Starting fresh...

This commit is contained in:
Sean Bowe 2017-08-07 07:43:39 -06:00
parent e282bc095a
commit bf03be0b9d
21 changed files with 6 additions and 5813 deletions

@ -9,11 +9,11 @@ repository = "https://github.com/ebfull/bellman"
version = "0.0.3"
[dependencies]
rand = "0.3.*"
byteorder = "1.*"
serde = "1.0"
crossbeam = "0.2"
num_cpus = "1.0"
#rand = "0.3.*"
#byteorder = "1.*"
#serde = "1.0"
#crossbeam = "0.2"
#num_cpus = "1.0"
[dev-dependencies]
bincode = "0.8.0"
#bincode = "0.8.0"

@ -1,235 +0,0 @@
#![feature(test)]
#![allow(unused_mut)]
extern crate rand;
extern crate bellman;
extern crate test;
use bellman::curves::*;
use bellman::curves::bls381::*;
const SAMPLES: usize = 30;
macro_rules! benchmark(
($name:ident, $engine:ident, $input:ident($rng:ident) = $pre:expr; $post:expr) => (
#[bench]
fn $name(b: &mut test::Bencher) {
let $rng = &mut rand::thread_rng();
let $engine = &Bls381::new();
let $input: Vec<_> = (0..SAMPLES).map(|_| $pre).collect();
let mut c = 0;
b.iter(|| {
c += 1;
let mut $input = $input[c % SAMPLES].clone();
$post
})
}
)
);
benchmark!(g1_multiexp, e,
input(rng) = {
let mut g = G1::random(e, rng);
let mut a = G1::random(e, rng);
(
(0..1000).map(|_| {
g.add_assign(e, &a);
a.double(e);
g.to_affine(e)
}).collect::<Vec<_>>(),
(0..1000).map(|_| Fr::random(e, rng)).collect::<Vec<_>>(),
)
};
e.multiexp::<G1>(&input.0, &input.1)
);
benchmark!(g2_multiexp, e,
input(rng) = {
let mut g = G2::random(e, rng);
let mut a = G2::random(e, rng);
(
(0..1000).map(|_| {
g.add_assign(e, &a);
a.double(e);
g.to_affine(e)
}).collect::<Vec<_>>(),
(0..1000).map(|_| Fr::random(e, rng)).collect::<Vec<_>>(),
)
};
e.multiexp::<G2>(&input.0, &input.1)
);
benchmark!(full_pairing, e,
input(rng) = (G1::random(e, rng), G2::random(e, rng));
e.pairing(&input.0, &input.1)
);
benchmark!(g1_pairing_preparation, e,
input(rng) = G1::random(e, rng);
input.prepare(e)
);
benchmark!(g2_pairing_preparation, e,
input(rng) = G2::random(e, rng);
input.prepare(e)
);
benchmark!(miller_loop, e,
input(rng) = (G1::random(e, rng).prepare(e), G2::random(e, rng).prepare(e));
e.miller_loop([(&input.0, &input.1)].into_iter())
);
benchmark!(double_miller_loop, e,
input(rng) = (G1::random(e, rng).prepare(e), G2::random(e, rng).prepare(e), G1::random(e, rng).prepare(e), G2::random(e, rng).prepare(e));
e.miller_loop([
(&input.0, &input.1),
(&input.2, &input.3),
].into_iter())
);
benchmark!(final_exponentiation, e,
input(rng) = e.miller_loop([
(&G1::random(e, rng).prepare(e), &G2::random(e, rng).prepare(e)),
].into_iter());
e.final_exponentiation(&input)
);
macro_rules! group_tests(
(
$name:ident,
$mul:ident,
$mul_mixed:ident,
$add:ident
) => {
benchmark!($mul, e,
input(rng) = ($name::random(e, rng), Fr::random(e, rng));
{input.0.mul_assign(e, &input.1); input.0}
);
benchmark!($mul_mixed, e,
input(rng) = ($name::random(e, rng).to_affine(e), Fr::random(e, rng));
{input.0.mul(e, &input.1)}
);
benchmark!($add, e,
input(rng) = ($name::random(e, rng), $name::random(e, rng));
{input.0.add_assign(e, &input.1); input.0}
);
};
);
macro_rules! field_tests(
(
@nosqrt,
$name:ident,
$mul:ident,
$square:ident,
$add:ident,
$inverse:ident
) => {
benchmark!($mul, e,
input(rng) = ($name::random(e, rng), $name::random(e, rng));
{input.0.mul_assign(e, &input.1); input.0}
);
benchmark!($square, e,
input(rng) = $name::random(e, rng);
{input.square(e); input}
);
benchmark!($add, e,
input(rng) = ($name::random(e, rng), $name::random(e, rng));
{input.0.add_assign(e, &input.1); input.0}
);
benchmark!($inverse, e,
input(rng) = $name::random(e, rng);
{input.inverse(e)}
);
};
(
$name:ident,
$mul:ident,
$square:ident,
$add:ident,
$inverse:ident,
$sqrt:ident
) => {
field_tests!(@nosqrt, $name, $mul, $square, $add, $inverse);
benchmark!($sqrt, e,
input(rng) = {let mut tmp = $name::random(e, rng); tmp.square(e); tmp};
{input.sqrt(e)}
);
};
);
field_tests!(
Fr,
fr_multiplication,
fr_squaring,
fr_addition,
fr_inverse,
fr_sqrt
);
field_tests!(
Fq,
fq_multiplication,
fq_squaring,
fq_addition,
fq_inverse,
fq_sqrt
);
field_tests!(
Fq2,
fq2_multiplication,
fq2_squaring,
fq2_addition,
fq2_inverse,
fq2_sqrt
);
field_tests!(
@nosqrt,
Fq12,
