Merge pull request #2 from LoopringSecondary/upstream-branch

Fixed misc small issues + split up work in multiple programs
This commit is contained in:
Kobi Gurkan 2019-12-06 16:16:27 +02:00 committed by GitHub
commit 5e26ad1cc2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 624 additions and 423 deletions

@ -286,6 +286,7 @@ impl<E: Engine> Parameters<E> {
pub fn read<R: Read>( pub fn read<R: Read>(
mut reader: R, mut reader: R,
disallow_points_at_infinity: bool,
checked: bool checked: bool
) -> io::Result<Self> ) -> io::Result<Self>
{ {
@ -301,7 +302,7 @@ impl<E: Engine> Parameters<E> {
.into_affine_unchecked() .into_affine_unchecked()
} }
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() { .and_then(|e| if disallow_points_at_infinity && e.is_zero() {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity")) Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
} else { } else {
Ok(e) Ok(e)
@ -320,7 +321,7 @@ impl<E: Engine> Parameters<E> {
.into_affine_unchecked() .into_affine_unchecked()
} }
.map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e)) .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
.and_then(|e| if e.is_zero() { .and_then(|e| if disallow_points_at_infinity && e.is_zero() {
Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity")) Err(io::Error::new(io::ErrorKind::InvalidData, "point at infinity"))
} else { } else {
Ok(e) Ok(e)

@ -12,11 +12,16 @@ repository = "https://github.com/ebfull/phase2"
rand = "0.4" rand = "0.4"
bellman_ce = { path = "../bellman" } bellman_ce = { path = "../bellman" }
byteorder = "1" byteorder = "1"
exitcode = "1.1.2"
num_cpus = "1" num_cpus = "1"
crossbeam = "0.3" crossbeam = "0.3"
blake2-rfc = "0.2" blake2-rfc = "0.2"
blake2 = "0.6.1"
serde = { version = "1.0", features = ["derive"] } serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0" serde_json = "1.0"
memmap = "0.7" memmap = "0.7"
num-bigint = "0.2.3" num-bigint = "0.2.3"
num-traits = "0.2.8" num-traits = "0.2.8"
itertools = "0.8.1"
rust-crypto = "0.2"
hex = "0.4.0"

94
phase2/src/bin/beacon.rs Normal file

@ -0,0 +1,94 @@
extern crate rand;
extern crate phase2;
extern crate memmap;
extern crate num_bigint;
extern crate num_traits;
extern crate blake2;
extern crate byteorder;
extern crate exitcode;
extern crate itertools;
extern crate crypto;
extern crate hex;
use itertools::Itertools;
use std::fs::File;
use std::fs::OpenOptions;
fn main() {
let args: Vec<String> = std::env::args().collect();
if args.len() != 5 {
println!("Usage: \n<in_params.params> <in_beacon_hash> <in_num_iterations_exp> <out_params.params>");
std::process::exit(exitcode::USAGE);
}
let in_params_filename = &args[1];
let beacon_hash = &args[2];
let num_iterations_exp = &args[3].parse::<usize>().unwrap();
let out_params_filename = &args[4];
let disallow_points_at_infinity = false;
// Create an RNG based on the outcome of the random beacon
let mut rng = {
use byteorder::{ReadBytesExt, BigEndian};
use rand::{SeedableRng};
use rand::chacha::ChaChaRng;
use crypto::sha2::Sha256;
use crypto::digest::Digest;
// The hash used for the beacon
let mut cur_hash = hex::decode(beacon_hash).unwrap();
// Performs 2^n hash iterations over it
let n: usize = *num_iterations_exp;
for i in 0..(1u64<<n) {
// Print 1024 of the interstitial states
// so that verification can be
// parallelized
if i % (1u64<<(n-10)) == 0 {
print!("{}: ", i);
for b in cur_hash.iter() {
print!("{:02x}", b);
}
println!("");
}
let mut h = Sha256::new();
h.input(&cur_hash);
h.result(&mut cur_hash);
}
print!("Final result of beacon: ");
for b in cur_hash.iter() {
print!("{:02x}", b);
}
println!("");
let mut digest = &cur_hash[..];
let mut seed = [0u32; 8];
for i in 0..8 {
seed[i] = digest.read_u32::<BigEndian>().expect("digest is large enough for this to work");
}
ChaChaRng::from_seed(&seed)
};
println!("Done creating a beacon RNG");
let reader = OpenOptions::new()
.read(true)
.open(in_params_filename)
.expect("unable to open.");
let mut params = phase2::MPCParameters::read(reader, disallow_points_at_infinity, true).expect("unable to read params");
println!("Contributing to {}...", in_params_filename);
let hash = params.contribute(&mut rng);
println!("Contribution hash: 0x{:02x}", hash.iter().format(""));
println!("Writing parameters to {}.", out_params_filename);
let mut f = File::create(out_params_filename).unwrap();
params.write(&mut f).expect("failed to write updated parameters");
}

