal(e, &begin));
|
||||
|
||||
let ai = a.inverse(e).unwrap();
|
||||
let ci = c.inverse(e).unwrap();
|
||||
let ti = E::Fr::from_str(e, "2").unwrap().inverse(e).unwrap();
|
||||
|
||||
for _ in 0..10 {
|
||||
acc.mul_assign(e, &ti);
|
||||
acc.add_assign(e, &d);
|
||||
acc.negate(e);
|
||||
acc.mul_assign(e, &ci);
|
||||
acc.sub_assign(e, &b);
|
||||
acc.negate(e);
|
||||
acc.mul_assign(e, &ai);
|
||||
}
|
||||
|
||||
assert!(acc.is_equal(e, &begin));
|
||||
}
|
||||
}
|
||||
|
||||
pub fn test_group<E: Engine, G: Group<E>>(e: &E) {
|
||||
{
|
||||
let rng = &mut rand::thread_rng();
|
||||
let mut g = G::random(e, rng);
|
||||
let order = <E::Fr as PrimeField<E>>::char(e);
|
||||
g.mul_assign(e, &order);
|
||||
|
||||
assert!(g.is_zero());
|
||||
}
|
||||
{
|
||||
let rng = &mut rand::thread_rng();
|
||||
let mut neg1 = E::Fr::one(e);
|
||||
neg1.negate(e);
|
||||
for _ in 0..1000 {
|
||||
let orig = G::random(e, rng);
|
||||
let mut a = orig;
|
||||
a.mul_assign(e, &neg1);
|
||||
assert!(!a.is_zero());
|
||||
a.add_assign(e, &orig);
|
||||
assert!(a.is_zero());
|
||||
}
|
||||
}
|
||||
{
|
||||
let mut o = G::one(e);
|
||||
o.sub_assign(e, &G::one(e));
|
||||
assert!(o.is_zero());
|
||||
}
|
||||
{
|
||||
let mut o = G::one(e);
|
||||
o.add_assign(e, &G::one(e));
|
||||
let mut r = G::one(e);
|
||||
r.mul_assign(e, &E::Fr::from_str(e, "2").unwrap());
|
||||
assert!(o.is_equal(e, &r));
|
||||
}
|
||||
{
|
||||
let mut z = G::zero(e);
|
||||
assert!(z.is_zero());
|
||||
z.double(e);
|
||||
assert!(z.is_zero());
|
||||
|
||||
let zaffine = z.to_affine(e);
|
||||
let zjacobian = zaffine.to_jacobian(e);
|
||||
|
||||
assert!(zjacobian.is_zero());
|
||||
}
|
||||
|
||||
random_test_equality::<E, G>(e);
|
||||
random_test_dh::<E, G>(e);
|
||||
random_test_doubling::<E, G>(e);
|
||||
random_test_addition::<E, G>(e);
|
||||
random_mixed_addition::<E, G>(e);
|
||||
random_test_mixed_addition::<E, G>(e);
|
||||
}
|
136
src/curves/tests/mod.rs
Normal file
136
src/curves/tests/mod.rs
Normal file
@ -0,0 +1,136 @@
|
||||
use super::{Engine, Group, GroupAffine, Field, PrimeField};
|
||||
use rand;
|
||||
|
||||
mod fields;
|
||||
mod groups;
|
||||
|
||||
fn test_multiexp<E: Engine, G: Group<E>>(e: &E) {
|
||||
fn naiveexp<E: Engine, G: Group<E>>(e: &E, g: &[G::Affine], s: &[E::Fr]) -> G
|
||||
{
|
||||
assert!(g.len() == s.len());
|
||||
|
||||
let mut expected = G::zero(e);
|
||||
for (g, s) in g.iter().zip(s.iter()) {
|
||||
expected.add_assign(e, &g.mul(e, s));
|
||||
}
|
||||
|
||||
expected
|
||||
}
|
||||
|
||||
{
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
let g: Vec<G::Affine> = (0..1000).map(|_| G::random(e, rng).to_affine(e)).collect();
|
||||
let s: Vec<E::Fr> = (0..1000).map(|_| E::Fr::random(e, rng)).collect();
|
||||
|
||||
let naive = naiveexp::<E, G>(e, &g, &s);
|
||||
let multi = e.multiexp::<G>(&g, &s);
|
||||
|
||||
assert!(naive.is_equal(e, &multi));
|
||||
assert!(multi.is_equal(e, &naive));
|
||||
}
|
||||
|
||||
{
|
||||
let rng = &mut rand::thread_rng();
|
||||
let g: Vec<G::Affine> = (0..2).map(|_| G::random(e, rng).to_affine(e)).collect();
|
||||