fq12_multiplication,
fq12_squaring,
fq12_addition,
fq12_inverse
);
group_tests!(
G1,
g1_multiplication,
g1_multiplication_mixed,
g1_addition
);
group_tests!(
G2,
g2_multiplication,
g2_multiplication_mixed,
g2_addition
);

@ -1,456 +0,0 @@
macro_rules! curve_impl {
(
$engine:ident,
$name:ident,
$name_affine:ident,
$name_prepared:ident,
$name_uncompressed:ident,
$params_name:ident,
$params_field:ident,
$basefield:ident,
$scalarfield:ident
) => {
#[repr(C)]
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct $name_affine {
x: $basefield,
y: $basefield,
infinity: bool
}
#[repr(C)]
#[derive(Copy, Clone, Debug)]
pub struct $name {
x: $basefield,
y: $basefield,
z: $basefield
}
#[derive(Clone)]
struct $params_name {
zero: $name,
one: $name,
coeff_b: $basefield,
windows: Vec<usize>,
batch_windows: (usize, Vec<usize>)
}
impl Convert<$name_affine, $engine> for $name {
type Target = $name_affine;
fn convert(&self, engine: &$engine) -> Cow<$name_affine> {
Cow::Owned(self.to_affine(engine))
}
}
impl Group<$engine> for $name {
fn group_zero(e: &$engine) -> $name {
$name::zero(e)
}
fn group_mul_assign(&mut self, e: &$engine, scalar: &$scalarfield) {
self.mul_assign(e, scalar);
}
fn group_add_assign(&mut self, e: &$engine, other: &Self) {
self.add_assign(e, other);
}
fn group_sub_assign(&mut self, e: &$engine, other: &Self) {
self.sub_assign(e, other);
}
}
impl CurveAffine<$engine> for $name_affine {
type Jacobian = $name;
type Uncompressed = $name_uncompressed;
fn is_valid(&self, e: &$engine) -> bool {
if self.is_zero() {
true
} else {
// Check that the point is on the curve
let mut y2 = self.y;
y2.square(e);
let mut x3b = self.x;
x3b.square(e);
x3b.mul_assign(e, &self.x);
x3b.add_assign(e, &e.$params_field.coeff_b);
if y2 == x3b {
// Check that the point is in the correct subgroup
if self.mul(e, &$scalarfield::char(e)).is_zero() {
true
} else {
false
}
} else {
false
}
}
}
fn to_uncompressed(&self, engine: &$engine) -> Self::Uncompressed {
$name_uncompressed::from_affine(self, engine)
}
fn to_jacobian(&self, engine: &$engine) -> $name {
if self.infinity {
$name::zero(engine)
} else {
$name {
x: self.x,
y: self.y,
z: $basefield::one(engine)
}
}
}
fn prepare(self, e: &$engine) -> $name_prepared {
$name_prepared::from_engine(e, self)
}
fn is_zero(&self) -> bool {
self.infinity
}
fn mul<S: Convert<<$scalarfield as PrimeField<$engine>>::Repr, $engine>>(&self, e: &$engine, other: &S) -> $name {
let mut res = $name::zero(e);
for i in BitIterator::new((*other.convert(e)).borrow())
{
res.double(e);
if i {
res.add_assign_mixed(e, self);
}
}
res
}
fn negate(&mut self, e: &$engine) {
if !self.is_zero() {
self.y.negate(e);
}
}
}
impl multiexp::Projective<$engine> for $name {
type WindowTable = wnaf::WindowTable<$engine, $name>;
fn identity(e: &$engine) -> Self {
Self::zero(e)
}
fn add_to_projective(&self, e: &$engine, projective: &mut Self) {
projective.add_assign(e, self);
}
fn exponentiate(&mut self,
e: &$engine,
scalar: <$scalarfield as PrimeField<$engine>>::Repr,
table: &mut Self::WindowTable,
scratch: &mut wnaf::WNAFTable
)
{
*self = self.optimal_exp(e, scalar, table, scratch);
}
fn new_window_table(e: &$engine) -> Self::WindowTable {
wnaf::WindowTable::<$engine, $name>::new(e, $name::zero(e), 2)
}
}
impl Curve<$engine> for $name {
type Affine = $name_affine;
type Prepared = $name_prepared;
fn optimal_window(engine: &$engine, scalar_bits: usize) -> Option<usize> {
for (i, bits) in engine.$params_field.windows.iter().enumerate().rev() {
if &scalar_bits >= bits {
return Some(i + 2);
}
}
None
}
fn optimal_window_batch(&self, engine: &$engine, scalars: usize) -> wnaf::WindowTable<$engine, $name> {
let mut window = engine.$params_field.batch_windows.0;
for i in &engine.$params_field.batch_windows.1 {
if scalars >= *i {
window += 1;
} else {
break;
}
}
wnaf::WindowTable::new(engine, *self, window)
}
fn zero(engine: &$engine) -> Self {
engine.$params_field.zero
}
fn one(engine: &$engine) -> Self {
engine.$params_field.one
}
fn random<R: rand::Rng>(engine: &$engine, rng: &mut R) -> Self {
let mut tmp = Self::one(engine);
tmp.mul_assign(engine, &$scalarfield::random(engine, rng));
tmp
}
fn is_zero(&self) -> bool {