@ -1,409 +0,0 @@
extern crate bellman_ce;
extern crate rand;
extern crate phase2;
extern crate memmap;
extern crate num_bigint;
extern crate num_traits;
#[macro_use]
extern crate serde;
extern crate serde_json;
use serde::{Deserialize, Serialize};
use num_bigint::BigUint;
use num_traits::Num;
// For randomness (during paramgen and proof generation)
use rand::{thread_rng, ChaChaRng, Rng};
// For benchmarking
use std::time::{Duration, Instant};
use std::str;
use std::fs::File;
use std::fs::{OpenOptions, remove_file};
use std::io::Write;
use std::ops::DerefMut;
#[derive(Serialize, Deserialize)]
struct ProvingKeyJson {
#[serde(rename = "A")]
pub a: Vec<Vec<String>>,
#[serde(rename = "B1")]
pub b1: Vec<Vec<String>>,
#[serde(rename = "B2")]
pub b2: Vec<Vec<Vec<String>>>,
#[serde(rename = "C")]
pub c: Vec<Option<Vec<String>>>,
pub vk_alfa_1: Vec<String>,
pub vk_beta_1: Vec<String>,
pub vk_delta_1: Vec<String>,
pub vk_beta_2: Vec<Vec<String>>,
pub vk_delta_2: Vec<Vec<String>>,
#[serde(rename = "hExps")]
pub h: Vec<Vec<String>>,
}
#[derive(Serialize, Deserialize)]
struct VerifyingKeyJson {
#[serde(rename = "IC")]
pub ic: Vec<Vec<String>>,
pub vk_alfa_1: Vec<String>,
pub vk_beta_2: Vec<Vec<String>>,
pub vk_gamma_2: Vec<Vec<String>>,
pub vk_delta_2: Vec<Vec<String>>,
}
// Bring in some tools for using pairing-friendly curves
use bellman_ce::pairing::{
Engine,
CurveAffine,
ff::{Field, PrimeField},
};
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
use bellman_ce::pairing::bn256::{
Bn256,
};
// We'll use these interfaces to construct our circuit.
use bellman_ce::{
Circuit,
Variable,
Index,
LinearCombination,
ConstraintSystem,
SynthesisError
};
// We're going to use the Groth16 proving system.
use bellman_ce::groth16::{
Proof,
prepare_verifying_key,
create_random_proof,
verify_proof,
};
use std::collections::BTreeMap;
#[derive(Serialize, Deserialize)]
struct CircuitJson {
pub constraints: Vec<Vec<BTreeMap<String, String>>>,
#[serde(rename = "nPubInputs")]
pub num_inputs: usize,
#[serde(rename = "nOutputs")]
pub num_outputs: usize,
#[serde(rename = "nVars")]
pub num_variables: usize,
}
struct CircomCircuit<'a> {
pub file_name: &'a str,
pub witness: Vec<String>,
}
/// Our demo circuit implements this `Circuit` trait which
/// is used during paramgen and proving in order to
/// synthesize the constraint system.
impl<'a, E: Engine> Circuit<E> for CircomCircuit<'a> {
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
let mmap = unsafe { memmap::Mmap::map(&File::open(self.file_name)?) }?;
let content = str::from_utf8(&mmap).unwrap();
let circuit_json: CircuitJson = serde_json::from_str(&content).unwrap();
let num_public_inputs = circuit_json.num_inputs + circuit_json.num_outputs + 1;
println!("num public inputs: {}", num_public_inputs);
for i in 1..circuit_json.num_variables {
if i < num_public_inputs {
//println!("allocating public input {}", i);
cs.alloc_input(|| format!("variable {}", i), || {
println!("variable {}: {}", i, &self.witness[i]);
Ok(E::Fr::from_str(&self.witness[i]).unwrap())
});
} else {
//println!("allocating private input {}", i);
cs.alloc(|| format!("variable {}", i), || {
println!("variable {}: {}", i, &self.witness[i]);
Ok(E::Fr::from_str(&self.witness[i]).unwrap())
});
}
}
let mut constrained: BTreeMap<usize, bool> = BTreeMap::new();
let mut constraint_num = 0;
for (i, constraint) in circuit_json.constraints.iter().enumerate() {
let mut lcs = vec![];
for lc_description in constraint {
let mut lc = LinearCombination::<E>::zero();
//println!("lc_description: {:?}, i: {}, len: {}", lc_description, i, constraint.len());
for (var_index_str, coefficient_str) in lc_description {
//println!("var_index_str: {}, coefficient_str: {}", var_index_str, coefficient_str);
let var_index_num: usize = var_index_str.parse().unwrap();
let var_index = if var_index_num < num_public_inputs {
Index::Input(var_index_num)
} else {
Index::Aux(var_index_num - num_public_inputs)
};
constrained.insert(var_index_num, true);
if i == 2 {
lc = lc + (E::Fr::from_str(coefficient_str).unwrap(), Variable::new_unchecked(var_index));
} else {
lc = lc + (E::Fr::from_str(coefficient_str).unwrap(), Variable::new_unchecked(var_index));
}
}
lcs.push(lc);
}
cs.enforce(|| format!("constraint {}", constraint_num), |_| lcs[0].clone(), |_| lcs[1].clone(), |_| lcs[2].clone());
constraint_num += 1;
}
println!("contraints: {}", circuit_json.constraints.len());
let mut unconstrained: BTreeMap<usize, bool> = BTreeMap::new();
for i in 0..circuit_json.num_variables {
if !constrained.contains_key(&i) {
unconstrained.insert(i, true);
}
}
for (i, _) in unconstrained {
println!("variable {} is unconstrained", i);
}
Ok(())
}
}
fn main() {
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
//let rng = &mut thread_rng();
let mut rng = ChaChaRng::new_unseeded();
rng.set_counter(0u64, 1234567890u64);
let rng = &mut rng;
println!("Creating parameters...");
let should_filter_points_at_infinity = false;
let file_name = "circuit.json";
let mmap = unsafe { memmap::Mmap::map(&File::open("witness.json").unwrap()) }.unwrap();
let content = str::from_utf8(&mmap).unwrap();
let witness: Vec<String> = serde_json::from_str(&content).unwrap();
// Create parameters for our circuit
let mut params = {
let c = CircomCircuit {
file_name,
witness: witness.clone(),
};
phase2::MPCParameters::new(c, should_filter_points_at_infinity).unwrap()
};
let old_params = params.clone();
