Massive refactor of keccakf

This commit is contained in:
Sean Bowe 2015-12-28 02:08:05 -07:00
parent 4eac6417c3
commit 316b65514c

@ -22,9 +22,89 @@ const KECCAKF_PILN: [usize; 24] =
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
]; ];
fn keccakf(st: &mut [Chunk], rounds: usize) fn keccakf(st: &mut [Byte], rounds: usize)
{ {
use std::borrow::Borrow;
struct State<B: Borrow<Bit>> {
bits: Vec<B>
}
impl<'a> State<&'a mut Bit> {
fn new(bytes: &'a mut [Byte]) -> State<&'a mut Bit> {
assert_eq!(bytes.len(), 8); // 64 bit lanes
State {
bits: bytes.iter_mut()
.rev() // Endianness
.flat_map(|b| b.bits.iter_mut())
.collect()
}
}
fn set(&mut self, to: State<Bit>) {
for (a, b) in self.bits.iter_mut()
.zip(to.bits.into_iter()) {
**a = b;
}
}
}
impl From<u64> for State<Bit> {
fn from(num: u64) -> State<Bit> {
fn bit_at(num: u64, i: usize) -> u8 {
((num << i) >> 63) as u8
}
State {
bits: (0..64).map(|i| Bit::constant(bit_at(num, i))).collect()
}
}
}
impl<A: Borrow<Bit>> State<A> {
fn duplicate(&self) -> State<Bit> {
State {
bits: self.bits.iter().map(|a| a.borrow())
.map(|a| (*a).clone())
.collect()
}
}
fn xor<B: Borrow<Bit>>(&self, other: &State<B>) -> State<Bit> {
State {
bits: self.bits.iter().map(|a| a.borrow())
.zip(other.bits.iter().map(|a| a.borrow()))
.map(|(a, b)| a.xor(b))
.collect()
}
}
fn notand<B: Borrow<Bit>>(&self, other: &State<B>) -> State<Bit> {
State {
bits: self.bits.iter().map(|a| a.borrow())
.zip(other.bits.iter().map(|a| a.borrow()))
.map(|(a, b)| a.notand(b))
.collect()
}
}
fn rotl(&self, by: usize) -> State<Bit> {
let by = by % 64;
State {
bits: self.bits[by..].iter().map(|a| a.borrow())
.chain(self.bits[0..by].iter().map(|a| a.borrow()))
.cloned()
.collect()
}
}
}
let mut st: Vec<_> = st.chunks_mut(8).map(|c| State::new(c)).collect();
assert_eq!(st.len(), 25); assert_eq!(st.len(), 25);
for round in 0..rounds { for round in 0..rounds {
/* /*
// Theta // Theta
@ -32,12 +112,12 @@ fn keccakf(st: &mut [Chunk], rounds: usize)
bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20]; bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
*/ */
let mut bc: Vec<Chunk> = (0..5).map(|i| st[i] let mut bc: Vec<State<Bit>> = (0..5).map(|i| st[i]
.xor(&st[i+5]) .xor(&st[i+5])
.xor(&st[i+10]) .xor(&st[i+10])
.xor(&st[i+15]) .xor(&st[i+15])
.xor(&st[i+20]) .xor(&st[i+20])
).collect(); ).collect();
/* /*
for (i = 0; i < 5; i++) { for (i = 0; i < 5; i++) {
@ -51,7 +131,8 @@ fn keccakf(st: &mut [Chunk], rounds: usize)
let tmp = bc[(i + 4) % 5].xor(&bc[(i + 1) % 5].rotl(1)); let tmp = bc[(i + 4) % 5].xor(&bc[(i + 1) % 5].rotl(1));
for j in (0..25).filter(|a| a % 5 == 0) { for j in (0..25).filter(|a| a % 5 == 0) {
st[j + i] = tmp.xor(&st[j + i]); let new = tmp.xor(&st[j + i]);
st[j + i].set(new);