self.z.is_zero()
}
fn is_equal(&self, engine: &$engine, other: &Self) -> bool {
if self.is_zero() {
return other.is_zero();
}
if other.is_zero() {
return false;
}
let mut z1 = self.z;
z1.square(engine);
let mut z2 = other.z;
z2.square(engine);
let mut tmp1 = self.x;
tmp1.mul_assign(engine, &z2);
let mut tmp2 = other.x;
tmp2.mul_assign(engine, &z1);
if tmp1 != tmp2 {
return false;
}
z1.mul_assign(engine, &self.z);
z2.mul_assign(engine, &other.z);
z2.mul_assign(engine, &self.y);
z1.mul_assign(engine, &other.y);
if z1 != z2 {
return false;
}
true
}
fn to_affine(&self, engine: &$engine) -> Self::Affine {
if self.is_zero() {
$name_affine {
x: $basefield::zero(),
y: $basefield::one(engine),
infinity: true
}
} else {
let zinv = self.z.inverse(engine).unwrap();
let mut zinv_powered = zinv;
zinv_powered.square(engine);
let mut x = self.x;
x.mul_assign(engine, &zinv_powered);
let mut y = self.y;
zinv_powered.mul_assign(engine, &zinv);
y.mul_assign(engine, &zinv_powered);
$name_affine {
x: x,
y: y,
infinity: false
}
}
}
fn prepare(&self, e: &$engine) -> $name_prepared {
self.to_affine(e).prepare(e)
}
fn double(&mut self, engine: &$engine) {
if self.is_zero() {
return;
}
let mut a = self.x;
a.square(engine);
let mut c = self.y;
c.square(engine);
let mut d = c;
c.square(engine);
d.add_assign(engine, &self.x);
d.square(engine);
d.sub_assign(engine, &a);
d.sub_assign(engine, &c);
d.double(engine);
let mut e = a;
e.add_assign(engine, &a);
e.add_assign(engine, &a);
self.x = e;
self.x.square(engine);
self.x.sub_assign(engine, &d);
self.x.sub_assign(engine, &d);
c.double(engine);
c.double(engine);
c.double(engine);
self.z.mul_assign(engine, &self.y);
self.z.double(engine);
self.y = d;
self.y.sub_assign(engine, &self.x);
self.y.mul_assign(engine, &e);
self.y.sub_assign(engine, &c);
}
fn negate(&mut self, engine: &$engine) {
if !self.is_zero() {
self.y.negate(engine)
}
}
fn mul_assign<S: Convert<<$scalarfield as PrimeField<$engine>>::Repr, $engine>>(&mut self, engine: &$engine, other: &S) {
let mut res = Self::zero(engine);
for i in BitIterator::new((*other.convert(engine)).borrow())
{
res.double(engine);
if i {
res.add_assign(engine, self);
}
}
*self = res;
}
fn sub_assign(&mut self, engine: &$engine, other: &Self) {
let mut tmp = *other;
tmp.negate(engine);
self.add_assign(engine, &tmp);
}
fn add_assign_mixed(&mut self, e: &$engine, other: &$name_affine) {
if other.is_zero() {
return;
}
if self.is_zero() {
self.x = other.x;
self.y = other.y;
self.z = $basefield::one(e);
return;
}
let mut z1z1 = self.z;
z1z1.square(e);
let mut u2 = other.x;
u2.mul_assign(e, &z1z1);
let mut z1cubed = self.z;
z1cubed.mul_assign(e, &z1z1);
let mut s2 = other.y;
s2.mul_assign(e, &z1cubed);
if self.x == u2 && self.y == s2 {
self.double(e);
return;
}
let mut h = u2;
h.sub_assign(e, &self.x);
let mut hh = h;
hh.square(e);
let mut i = hh;
i.double(e);
i.double(e);
let mut j = h;
j.mul_assign(e, &i);
let mut r = s2;
r.sub_assign(e, &self.y);
r.double(e);
let mut v = self.x;
v.mul_assign(e, &i);
self.x = r;
self.x.square(e);
self.x.sub_assign(e, &j);
self.x.sub_assign(e, &v);
self.x.sub_assign(e, &v);
self.y.mul_assign(e, &j);
let mut tmp = v;
tmp.sub_assign(e, &self.x);
tmp.mul_assign(e, &r);
tmp.sub_assign(e, &self.y);
tmp.sub_assign(e, &self.y);
self.y = tmp;
self.z.add_assign(e, &h);
self.z.square(e);
self.z.sub_assign(e, &z1z1);
self.z.sub_assign(e, &hh);
}
fn add_assign(&mut self, engine: &$engine, other: &Self) {
if self.is_zero() {
*self = *other;
return;
}
if other.is_zero() {
return;
}
let mut z1_squared = self.z;
z1_squared.square(engine);
let mut z2_squared = other.z;
z2_squared.square(engine);
let mut u1 = self.x;
u1.mul_assign(engine, &z2_squared);
let mut u2 = other.x;
u2.mul_assign(engine, &z1_squared);
let mut s1 = other.z;
s1.mul_assign(engine, &z2_squared);
s1.mul_assign(engine, &self.y);
let mut s2 = self.z;
s2.mul_assign(engine, &z1_squared);
s2.mul_assign(engine, &other.y);
if u1 == u2 && s1 == s2 {
self.double(engine);
} else {
u2.sub_assign(engine, &u1);
s2.sub_assign(engine, &s1);
s2.double(engine);
let mut i = u2;
i.double(engine);
i.square(engine);
let mut v = i;
v.mul_assign(engine, &u1);