params.contribute(rng);
let first_contrib = phase2::verify_contribution(&old_params, &params).expect("should verify");
let old_params = params.clone();
params.contribute(rng);
let second_contrib = phase2::verify_contribution(&old_params, &params).expect("should verify");
let verification_result = params.verify(CircomCircuit {
file_name,
witness: witness.clone(),
}, should_filter_points_at_infinity).unwrap();
assert!(phase2::contains_contribution(&verification_result, &first_contrib));
assert!(phase2::contains_contribution(&verification_result, &second_contrib));
let params = params.get_params();
let mut f = File::create("circom.params").unwrap();
params.write(&mut f);
let mut proving_key = ProvingKeyJson {
a: vec![],
b1: vec![],
b2: vec![],
c: vec![],
vk_alfa_1: vec![],
vk_beta_1: vec![],
vk_delta_1: vec![],
vk_beta_2: vec![],
vk_delta_2: vec![],
h: vec![],
};
let repr_to_big = |r| {
BigUint::from_str_radix(&format!("{}", r)[2..], 16).unwrap().to_str_radix(10)
};
let p1_to_vec = |p : &<Bn256 as Engine>::G1Affine| {
let mut v = vec![];
let x = repr_to_big(p.get_x().into_repr());
v.push(x);
let y = repr_to_big(p.get_y().into_repr());
v.push(y);
if p.is_zero() {
v.push("0".to_string());
} else {
v.push("1".to_string());
}
v
};
let p2_to_vec = |p : &<Bn256 as Engine>::G2Affine| {
let mut v = vec![];
let x = p.get_x();
let mut x_v = vec![];
x_v.push(repr_to_big(x.c0.into_repr()));
x_v.push(repr_to_big(x.c1.into_repr()));
v.push(x_v);
let y = p.get_y();
let mut y_v = vec![];
y_v.push(repr_to_big(y.c0.into_repr()));
y_v.push(repr_to_big(y.c1.into_repr()));
v.push(y_v);
if p.is_zero() {
v.push(["0".to_string(), "0".to_string()].to_vec());
} else {
v.push(["1".to_string(), "0".to_string()].to_vec());
}
v
};
let a = params.a.clone();
for e in a.iter() {
proving_key.a.push(p1_to_vec(e));
}
let b1 = params.b_g1.clone();
for e in b1.iter() {
proving_key.b1.push(p1_to_vec(e));
}
let b2 = params.b_g2.clone();
for e in b2.iter() {
proving_key.b2.push(p2_to_vec(e));
}
let c = params.l.clone();
for _ in 0..params.vk.ic.len() {
proving_key.c.push(None);
}
for e in c.iter() {
proving_key.c.push(Some(p1_to_vec(e)));
}
let vk_alfa_1 = params.vk.alpha_g1.clone();
proving_key.vk_alfa_1 = p1_to_vec(&vk_alfa_1);
let vk_beta_1 = params.vk.beta_g1.clone();
proving_key.vk_beta_1 = p1_to_vec(&vk_beta_1);
let vk_delta_1 = params.vk.delta_g1.clone();
proving_key.vk_delta_1 = p1_to_vec(&vk_delta_1);
let vk_beta_2 = params.vk.beta_g2.clone();
proving_key.vk_beta_2 = p2_to_vec(&vk_beta_2);
let vk_delta_2 = params.vk.delta_g2.clone();
proving_key.vk_delta_2 = p2_to_vec(&vk_delta_2);
let h = params.h.clone();
for e in h.iter() {
proving_key.h.push(p1_to_vec(e));
}
let mut verification_key = VerifyingKeyJson {
ic: vec![],
vk_alfa_1: vec![],
vk_beta_2: vec![],
vk_gamma_2: vec![],
vk_delta_2: vec![],
};
let ic = params.vk.ic.clone();
for e in ic.iter() {
verification_key.ic.push(p1_to_vec(e));
}
verification_key.vk_alfa_1 = p1_to_vec(&vk_alfa_1);
verification_key.vk_beta_2 = p2_to_vec(&vk_beta_2);
//let vk_alfabeta_12 = vk_alfa_1.pairing_with(&vk_beta_2);
//println!("vk_alfabeta_12: {}", vk_alfabeta_12);
let vk_gamma_2 = params.vk.gamma_g2.clone();
verification_key.vk_gamma_2 = p2_to_vec(&vk_gamma_2);
verification_key.vk_delta_2 = p2_to_vec(&vk_delta_2);
let mut pk_file = OpenOptions::new().read(true).write(true).create_new(true).open("pk.json").unwrap();
let pk_json = serde_json::to_string(&proving_key).unwrap();
pk_file.set_len(pk_json.len() as u64);
let mut mmap = unsafe { memmap::Mmap::map(&pk_file) }.unwrap().make_mut().unwrap();
mmap.deref_mut().write_all(pk_json.as_bytes()).unwrap();
let mut vk_file = OpenOptions::new().read(true).write(true).create_new(true).open("vk.json").unwrap();
let vk_json = serde_json::to_string(&verification_key).unwrap();
vk_file.set_len(vk_json.len() as u64);
let mut mmap = unsafe { memmap::Mmap::map(&vk_file) }.unwrap().make_mut().unwrap();
mmap.deref_mut().write_all(vk_json.as_bytes()).unwrap();
/*
// Prepare the verification key (for proof verification)
let pvk = prepare_verifying_key(&params.vk);
println!("Creating proofs...");
// Let's benchmark stuff!
const SAMPLES: u32 = 1;
let mut total_proving = Duration::new(0, 0);
let mut total_verifying = Duration::new(0, 0);
// Just a place to put the proof data, so we can
// benchmark deserialization.
let mut proof_vec = vec![];
for _ in 0..SAMPLES {
proof_vec.truncate(0);
let start = Instant::now();
{
// Create an instance of our circuit (with the
// witness)
let c = CircomCircuit {
file_name,
witness: witness.clone(),
};
// Create a groth16 proof with our parameters.
let proof = create_random_proof(c, params, rng).unwrap();
println!("proof: {:?}", proof);
proof.write(&mut proof_vec).unwrap();
}
total_proving += start.elapsed();
let start = Instant::now();
let proof = Proof::read(&proof_vec[..]).unwrap();
// Check the proof
assert!(verify_proof(
&pvk,
&proof,
&[]
).unwrap());
total_verifying += start.elapsed();
}
let proving_avg = total_proving / SAMPLES;
let proving_avg = proving_avg.subsec_nanos() as f64 / 1_000_000_000f64
+ (proving_avg.as_secs() as f64);
let verifying_avg = total_verifying / SAMPLES;
let verifying_avg = verifying_avg.subsec_nanos() as f64 / 1_000_000_000f64
+ (verifying_avg.as_secs() as f64);
println!("Average proving time: {:?} seconds", proving_avg);
println!("Average verifying time: {:?} seconds", verifying_avg);
*/
}