} }
} }
@ -66,14 +147,14 @@ fn keccakf(st: &mut [Chunk], rounds: usize)
t = bc[0]; t = bc[0];
} }
*/ */
let mut tmp = st[1].clone(); let mut tmp = st[1].duplicate();
for i in 0..24 { for i in 0..24 {
let j = KECCAKF_PILN[i]; let j = KECCAKF_PILN[i];
bc[0] = st[j].clone(); bc[0] = st[j].duplicate();
st[j] = tmp.rotl(KECCAKF_ROTC[i]); st[j].set(tmp.rotl(KECCAKF_ROTC[i]));
tmp = bc[0].clone(); tmp = bc[0].duplicate();
} }
} }
@ -90,11 +171,12 @@ fn keccakf(st: &mut [Chunk], rounds: usize)
for j in (0..25).filter(|a| a % 5 == 0) { for j in (0..25).filter(|a| a % 5 == 0) {
for i in 0..5 { for i in 0..5 {
bc[i] = st[j + i].clone(); bc[i] = st[j + i].duplicate();
} }
for i in 0..5 { for i in 0..5 {
st[j + i] = st[j + i].xor(&bc[(i + 1) % 5].notand(&bc[(i + 2) % 5])); let n = st[j + i].xor(&bc[(i + 1) % 5].notand(&bc[(i + 2) % 5]));
st[j + i].set(n);
} }
} }
} }
@ -104,16 +186,17 @@ fn keccakf(st: &mut [Chunk], rounds: usize)
st[0] ^= keccakf_rndc[round]; st[0] ^= keccakf_rndc[round];
*/ */
st[0] = st[0].xor(&KECCAKF_RNDC[round].into()); let n = st[0].xor(&KECCAKF_RNDC[round].into());
st[0].set(n);
} }
} }
fn sha3_256(message: &[Byte]) -> Vec<Byte> { fn sha3_256(message: &[Byte]) -> Vec<Byte> {
// As defined by FIPS202 // As defined by FIPS202
keccak(1088, 512, message, 0x06, 32) keccak(1088, 512, message, 0x06, 32, 24)
} }
fn keccak(rate: usize, capacity: usize, mut input: &[Byte], delimited_suffix: u8, mut mdlen: usize) fn keccak(rate: usize, capacity: usize, mut input: &[Byte], delimited_suffix: u8, mut mdlen: usize, num_rounds: usize)
-> Vec<Byte> -> Vec<Byte>
{ {
use std::cmp::min; use std::cmp::min;
@ -139,7 +222,7 @@ fn keccak(rate: usize, capacity: usize, mut input: &[Byte], delimited_suffix: u8
inputByteLen -= blockSize; inputByteLen -= blockSize;
if blockSize == rateInBytes { if blockSize == rateInBytes {
temporary_shim(&mut st); keccakf(&mut st, num_rounds);
blockSize = 0; blockSize = 0;
} }
} }
@ -147,12 +230,12 @@ fn keccak(rate: usize, capacity: usize, mut input: &[Byte], delimited_suffix: u8
st[blockSize] = st[blockSize].xor(&Bit::byte(delimited_suffix)); st[blockSize] = st[blockSize].xor(&Bit::byte(delimited_suffix));
if ((delimited_suffix & 0x80) != 0) && (blockSize == (rateInBytes-1)) { if ((delimited_suffix & 0x80) != 0) && (blockSize == (rateInBytes-1)) {
temporary_shim(&mut st); keccakf(&mut st, num_rounds);
} }
st[rateInBytes-1] = st[rateInBytes-1].xor(&Bit::byte(0x80)); st[rateInBytes-1] = st[rateInBytes-1].xor(&Bit::byte(0x80));
temporary_shim(&mut st); keccakf(&mut st, num_rounds);
let mut output = Vec::with_capacity(mdlen); let mut output = Vec::with_capacity(mdlen);
@ -162,39 +245,13 @@ fn keccak(rate: usize, capacity: usize, mut input: &[Byte], delimited_suffix: u8