i.mul_assign(engine, &u2);
s1.mul_assign(engine, &i);
s1.double(engine);
self.x = s2;
self.x.square(engine);
self.x.sub_assign(engine, &i);
self.x.sub_assign(engine, &v);
self.x.sub_assign(engine, &v);
self.y = v;
self.y.sub_assign(engine, &self.x);
self.y.mul_assign(engine, &s2);
self.y.sub_assign(engine, &s1);
self.z.add_assign(engine, &other.z);
self.z.square(engine);
self.z.sub_assign(engine, &z1_squared);
self.z.sub_assign(engine, &z2_squared);
self.z.mul_assign(engine, &u2);
}
}
}
}
}

@ -1,771 +0,0 @@
macro_rules! fp_params_impl {
(
$name:ident = (3 mod 4),
engine = $engine:ident,
params = $params_field:ident : $params_name:ident,
limbs = $limbs:expr,
modulus = $modulus:expr,
r1 = $r1:expr,
r2 = $r2:expr,
modulus_minus_3_over_4 = $modulus_minus_3_over_4:expr,
modulus_minus_1_over_2 = $modulus_minus_1_over_2:expr,
inv = $inv:expr
) => {
#[derive(Clone)]
struct $params_name {
modulus: [u64; $limbs],
r1: $name,
r2: $name,
inv: u64,
one: $name,
num_bits: usize,
modulus_minus_3_over_4: [u64; $limbs],
modulus_minus_1_over_2: [u64; $limbs],
base10: [$name; 11]
}
impl $params_name {
fn partial_init() -> $params_name {
let mut tmp = $params_name {
modulus: $modulus,
r1: $name($r1),
r2: $name($r2),
inv: $inv,
one: $name::zero(),
num_bits: 0,
modulus_minus_3_over_4: $modulus_minus_3_over_4,
modulus_minus_1_over_2: $modulus_minus_1_over_2,
base10: [$name::zero(); 11]
};
tmp.one.0[0] = 1;
tmp
}
}
};
(
$name:ident = (1 mod 16),
engine = $engine:ident,
params = $params_field:ident : $params_name:ident,
limbs = $limbs:expr,
modulus = $modulus:expr,
r1 = $r1:expr,
r2 = $r2:expr,
modulus_minus_1_over_2 = $modulus_minus_1_over_2:expr,
s = $s:expr,
t = $t:expr,
t_plus_1_over_2 = $t_plus_1_over_2:expr,
inv = $inv:expr
) => {
#[derive(Clone)]
struct $params_name {
modulus: [u64; $limbs],
r1: $name,
r2: $name,
inv: u64,
one: $name,
num_bits: usize,
modulus_minus_1_over_2: [u64; $limbs],
s: u64,
t: [u64; $limbs],
t_plus_1_over_2: [u64; $limbs],
root_of_unity: $name,
multiplicative_generator: $name,
base10: [$name; 11]
}
impl $params_name {
fn partial_init() -> $params_name {
let mut tmp = $params_name {
modulus: $modulus,
r1: $name($r1),
r2: $name($r2),
inv: $inv,
one: $name::zero(),
num_bits: 0,
modulus_minus_1_over_2: $modulus_minus_1_over_2,
s: $s,
t: $t,
t_plus_1_over_2: $t_plus_1_over_2,
root_of_unity: $name::zero(),
multiplicative_generator: $name::zero(),
base10: [$name::zero(); 11]
};
tmp.one.0[0] = 1;
tmp
}
}
};
}
macro_rules! fp_sqrt_impl {
(
$name:ident = (3 mod 4),
engine = $engine:ident,
params = $params_field:ident : $params_name:ident
) => {
impl SqrtField<$engine> for $name {
fn sqrt(&self, engine: &$engine) -> Option<Self> {
let mut a1 = self.pow(engine, &engine.$params_field.modulus_minus_3_over_4);
let mut a0 = a1;
a0.square(engine);
a0.mul_assign(engine, self);
let mut neg1 = Self::one(engine);
neg1.negate(engine);
if a0 == neg1 {
None
} else {
a1.mul_assign(engine, self);
Some(a1)
}
}
}
};
(
$name:ident = (1 mod 16),
engine = $engine:ident,
params = $params_field:ident : $params_name:ident
) => {
impl SqrtField<$engine> for $name {
fn sqrt(&self, engine: &$engine) -> Option<Self> {
if self.is_zero() {
return Some(*self);
}
if self.pow(engine, &engine.$params_field.modulus_minus_1_over_2) != $name::one(engine) {
None
} else {
let mut c = engine.$params_field.root_of_unity;
let mut r = self.pow(engine, &engine.$params_field.t_plus_1_over_2);
let mut t = self.pow(engine, &engine.$params_field.t);
let mut m = engine.$params_field.s;
while t != Self::one(engine) {
let mut i = 1;
{
let mut t2i = t;
t2i.square(engine);
loop {
if t2i == Self::one(engine) {
break;
}
t2i.square(engine);
i += 1;
}
}
for _ in 0..(m - i - 1) {
c.square(engine);
}
r.mul_assign(engine, &c);
c.square(engine);
t.mul_assign(engine, &c);
m = i;
}
Some(r)
}
}
}
};
}
macro_rules! fp_impl {
(
$name:ident = ($($congruency:tt)*),
engine = $engine:ident,
params = $params_field:ident : $params_name:ident,
arith = $arith_mod:ident,
repr = $repr:ident,
limbs = $limbs:expr,
$($params:tt)*
) => {
fp_params_impl!(
$name = ($($congruency)*),
engine = $engine,
params = $params_field : $params_name,