@ -0,0 +1,74 @@
extern crate rand;
extern crate phase2;
extern crate memmap;
extern crate num_bigint;
extern crate num_traits;
extern crate blake2;
extern crate byteorder;
extern crate exitcode;
extern crate itertools;
use itertools::Itertools;
use std::fs::File;
use std::fs::OpenOptions;
fn main() {
let args: Vec<String> = std::env::args().collect();
if args.len() != 4 {
println!("Usage: \n<in_params.params> <in_str_entropy> <out_params.params>");
std::process::exit(exitcode::USAGE);
}
let in_params_filename = &args[1];
let entropy = &args[2];
let out_params_filename = &args[3];
let disallow_points_at_infinity = false;
// Create an RNG based on a mixture of system randomness and user provided randomness
let mut rng = {
use byteorder::{ReadBytesExt, BigEndian};
use blake2::{Blake2b, Digest};
use rand::{SeedableRng, Rng, OsRng};
use rand::chacha::ChaChaRng;
let h = {
let mut system_rng = OsRng::new().unwrap();
let mut h = Blake2b::default();
// Gather 1024 bytes of entropy from the system
for _ in 0..1024 {
let r: u8 = system_rng.gen();
h.input(&[r]);
}
// Hash it all up to make a seed
h.input(&entropy.as_bytes());
h.result()
};
let mut digest = &h[..];
// Interpret the first 32 bytes of the digest as 8 32-bit words
let mut seed = [0u32; 8];
for i in 0..8 {
seed[i] = digest.read_u32::<BigEndian>().expect("digest is large enough for this to work");
}
ChaChaRng::from_seed(&seed)
};
let reader = OpenOptions::new()
.read(true)
.open(in_params_filename)
.expect("unable to open.");
let mut params = phase2::MPCParameters::read(reader, disallow_points_at_infinity, true).expect("unable to read params");
println!("Contributing to {}...", in_params_filename);
let hash = params.contribute(&mut rng);
println!("Contribution hash: 0x{:02x}", hash.iter().format(""));
println!("Writing parameters to {}.", out_params_filename);
let mut f = File::create(out_params_filename).unwrap();
params.write(&mut f).expect("failed to write updated parameters");
}