let s = vec![E::Fr::from_str(e, "3435973836800000000000000000000000").unwrap(), E::Fr::from_str(e, "3435973836700000000000000000000000").unwrap()];
|
||||
|
||||
let naive = naiveexp::<E, G>(e, &g, &s);
|
||||
let multi = e.multiexp::<G>(&g, &s);
|
||||
|
||||
assert!(naive.is_equal(e, &multi));
|
||||
assert!(multi.is_equal(e, &naive));
|
||||
}
|
||||
}
|
||||
|
||||
fn test_bilinearity<E: Engine>(e: &E) {
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
let a = E::G1::random(e, rng);
|
||||
let b = E::G2::random(e, rng);
|
||||
let s = E::Fr::random(e, rng);
|
||||
|
||||
let mut a_s = a;
|
||||
a_s.mul_assign(e, &s);
|
||||
|
||||
let mut b_s = b;
|
||||
b_s.mul_assign(e, &s);
|
||||
|
||||
let test1 = e.pairing(&a_s, &b);
|
||||
assert!(test1 != E::Fqk::one(e));
|
||||
let test2 = e.pairing(&a, &b_s);
|
||||
assert_eq!(test1, test2);
|
||||
|
||||
let mut test4 = e.pairing(&a, &b);
|
||||
assert!(test4 != test1);
|
||||
test4 = test4.pow(e, &s);
|
||||
assert_eq!(test1, test4);
|
||||
}
|
||||
|
||||
fn test_multimiller<E: Engine>(e: &E) {
|
||||
let rng = &mut rand::thread_rng();
|
||||
|
||||
let a1 = E::G1::random(e, rng);
|
||||
let a2 = E::G2::random(e, rng);
|
||||
|
||||
let b1 = E::G1::random(e, rng);
|
||||
let b2 = E::G2::random(e, rng);
|
||||
|
||||
let mut p1 = e.pairing(&a1, &a2);
|
||||
let p2 = e.pairing(&b1, &b2);
|
||||
p1.mul_assign(e, &p2);
|
||||
|
||||
let mm = e.final_exponentiation(&e.miller_loop(
|
||||
[
|
||||
(&a1.prepare(e), &a2.prepare(e)),
|
||||
(&b1.prepare(e), &b2.prepare(e))
|
||||
].into_iter()
|
||||
));
|
||||
|
||||
assert_eq!(p1, mm);
|
||||
}
|
||||
|
||||
pub fn test_engine<E: Engine>() {
|
||||
let engine = E::new();
|
||||
|
||||
fields::test_prime_field::<E, E::Fq>(&engine);
|
||||
fields::test_prime_field::<E, E::Fr>(&engine);
|
||||
fields::test_sqrt_field::<E, E::Fq>(&engine);
|
||||
fields::test_sqrt_field::<E, E::Fr>(&engine);
|
||||
fields::test_sqrt_field::<E, E::Fqe>(&engine);
|
||||
|
||||
fields::test_field::<E, E::Fq>(&engine);
|
||||
fields::test_field::<E, E::Fr>(&engine);
|
||||
fields::test_field::<E, E::Fqe>(&engine);
|
||||
fields::test_field::<E, E::Fqk>(&engine);
|
||||
|
||||
groups::test_group::<E, E::G1>(&engine);
|
||||
groups::test_group::<E, E::G2>(&engine);
|
||||
|
||||
test_bilinearity(&engine);
|
||||
test_multimiller(&engine);
|
||||
test_frobenius(&engine);
|
||||
test_multiexp::<E, E::G1>(&engine);
|
||||
test_multiexp::<E, E::G2>(&engine);
|
||||
}
|
||||
|
||||
fn test_frobenius<E: Engine>(e: &E) {
|
||||
let rng = &mut rand::thread_rng();
|
||||
let modulus = E::Fq::char(e);
|
||||
|
||||
let a = E::Fqk::random(e, rng);
|
||||
let mut acpy = a;
|
||||
acpy.frobenius_map(e, 0);
|
||||
assert_eq!(acpy, a);
|
||||
|
||||
let mut a_q = a.pow(e, &modulus);
|
||||
|
||||
for p in 1..12 {
|
||||
acpy = a;
|
||||
acpy.frobenius_map(e, p);
|
||||
|
||||
assert_eq!(acpy, a_q);
|
||||
|
||||
a_q = a_q.pow(e, &modulus);
|
||||
}
|
||||
}
|
@ -0,0 +1,8 @@
|
||||
#![feature(i128_type)]
|
||||
|
||||
extern crate rand;
|
||||
extern crate rayon;
|
||||
extern crate byteorder;
|
||||
extern crate serde;
|
||||
|
||||
pub mod curves;
|
Loading…
Reference in New Issue
Block a user