limbs = $limbs,
$($params)*
);
impl $params_name {
fn base10(e: &$engine) -> [$name; 11] {
let mut ret = [$name::zero(); 11];
let mut acc = $name::zero();
for i in 0..11 {
ret[i] = acc;
acc.add_assign(e, &$name::one(e));
}
ret
}
}
fp_sqrt_impl!(
$name = ($($congruency)*),
engine = $engine,
params = $params_field : $params_name
);
#[derive(Copy, Clone, PartialEq, Eq)]
#[repr(C)]
pub struct $name([u64; $limbs]);
#[derive(Copy, Clone, PartialEq, Eq)]
#[repr(C)]
pub struct $repr([u64; $limbs]);
impl PrimeFieldRepr for $repr {
fn from_u64(a: u64) -> Self {
let mut tmp: [u64; $limbs] = Default::default();
tmp[0] = a;
$repr(tmp)
}
fn sub_noborrow(&mut self, other: &Self) {
$arith_mod::sub_noborrow(&mut self.0, &other.0);
}
fn add_nocarry(&mut self, other: &Self) {
$arith_mod::add_nocarry(&mut self.0, &other.0);
}
fn num_bits(&self) -> usize {
$arith_mod::num_bits(&self.0)
}
fn is_zero(&self) -> bool {
self.0.iter().all(|&e| e==0)
}
fn is_odd(&self) -> bool {
$arith_mod::odd(&self.0)
}
fn div2(&mut self) {
$arith_mod::div2(&mut self.0);
}
}
impl AsRef<[u64]> for $repr {
fn as_ref(&self) -> &[u64] {
&self.0
}
}
impl Ord for $repr {
fn cmp(&self, other: &$repr) -> Ordering {
if $arith_mod::lt(&self.0, &other.0) {
Ordering::Less
} else if self.0 == other.0 {
Ordering::Equal
} else {
Ordering::Greater
}
}
}
impl PartialOrd for $repr {
fn partial_cmp(&self, other: &$repr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl fmt::Debug for $name
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
ENGINE.with(|e| {
try!(write!(f, "Fp(0x"));
for i in self.into_repr(&e).0.iter().rev() {
try!(write!(f, "{:016x}", *i));
}
write!(f, ")")
})
}
}
impl $name
{
#[inline]
fn mont_reduce(&mut self, engine: &$engine, res: &mut [u64; $limbs*2]) {
// The Montgomery reduction here is based on Algorithm 14.32 in
// Handbook of Applied Cryptography
// <http://cacr.uwaterloo.ca/hac/about/chap14.pdf>.
for i in 0..$limbs {
let k = res[i].wrapping_mul(engine.$params_field.inv);
$arith_mod::mac_digit(&mut res[i..], &engine.$params_field.modulus, k);
}
self.0.copy_from_slice(&res[$limbs..]);
self.reduce(engine);
}
#[inline]
fn reduce(&mut self, engine: &$engine) {
if !$arith_mod::lt(&self.0, &engine.$params_field.modulus) {
$arith_mod::sub_noborrow(&mut self.0, &engine.$params_field.modulus);
}
}
}
impl Convert<$repr, $engine> for $name
{
type Target = $repr;
fn convert(&self, engine: &$engine) -> Cow<$repr> {
Cow::Owned(self.into_repr(engine))
}
}
impl PrimeField<$engine> for $name
{
type Repr = $repr;
fn from_repr(engine: &$engine, repr: Self::Repr) -> Result<Self, ()> {
let mut tmp = $name(repr.0);
if $arith_mod::lt(&tmp.0, &engine.$params_field.modulus) {
tmp.mul_assign(engine, &engine.$params_field.r2);
Ok(tmp)
} else {
Err(())
}
}
fn into_repr(&self, engine: &$engine) -> Self::Repr {
let mut tmp = *self;
tmp.mul_assign(engine, &engine.$params_field.one);
$repr(tmp.0)
}
fn from_u64(engine: &$engine, n: u64) -> Self {
let mut r = [0; $limbs];
r[0] = n;
Self::from_repr(engine, $repr(r)).unwrap()
}
fn from_str(engine: &$engine, s: &str) -> Result<Self, ()> {
let mut res = Self::zero();
for c in s.chars() {
match c.to_digit(10) {
Some(d) => {
res.mul_assign(engine, &engine.$params_field.base10[10]);
res.add_assign(engine, &engine.$params_field.base10[d as usize]);
},
None => {
return Err(());
}
}
}
Ok(res)
}
fn char(engine: &$engine) -> Self::Repr {
$repr(engine.$params_field.modulus)
}
fn num_bits(engine: &$engine) -> usize {
engine.$params_field.num_bits
}
fn capacity(engine: &$engine) -> usize {
Self::num_bits(engine) - 1
}
}
impl Field<$engine> for $name
{
fn zero() -> Self {
$name([0; $limbs])
}
fn one(engine: &$engine) -> Self {
engine.$params_field.r1
}
fn random<R: rand::Rng>(engine: &$engine, rng: &mut R) -> Self {
let mut tmp = [0; $limbs*2];
for i in &mut tmp {
*i = rng.gen();
}
$name($arith_mod::divrem(&tmp, &engine.$params_field.modulus).1)
}
fn is_zero(&self) -> bool {
self.0.iter().all(|&e| e==0)
}
fn double(&mut self, engine: &$engine) {
$arith_mod::mul2(&mut self.0);
self.reduce(engine);
}
fn frobenius_map(&mut self, _: &$engine, _: usize)
{
// This is the identity function for a prime field.