@ -0,0 +1,219 @@
extern crate bellman_ce;
extern crate rand;
extern crate phase2;
extern crate memmap;
extern crate num_bigint;
extern crate num_traits;
extern crate exitcode;
extern crate serde;
extern crate serde_json;
use serde::{Deserialize, Serialize};
use num_bigint::BigUint;
use num_traits::Num;
use std::fs::OpenOptions;
use std::io::Write;
use std::ops::DerefMut;
#[derive(Serialize, Deserialize)]
struct ProvingKeyJson {
#[serde(rename = "A")]
pub a: Vec<Vec<String>>,
#[serde(rename = "B1")]
pub b1: Vec<Vec<String>>,
#[serde(rename = "B2")]
pub b2: Vec<Vec<Vec<String>>>,
#[serde(rename = "C")]
pub c: Vec<Option<Vec<String>>>,
pub vk_alfa_1: Vec<String>,
pub vk_beta_1: Vec<String>,
pub vk_delta_1: Vec<String>,
pub vk_beta_2: Vec<Vec<String>>,
pub vk_delta_2: Vec<Vec<String>>,
#[serde(rename = "hExps")]
pub h: Vec<Vec<String>>,
}
#[derive(Serialize, Deserialize)]
struct VerifyingKeyJson {
#[serde(rename = "IC")]
pub ic: Vec<Vec<String>>,
pub vk_alfa_1: Vec<String>,
pub vk_beta_2: Vec<Vec<String>>,
pub vk_gamma_2: Vec<Vec<String>>,
pub vk_delta_2: Vec<Vec<String>>,
}
// Bring in some tools for using pairing-friendly curves
use bellman_ce::pairing::{
Engine,
CurveAffine,
ff::PrimeField,
};
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
use bellman_ce::pairing::bn256::{
Bn256,
};
use std::collections::BTreeMap;
#[derive(Serialize, Deserialize)]
struct CircuitJson {
pub constraints: Vec<Vec<BTreeMap<String, String>>>,
#[serde(rename = "nPubInputs")]
pub num_inputs: usize,
#[serde(rename = "nOutputs")]
pub num_outputs: usize,
#[serde(rename = "nVars")]
pub num_variables: usize,
}
fn main() {
let args: Vec<String> = std::env::args().collect();
if args.len() != 4 {
println!("Usage: \n<in_params.params> <out_vk.json> <out_pk.json>");
std::process::exit(exitcode::USAGE);
}
let params_filename = &args[1];
let vk_filename = &args[2];
let pk_filename = &args[3];
let disallow_points_at_infinity = false;
println!("Exporting {}...", params_filename);
let reader = OpenOptions::new()
.read(true)
.open(params_filename)
.expect("unable to open.");
let params = phase2::MPCParameters::read(reader, disallow_points_at_infinity, true).expect("unable to read params");
let params = params.get_params();
let mut proving_key = ProvingKeyJson {
a: vec![],
b1: vec![],
b2: vec![],
c: vec![],
vk_alfa_1: vec![],
vk_beta_1: vec![],
vk_delta_1: vec![],
vk_beta_2: vec![],
vk_delta_2: vec![],
h: vec![],
};
let repr_to_big = |r| {
BigUint::from_str_radix(&format!("{}", r)[2..], 16).unwrap().to_str_radix(10)
};
let p1_to_vec = |p : &<Bn256 as Engine>::G1Affine| {
let mut v = vec![];
//println!("test: {}", p.get_x().into_repr());
let x = repr_to_big(p.get_x().into_repr());
v.push(x);
let y = repr_to_big(p.get_y().into_repr());
v.push(y);
if p.is_zero() {
v.push("0".to_string());
} else {
v.push("1".to_string());
}
v
};
let p2_to_vec = |p : &<Bn256 as Engine>::G2Affine| {
let mut v = vec![];
let x = p.get_x();
let mut x_v = vec![];
x_v.push(repr_to_big(x.c0.into_repr()));
x_v.push(repr_to_big(x.c1.into_repr()));
v.push(x_v);
let y = p.get_y();
let mut y_v = vec![];
y_v.push(repr_to_big(y.c0.into_repr()));
y_v.push(repr_to_big(y.c1.into_repr()));
v.push(y_v);
if p.is_zero() {
v.push(["0".to_string(), "0".to_string()].to_vec());
} else {
v.push(["1".to_string(), "0".to_string()].to_vec());
}
v
};
let a = params.a.clone();
for e in a.iter() {
proving_key.a.push(p1_to_vec(e));
}
let b1 = params.b_g1.clone();
for e in b1.iter() {
proving_key.b1.push(p1_to_vec(e));
}
let b2 = params.b_g2.clone();
for e in b2.iter() {
proving_key.b2.push(p2_to_vec(e));
}
let c = params.l.clone();
for _ in 0..params.vk.ic.len() {
proving_key.c.push(None);
}
for e in c.iter() {
proving_key.c.push(Some(p1_to_vec(e)));
}
let vk_alfa_1 = params.vk.alpha_g1.clone();
proving_key.vk_alfa_1 = p1_to_vec(&vk_alfa_1);
let vk_beta_1 = params.vk.beta_g1.clone();
proving_key.vk_beta_1 = p1_to_vec(&vk_beta_1);
let vk_delta_1 = params.vk.delta_g1.clone();
proving_key.vk_delta_1 = p1_to_vec(&vk_delta_1);
let vk_beta_2 = params.vk.beta_g2.clone();
proving_key.vk_beta_2 = p2_to_vec(&vk_beta_2);
let vk_delta_2 = params.vk.delta_g2.clone();
proving_key.vk_delta_2 = p2_to_vec(&vk_delta_2);
let h = params.h.clone();
for e in h.iter() {
proving_key.h.push(p1_to_vec(e));
}
let mut verification_key = VerifyingKeyJson {
ic: vec![],
vk_alfa_1: vec![],
vk_beta_2: vec![],
vk_gamma_2: vec![],
vk_delta_2: vec![],
};
let ic = params.vk.ic.clone();
for e in ic.iter() {
verification_key.ic.push(p1_to_vec(e));
}
verification_key.vk_alfa_1 = p1_to_vec(&vk_alfa_1);
verification_key.vk_beta_2 = p2_to_vec(&vk_beta_2);
let vk_gamma_2 = params.vk.gamma_g2.clone();
verification_key.vk_gamma_2 = p2_to_vec(&vk_gamma_2);
verification_key.vk_delta_2 = p2_to_vec(&vk_delta_2);
let pk_file = OpenOptions::new().read(true).write(true).create_new(true).open(pk_filename).unwrap();
let pk_json = serde_json::to_string(&proving_key).unwrap();
pk_file.set_len(pk_json.len() as u64).expect("unable to write pk file");
let mut mmap = unsafe { memmap::Mmap::map(&pk_file) }.unwrap().make_mut().unwrap();
mmap.deref_mut().write_all(pk_json.as_bytes()).unwrap();
let vk_file = OpenOptions::new().read(true).write(true).create_new(true).open(vk_filename).unwrap();
let vk_json = serde_json::to_string(&verification_key).unwrap();
vk_file.set_len(vk_json.len() as u64).expect("unable to write vk file");
let mut mmap = unsafe { memmap::Mmap::map(&vk_file) }.unwrap().make_mut().unwrap();
mmap.deref_mut().write_all(vk_json.as_bytes()).unwrap();
println!("Created {} and {}.", pk_filename, vk_filename);
}