mdlen -= blockSize; mdlen -= blockSize;
if mdlen > 0 { if mdlen > 0 {
temporary_shim(&mut st); keccakf(&mut st, num_rounds);
} }
} }
output output
} }
fn temporary_shim(state: &mut [Byte]) {
assert_eq!(state.len(), 200);
println!("RUNNING TEMPORARY SHIM!");
let mut chunks = Vec::with_capacity(25);
for i in 0..25 {
chunks.push(Chunk::from(0x0000000000000000));
}
for (chunk_bit, input_bit) in chunks.iter_mut().flat_map(|c| c.bits.iter_mut())
//.zip(state.iter().flat_map(|c| c.bits.iter()))
.zip(state.chunks(8).flat_map(|e| e.iter().rev()).flat_map(|c| c.bits.iter()))
{
*chunk_bit = input_bit.clone();
}
keccakf(&mut chunks, 24);
for (chunk_bit, input_bit) in chunks.iter().flat_map(|c| c.bits.iter())
.zip(state.chunks_mut(8).flat_map(|e| e.iter_mut().rev()).flat_map(|c| c.bits.iter_mut()))
{
*input_bit = chunk_bit.clone();
}
}
#[derive(Clone)] #[derive(Clone)]
struct Chunk { struct Chunk {
bits: Vec<Bit> bits: Vec<Bit>
@ -287,7 +344,8 @@ struct Byte {
} }
impl Byte { impl Byte {
fn grab(&self) -> u8 { // TODO: change this name
fn unwrap_constant(&self) -> u8 {
let mut cur = 7; let mut cur = 7;
let mut acc = 0; let mut acc = 0;
@ -372,57 +430,21 @@ fn test_sha3_256() {
]; ];
for (i, &(ref message, ref expected)) in test_vector.iter().enumerate() { for (i, &(ref message, ref expected)) in test_vector.iter().enumerate() {
let result: Vec<u8> = sha3_256(message).into_iter().map(|a| a.grab()).collect(); let result: Vec<u8> = sha3_256(message).into_iter().map(|a| a.unwrap_constant()).collect();
if &*result != expected { if &*result != expected {
print!("Expected: "); print!("Got: ");
for i in result.iter() { for i in result.iter() {
print!("0x{:02x},", i); print!("0x{:02x},", i);
} }
print!("\nExpected: ");
for i in expected.iter() {
print!("0x{:02x},", i);
}
println!("");
panic!("Hash {} failed!", i+1); panic!("Hash {} failed!", i+1);
} else { } else {
println!("--- HASH {} SUCCESS ---", i+1); println!("--- HASH {} SUCCESS ---", i+1);
} }
} }
} }
#[test]
fn test_keccakf() {
let base = Chunk::from(0xABCDEF0123456789);
let mut a: Vec<Chunk> = (0..25).map(|i| base.rotl(i*4)).collect();
keccakf(&mut a, 24);
const TEST_VECTOR: [u64; 25] = [
0x4c8948fcb6616044,
0x75642a21f8bd1299,
0xb2e949825ace668e,
0x9b73a04c53826c35,
0x914989b8d38ea4d1,
0xdc73480ade4e2664,
0x931394137c6fbd69,
0x234fa173896019f5,
0x906da29a7796b157,
0x7666ebe222445610,
0x41d77796738c884e,
0x8861db16234437fa,
0xf07cb925b71f27f2,
0xfec25b4810a2202c,
0xa8ba9bbfa9076b54,
0x18d9b9e748d655b9,
0xa2172c0059955be6,
0xea602c863b7947b8,
0xc77f9f23851bc2bd,
0x0e8ab0a29b3fef79,
0xfd73c2cd3b443de4,
0x447892bf2c03c2ef,
0xd5b3dae382c238b1,
0x2103d8a64e9f4cb6,
0xfe1f57d88e2de92f
];
for i in 0..25 {
assert!(a[i] == Chunk::from(TEST_VECTOR[i]));
}
}