}
fn negate(&mut self, engine: &$engine) {
if !self.is_zero() {
let mut tmp = engine.$params_field.modulus;
$arith_mod::sub_noborrow(&mut tmp, &self.0);
self.0 = tmp;
}
}
fn add_assign(&mut self, engine: &$engine, other: &Self) {
$arith_mod::add_nocarry(&mut self.0, &other.0);
self.reduce(engine);
}
fn sub_assign(&mut self, engine: &$engine, other: &Self) {
if $arith_mod::lt(&self.0, &other.0) {
$arith_mod::add_nocarry(&mut self.0, &engine.$params_field.modulus);
}
$arith_mod::sub_noborrow(&mut self.0, &other.0);
}
fn square(&mut self, engine: &$engine)
{
let mut res = [0; $limbs*2];
$arith_mod::mac3(&mut res, &self.0, &self.0);
self.mont_reduce(engine, &mut res);
}
fn mul_assign(&mut self, engine: &$engine, other: &Self) {
let mut res = [0; $limbs*2];
$arith_mod::mac3(&mut res, &self.0, &other.0);
self.mont_reduce(engine, &mut res);
}
fn inverse(&self, engine: &$engine) -> Option<Self> {
if self.is_zero() {
None
} else {
// Guajardo Kumar Paar Pelzl
// Efficient Software-Implementation of Finite Fields with Applications to Cryptography
// Algorithm 16 (BEA for Inversion in Fp)
let mut u = self.0;
let mut v = engine.$params_field.modulus;
let mut b = engine.$params_field.r2; // Avoids unnecessary reduction step.
let mut c = Self::zero();
while u != engine.$params_field.one.0 && v != engine.$params_field.one.0 {
while $arith_mod::even(&u) {
$arith_mod::div2(&mut u);
if $arith_mod::even(&b.0) {
$arith_mod::div2(&mut b.0);
} else {
$arith_mod::add_nocarry(&mut b.0, &engine.$params_field.modulus);
$arith_mod::div2(&mut b.0);
}
}
while $arith_mod::even(&v) {
$arith_mod::div2(&mut v);
if $arith_mod::even(&c.0) {
$arith_mod::div2(&mut c.0);
} else {
$arith_mod::add_nocarry(&mut c.0, &engine.$params_field.modulus);
$arith_mod::div2(&mut c.0);
}
}
if $arith_mod::lt(&v, &u) {
$arith_mod::sub_noborrow(&mut u, &v);
b.sub_assign(engine, &c);
} else {
$arith_mod::sub_noborrow(&mut v, &u);
c.sub_assign(engine, &b);
}
}
if u == engine.$params_field.one.0 {
Some(b)
} else {
Some(c)
}
}
}
}
mod $arith_mod {
// Arithmetic
#[allow(dead_code)]
pub fn num_bits(v: &[u64; $limbs]) -> usize
{
let mut ret = 64 * $limbs;
for i in v.iter().rev() {
let leading = i.leading_zeros() as usize;
ret -= leading;
if leading != 64 {
break;
}
}
ret
}
#[inline]
pub fn mac_digit(acc: &mut [u64], b: &[u64], c: u64)
{
#[inline]
fn mac_with_carry(a: u64, b: u64, c: u64, carry: &mut u64) -> u64 {
let tmp = (a as u128) + (b as u128) * (c as u128) + (*carry as u128);
*carry = (tmp >> 64) as u64;
tmp as u64
}
let mut b_iter = b.iter();
let mut carry = 0;
for ai in acc.iter_mut() {
if let Some(bi) = b_iter.next() {
*ai = mac_with_carry(*ai, *bi, c, &mut carry);
} else {
*ai = mac_with_carry(*ai, 0, c, &mut carry);
}
}
debug_assert!(carry == 0);
}
#[inline]
pub fn mac3_long(acc: &mut [u64], b: &[u64], c: &[u64]) {
for (i, xi) in b.iter().enumerate() {
mac_digit(&mut acc[i..], c, *xi);
}
}
#[inline]
pub fn mac3(acc: &mut [u64; $limbs*2], b: &[u64; $limbs], c: &[u64; $limbs]) {
if $limbs > 4 {
let (x0, x1) = b.split_at($limbs / 2);
let (y0, y1) = c.split_at($limbs / 2);
let mut p = [0; $limbs+1];
mac3_long(&mut p, x1, y1);
add_nocarry(&mut acc[$limbs/2..], &p);
add_nocarry(&mut acc[$limbs..], &p);
p = [0; $limbs+1];
mac3_long(&mut p, x0, y0);
add_nocarry(&mut acc[..], &p);
add_nocarry(&mut acc[$limbs/2..], &p);
let mut sign;
let mut j0 = [0; $limbs / 2];
let mut j1 = [0; $limbs / 2];
if lt(x1, x0) {
sign = false;
j0.copy_from_slice(x0);
sub_noborrow(&mut j0, x1);
} else {