30
phase2/src/bin/new.rs Normal file

@ -0,0 +1,30 @@
extern crate rand;
extern crate phase2;
extern crate exitcode;
use std::fs::File;
fn main() {
let args: Vec<String> = std::env::args().collect();
if args.len() != 3 {
println!("Usage: \n<in_circuit.json> <out_params.params>");
std::process::exit(exitcode::USAGE);
}
let circuit_filename = &args[1];
let params_filename = &args[2];
let should_filter_points_at_infinity = false;
// Import the circuit and create the initial parameters using phase 1
println!("Creating initial parameters for {}...", circuit_filename);
let params = {
let c = phase2::CircomCircuit {
file_name: &circuit_filename,
};
phase2::MPCParameters::new(c, should_filter_points_at_infinity).unwrap()
};
println!("Writing initial parameters to {}.", params_filename);
let mut f = File::create(params_filename).unwrap();
params.write(&mut f).expect("unable to write params");
}

@ -0,0 +1,39 @@
extern crate phase2;
extern crate exitcode;
use std::fs::OpenOptions;
fn main() {
let args: Vec<String> = std::env::args().collect();
if args.len() != 4 {
println!("Usage: \n<in_circuit.json> <in_old_params.params> <in_new_params.params>");
std::process::exit(exitcode::USAGE);
}
let circuit_filename = &args[1];
let old_params_filename = &args[2];
let new_params_filename = &args[3];
let disallow_points_at_infinity = false;
let old_reader = OpenOptions::new()
.read(true)
.open(old_params_filename)
.expect("unable to open old params");
let old_params = phase2::MPCParameters::read(old_reader, disallow_points_at_infinity, true).expect("unable to read old params");
let new_reader = OpenOptions::new()
.read(true)
.open(new_params_filename)
.expect("unable to open new params");
let new_params = phase2::MPCParameters::read(new_reader, disallow_points_at_infinity, true).expect("unable to read new params");
println!("Checking contribution {}...", new_params_filename);
let contribution = phase2::verify_contribution(&old_params, &new_params).expect("should verify");
let should_filter_points_at_infinity = false;
let verification_result = new_params.verify(phase2::CircomCircuit {
file_name: &circuit_filename,
}, should_filter_points_at_infinity).unwrap();
assert!(phase2::contains_contribution(&verification_result, &contribution));
println!("Contribution {} verified.", new_params_filename);
}

@ -269,6 +269,14 @@ use rand::{
SeedableRng SeedableRng
}; };
use std::collections::BTreeMap;
use std::str;
#[macro_use]
extern crate serde;
extern crate serde_json;
/// This is our assembly structure that we'll use to synthesize the /// This is our assembly structure that we'll use to synthesize the
/// circuit into a QAP. /// circuit into a QAP.
struct KeypairAssembly<E: Engine> { struct KeypairAssembly<E: Engine> {
@ -438,8 +446,8 @@ impl MPCParameters {
m *= 2; m *= 2;
exp += 1; exp += 1;
// Powers of Tau ceremony can't support more than 2^21 // Powers of Tau ceremony can't support more than 2^28
if exp > 21 { if exp > 28 {
return Err(SynthesisError::PolynomialDegreeTooLarge) return Err(SynthesisError::PolynomialDegreeTooLarge)
} }
} }
@ -511,8 +519,8 @@ impl MPCParameters {
let alpha_coeffs_g1 = Arc::new(alpha_coeffs_g1); let alpha_coeffs_g1 = Arc::new(alpha_coeffs_g1);
let beta_coeffs_g1 = Arc::new(beta_coeffs_g1); let beta_coeffs_g1 = Arc::new(beta_coeffs_g1);
let mut h = Vec::with_capacity(m); let mut h = Vec::with_capacity(m-1);
for i in 0..m { for _ in 0..m-1 {
h.push(read_g1(f)?); h.push(read_g1(f)?);
} }
@ -947,10 +955,11 @@ impl MPCParameters {
/// checks. /// checks.
pub fn read<R: Read>( pub fn read<R: Read>(
mut reader: R, mut reader: R,
disallow_points_at_infinity: bool,
checked: bool checked: bool
) -> io::Result<MPCParameters> ) -> io::Result<MPCParameters>
{ {
let params = Parameters::read(&mut reader, checked)?; let params = Parameters::read(&mut reader, disallow_points_at_infinity, checked)?;
let mut cs_hash = [0u8; 64]; let mut cs_hash = [0u8; 64];
reader.read_exact(&mut cs_hash)?; reader.read_exact(&mut cs_hash)?;
@ -1399,3 +1408,88 @@ pub fn contains_contribution(
return false return false
} }
#[derive(Serialize, Deserialize)]
struct CircuitJson {
pub constraints: Vec<Vec<BTreeMap<String, String>>>,
#[serde(rename = "nPubInputs")]
pub num_inputs: usize,
#[serde(rename = "nOutputs")]
pub num_outputs: usize,
#[serde(rename = "nVars")]
pub num_variables: usize,
}
pub struct CircomCircuit<'a> {
pub file_name: &'a str,
}
/// Our demo circuit implements this `Circuit` trait which
/// is used during paramgen and proving in order to
/// synthesize the constraint system.
impl<'a, E: Engine> Circuit<E> for CircomCircuit<'a> {
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
let mmap = unsafe { memmap::Mmap::map(&File::open(self.file_name)?) }?;
let content = str::from_utf8(&mmap).unwrap();
let circuit_json: CircuitJson = serde_json::from_str(&content).unwrap();
let num_public_inputs = circuit_json.num_inputs + circuit_json.num_outputs + 1;
//println!("num public inputs: {}", num_public_inputs);
for i in 1..circuit_json.num_variables {
if i < num_public_inputs {
//println!("allocating public input {}", i);
cs.alloc_input(|| format!("variable {}", i), || {
//println!("variable {}: {}", i, &self.witness[i]);
Ok(E::Fr::from_str("1").unwrap())
});
} else {
//println!("allocating private input {}", i);
cs.alloc(|| format!("variable {}", i), || {
//println!("variable {}: {}", i, &self.witness[i]);
Ok(E::Fr::from_str("1").unwrap())
});
}
}
let mut constrained: BTreeMap<usize, bool> = BTreeMap::new();
let mut constraint_num = 0;
for (i, constraint) in circuit_json.constraints.iter().enumerate() {
let mut lcs = vec![];
for lc_description in constraint {
let mut lc = LinearCombination::<E>::zero();
//println!("lc_description: {:?}, i: {}, len: {}", lc_description, i, constraint.len());
for (var_index_str, coefficient_str) in lc_description {
//println!("var_index_str: {}, coefficient_str: {}", var_index_str, coefficient_str);
let var_index_num: usize = var_index_str.parse().unwrap();
let var_index = if var_index_num < num_public_inputs {
Index::Input(var_index_num)
} else {
Index::Aux(var_index_num - num_public_inputs)
};
constrained.insert(var_index_num, true);
if i == 2 {
lc = lc + (E::Fr::from_str(coefficient_str).unwrap(), Variable::new_unchecked(var_index));
} else {
lc = lc + (E::Fr::from_str(coefficient_str).unwrap(), Variable::new_unchecked(var_index));
}
}
lcs.push(lc);
}
cs.enforce(|| format!("constraint {}", constraint_num), |_| lcs[0].clone(), |_| lcs[1].clone(), |_| lcs[2].clone());
constraint_num += 1;
}
println!("constraints: {}", circuit_json.constraints.len());
let mut unconstrained: BTreeMap<usize, bool> = BTreeMap::new();
for i in 0..circuit_json.num_variables {
if !constrained.contains_key(&i) {
unconstrained.insert(i, true);
}
}
for (i, _) in unconstrained {
println!("variable {} is unconstrained", i);
}
Ok(())
}
}

@ -0,0 +1,48 @@
import sys
import json
def to_hex(d):
return hex(int(d)).rstrip('L')
return d
class vk_ethsnarks(object):
def to_json(self):
return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4)
if len(sys.argv) != 3:
print("Usage: ")
print("<input_vk.json> <ethsnarks_vk.json>")
f = json.load(open(sys.argv[1]))
vk = vk_ethsnarks()
# alpha
vk.alpha = []
for i in range(2):
vk.alpha.append(to_hex(f["vk_alfa_1"][i]))
# beta
vk.beta = [[], []]
for i in range(2):
for j in range(2):
vk.beta[i].append(to_hex(f["vk_beta_2"][i][1-j]))
# gamma
vk.gamma = [[], []]
for i in range(2):
for j in range(2):
vk.gamma[i].append(to_hex(f["vk_gamma_2"][i][1-j]))
# delta
vk.delta = [[], []]
for i in range(2):
for j in range(2):
vk.delta[i].append(to_hex(f["vk_delta_2"][i][1-j]))
# gammaABC
vk.gammaABC = [[], []]
for i in range(2):
for j in range(2):
vk.gammaABC[i].append(to_hex(f["IC"][i][j]))
f3 = open(sys.argv[2], 'w')
f3.write(vk.to_json())
f3.close()
print("vk file created: " + str(sys.argv[2]))