sign = true;
j0.copy_from_slice(x1);
sub_noborrow(&mut j0, x0);
}
if lt(&y1, &y0) {
sign = sign == false;
j1.copy_from_slice(y0);
sub_noborrow(&mut j1, y1);
} else {
sign = sign == true;
j1.copy_from_slice(y1);
sub_noborrow(&mut j1, y0);
}
if sign {
p = [0; $limbs+1];
mac3_long(&mut p, &j0, &j1);
sub_noborrow(&mut acc[$limbs/2..], &p);
} else {
mac3_long(&mut acc[$limbs/2..], &j0, &j1);
}
} else {
mac3_long(acc, b, c);
}
}
#[inline]
pub fn adc(a: u64, b: u64, carry: &mut u64) -> u64 {
let tmp = (a as u128) + (b as u128) + (*carry as u128);
*carry = (tmp >> 64) as u64;
tmp as u64
}
#[inline]
#[allow(dead_code)]
pub fn add_carry(a: &mut [u64], b: &[u64]) {
use std::iter;
let mut carry = 0;
for (a, b) in a.into_iter().zip(b.iter().chain(iter::repeat(&0))) {
*a = adc(*a, *b, &mut carry);
}
debug_assert!(0 == carry);
}
#[inline]
pub fn add_nocarry(a: &mut [u64], b: &[u64]) {
let mut carry = 0;
for (a, b) in a.into_iter().zip(b.iter()) {
*a = adc(*a, *b, &mut carry);
}
debug_assert!(0 == carry);
}
/// Returns true if a < b.
#[inline]
pub fn lt(a: &[u64], b: &[u64]) -> bool {
for (a, b) in a.iter().zip(b.iter()).rev() {
if *a > *b {
return false;
} else if *a < *b {
return true;
}
}
false
}
#[inline]
pub fn sub_noborrow(a: &mut [u64], b: &[u64]) {
#[inline]
fn sbb(a: u64, b: u64, borrow: &mut u64) -> u64 {
let tmp = (1u128 << 64) + (a as u128) - (b as u128) - (*borrow as u128);
*borrow = if tmp >> 64 == 0 { 1 } else { 0 };
tmp as u64
}
let mut borrow = 0;
for (a, b) in a.into_iter().zip(b.iter()) {
*a = sbb(*a, *b, &mut borrow);
}
debug_assert!(0 == borrow);
}
/// Returns if number is even.
#[inline(always)]
#[allow(dead_code)]
pub fn even(a: &[u64; $limbs]) -> bool {
a[0] & 1 == 0
}
#[inline(always)]
#[allow(dead_code)]
pub fn odd(a: &[u64; $limbs]) -> bool {
a[0] & 1 == 1
}
/// Divide by two
#[inline]
pub fn div2(a: &mut [u64; $limbs]) {
let mut t = 0;
for i in a.iter_mut().rev() {
let t2 = *i << 63;
*i >>= 1;
*i |= t;
t = t2;
}
}
#[inline]
pub fn mul2(a: &mut [u64; $limbs]) {
let mut last = 0;
for i in a {
let tmp = *i >> 63;
*i <<= 1;
*i |= last;
last = tmp;
}
}
fn get_bit(this: &[u64; $limbs*2], n: usize) -> bool {
let part = n / 64;
let bit = n - (64 * part);
this[part] & (1 << bit) > 0
}
fn set_bit(this: &mut [u64; $limbs], n: usize, to: bool) -> bool
{
let part = n / 64;
let bit = n - (64 * part);
match this.get_mut(part) {
Some(e) => {
if to {
*e |= 1 << bit;
} else {
*e &= !(1 << bit);
}
true
},
None => false
}
}
pub fn divrem(
this: &[u64; $limbs*2],
modulo: &[u64; $limbs]
) -> (Option<[u64; $limbs]>, [u64; $limbs])
{
let mut q = Some([0; $limbs]);
let mut r = [0; $limbs];
for i in (0..($limbs*2*64)).rev() {
// NB: modulo's first bit is unset so this will never
// destroy information
mul2(&mut r);
assert!(set_bit(&mut r, 0, get_bit(this, i)));
if !lt(&r, modulo) {
sub_noborrow(&mut r, modulo);
if q.is_some() && !set_bit(q.as_mut().unwrap(), i, true) {
q = None
}
}
}
if q.is_some() && !lt(q.as_ref().unwrap(), modulo) {
(None, r)
} else {
(q, r)
}
}
}
}
}

@ -1,151 +0,0 @@
use super::{Bls381, Fq2, Fq6};
use rand;
use super::Field;
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Fq12 {
pub c0: Fq6,
pub c1: Fq6
}
impl Fq12 {
pub fn unitary_inverse(&mut self, e: &Bls381)
{
self.c1.negate(e);
}
pub fn mul_by_015(
&mut self,
e: &Bls381,
a: &Fq2,
b: &Fq2,
c: &Fq2
)
{
let mut aa = self.c0;
aa.mul_by_01(e, a, b);
let mut bb = self.c1;
bb.mul_by_1(e, c);
let mut o = *b;
o.add_assign(e, &c);
self.c1.add_assign(e, &self.c0);