@ -19,7 +19,7 @@ dependencies = [
"futures 0.1.25 (registry+https://github.com/rust-lang/crates.io-index)", "futures 0.1.25 (registry+https://github.com/rust-lang/crates.io-index)",
"futures-cpupool 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)", "futures-cpupool 0.1.8 (registry+https://github.com/rust-lang/crates.io-index)",
"num_cpus 1.10.0 (registry+https://github.com/rust-lang/crates.io-index)", "num_cpus 1.10.0 (registry+https://github.com/rust-lang/crates.io-index)",
"pairing_ce 0.18.0 (registry+https://github.com/rust-lang/crates.io-index)", "pairing_ce 0.18.0",
"rand 0.4.6 (registry+https://github.com/rust-lang/crates.io-index)", "rand 0.4.6 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
@ -296,7 +296,6 @@ dependencies = [
[[package]] [[package]]
name = "pairing_ce" name = "pairing_ce"
version = "0.18.0" version = "0.18.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [ dependencies = [
"byteorder 1.3.1 (registry+https://github.com/rust-lang/crates.io-index)", "byteorder 1.3.1 (registry+https://github.com/rust-lang/crates.io-index)",
"ff_ce 0.7.1 (registry+https://github.com/rust-lang/crates.io-index)", "ff_ce 0.7.1 (registry+https://github.com/rust-lang/crates.io-index)",
@ -511,7 +510,6 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
"checksum num-integer 0.1.39 (registry+https://github.com/rust-lang/crates.io-index)" = "e83d528d2677f0518c570baf2b7abdcf0cd2d248860b68507bdcb3e91d4c0cea" "checksum num-integer 0.1.39 (registry+https://github.com/rust-lang/crates.io-index)" = "e83d528d2677f0518c570baf2b7abdcf0cd2d248860b68507bdcb3e91d4c0cea"
"checksum num-traits 0.2.6 (registry+https://github.com/rust-lang/crates.io-index)" = "0b3a5d7cc97d6d30d8b9bc8fa19bf45349ffe46241e8816f50f62f6d6aaabee1" "checksum num-traits 0.2.6 (registry+https://github.com/rust-lang/crates.io-index)" = "0b3a5d7cc97d6d30d8b9bc8fa19bf45349ffe46241e8816f50f62f6d6aaabee1"
"checksum num_cpus 1.10.0 (registry+https://github.com/rust-lang/crates.io-index)" = "1a23f0ed30a54abaa0c7e83b1d2d87ada7c3c23078d1d87815af3e3b6385fbba" "checksum num_cpus 1.10.0 (registry+https://github.com/rust-lang/crates.io-index)" = "1a23f0ed30a54abaa0c7e83b1d2d87ada7c3c23078d1d87815af3e3b6385fbba"
"checksum pairing_ce 0.18.0 (registry+https://github.com/rust-lang/crates.io-index)" = "f075a9c570e2026111cb6dddf6a320e5163c42aa32500b315ec34acbcf7c9b36"
"checksum proc-macro-hack 0.4.1 (registry+https://github.com/rust-lang/crates.io-index)" = "2c725b36c99df7af7bf9324e9c999b9e37d92c8f8caf106d82e1d7953218d2d8" "checksum proc-macro-hack 0.4.1 (registry+https://github.com/rust-lang/crates.io-index)" = "2c725b36c99df7af7bf9324e9c999b9e37d92c8f8caf106d82e1d7953218d2d8"
"checksum proc-macro-hack-impl 0.4.1 (registry+https://github.com/rust-lang/crates.io-index)" = "2b753ad9ed99dd8efeaa7d2fb8453c8f6bc3e54b97966d35f1bc77ca6865254a" "checksum proc-macro-hack-impl 0.4.1 (registry+https://github.com/rust-lang/crates.io-index)" = "2b753ad9ed99dd8efeaa7d2fb8453c8f6bc3e54b97966d35f1bc77ca6865254a"
"checksum proc-macro2 0.4.27 (registry+https://github.com/rust-lang/crates.io-index)" = "4d317f9caece796be1980837fd5cb3dfec5613ebdb04ad0956deea83ce168915" "checksum proc-macro2 0.4.27 (registry+https://github.com/rust-lang/crates.io-index)" = "4d317f9caece796be1980837fd5cb3dfec5613ebdb04ad0956deea83ce168915"

@ -29,7 +29,7 @@ fn log_2(x: u64) -> u32 {
} }
fn main() { fn main() {
// Try to load `./transcript` from disk. // Try to load `./response` from disk.
let reader = OpenOptions::new() let reader = OpenOptions::new()
.read(true) .read(true)
.open("response") .open("response")
@ -47,7 +47,7 @@ fn main() {
// Create the parameters for various 2^m circuit depths. // Create the parameters for various 2^m circuit depths.
let max_degree = log_2(current_accumulator.tau_powers_g2.len() as u64); let max_degree = log_2(current_accumulator.tau_powers_g2.len() as u64);
for m in 0..max_degree { for m in 0..max_degree+1 {
let paramname = format!("phase1radix2m{}", m); let paramname = format!("phase1radix2m{}", m);
println!("Creating {}", paramname); println!("Creating {}", paramname);

@ -25,6 +25,13 @@ use std::io::{self, Read, BufWriter, Write};
use memmap::*; use memmap::*;
const fn num_bits<T>() -> usize { std::mem::size_of::<T>() * 8 }
fn log_2(x: u64) -> u32 {
assert!(x > 0);
num_bits::<u64>() as u32 - x.leading_zeros() - 1
}
// Computes the hash of the challenge file for the player, // Computes the hash of the challenge file for the player,
// given the current state of the accumulator and the last // given the current state of the accumulator and the last
// response file hash. // response file hash.
@ -268,7 +275,8 @@ fn main() {
let worker = &Worker::new(); let worker = &Worker::new();
// Create the parameters for various 2^m circuit depths. // Create the parameters for various 2^m circuit depths.
for m in 0..22 { let max_degree = log_2(current_accumulator.tau_powers_g2.len() as u64);
for m in 0..max_degree+1 {
let paramname = format!("phase1radix2m{}", m); let paramname = format!("phase1radix2m{}", m);
println!("Creating {}", paramname); println!("Creating {}", paramname);

@ -30,7 +30,7 @@ pub struct Bn256CeremonyParameters {
} }
impl PowersOfTauParameters for Bn256CeremonyParameters { impl PowersOfTauParameters for Bn256CeremonyParameters {
const REQUIRED_POWER: usize = 12; // generate to have roughly 2 million constraints const REQUIRED_POWER: usize = 28;
// This ceremony is based on the BN256 elliptic curve construction. // This ceremony is based on the BN256 elliptic curve construction.
const G1_UNCOMPRESSED_BYTE_SIZE: usize = 64; const G1_UNCOMPRESSED_BYTE_SIZE: usize = 64;