self.c1.mul_by_01(e, a, &o);
self.c1.sub_assign(e, &aa);
self.c1.sub_assign(e, &bb);
self.c0 = bb;
self.c0.mul_by_nonresidue(e);
self.c0.add_assign(e, &aa);
}
}
impl Field<Bls381> for Fq12
{
fn zero() -> Self {
Fq12 {
c0: Fq6::zero(),
c1: Fq6::zero()
}
}
fn one(engine: &Bls381) -> Self {
Fq12 {
c0: Fq6::one(engine),
c1: Fq6::zero()
}
}
fn random<R: rand::Rng>(engine: &Bls381, rng: &mut R) -> Self {
Fq12 {
c0: Fq6::random(engine, rng),
c1: Fq6::random(engine, rng)
}
}
fn is_zero(&self) -> bool {
self.c0.is_zero() && self.c1.is_zero()
}
fn double(&mut self, engine: &Bls381) {
self.c0.double(engine);
self.c1.double(engine);
}
fn negate(&mut self, engine: &Bls381) {
self.c0.negate(engine);
self.c1.negate(engine);
}
fn add_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.add_assign(engine, &other.c0);
self.c1.add_assign(engine, &other.c1);
}
fn sub_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.sub_assign(engine, &other.c0);
self.c1.sub_assign(engine, &other.c1);
}
fn frobenius_map(&mut self, e: &Bls381, power: usize)
{
self.c0.frobenius_map(e, power);
self.c1.frobenius_map(e, power);
self.c1.c0.mul_assign(e, &e.frobenius_coeff_fq12[power % 12]);
self.c1.c1.mul_assign(e, &e.frobenius_coeff_fq12[power % 12]);
self.c1.c2.mul_assign(e, &e.frobenius_coeff_fq12[power % 12]);
}
fn square(&mut self, e: &Bls381) {
let mut ab = self.c0;
ab.mul_assign(e, &self.c1);
let mut c0c1 = self.c0;
c0c1.add_assign(e, &self.c1);
let mut c0 = self.c1;
c0.mul_by_nonresidue(e);
c0.add_assign(e, &self.c0);
c0.mul_assign(e, &c0c1);
c0.sub_assign(e, &ab);
self.c1 = ab;
self.c1.add_assign(e, &ab);
ab.mul_by_nonresidue(e);
c0.sub_assign(e, &ab);
self.c0 = c0;
}
fn mul_assign(&mut self, e: &Bls381, other: &Self) {
let mut aa = self.c0;
aa.mul_assign(e, &other.c0);
let mut bb = self.c1;
bb.mul_assign(e, &other.c1);
let mut o = other.c0;
o.add_assign(e, &other.c1);
self.c1.add_assign(e, &self.c0);
self.c1.mul_assign(e, &o);
self.c1.sub_assign(e, &aa);
self.c1.sub_assign(e, &bb);
self.c0 = bb;
self.c0.mul_by_nonresidue(e);
self.c0.add_assign(e, &aa);
}
fn inverse(&self, e: &Bls381) -> Option<Self> {
let mut c0s = self.c0;
c0s.square(e);
let mut c1s = self.c1;
c1s.square(e);
c1s.mul_by_nonresidue(e);
c0s.sub_assign(e, &c1s);
c0s.inverse(e).map(|t| {
let mut tmp = Fq12 {
c0: t,
c1: t
};
tmp.c0.mul_assign(e, &self.c0);
tmp.c1.mul_assign(e, &self.c1);
tmp.c1.negate(e);
tmp
})
}
}

@ -1,156 +0,0 @@
use super::{Bls381, Fq};
use rand;
use super::{Field, SqrtField};
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Fq2 {
pub c0: Fq,
pub c1: Fq
}
impl Fq2 {
pub fn mul_by_nonresidue(&mut self, e: &Bls381) {
let t0 = self.c0;
self.c0.sub_assign(e, &self.c1);
self.c1.add_assign(e, &t0);
}
}
impl SqrtField<Bls381> for Fq2 {
fn sqrt(&self, engine: &Bls381) -> Option<Self> {
// Algorithm 9, https://eprint.iacr.org/2012/685.pdf
if self.is_zero() {
return Some(Self::zero());
} else {
let mut a1 = self.pow(engine, &engine.fqparams.modulus_minus_3_over_4);
let mut alpha = a1;
alpha.square(engine);
alpha.mul_assign(engine, self);
let mut a0 = alpha.pow(engine, &engine.fqparams.modulus);
a0.mul_assign(engine, &alpha);
let mut neg1 = Self::one(engine);
neg1.negate(engine);
if a0 == neg1 {
None
} else {
a1.mul_assign(engine, self);
if alpha == neg1 {
a1.mul_assign(engine, &Fq2{c0: Fq::zero(), c1: Fq::one(engine)});
} else {
alpha.add_assign(engine, &Fq2::one(engine));
alpha = alpha.pow(engine, &engine.fqparams.modulus_minus_1_over_2);
a1.mul_assign(engine, &alpha);
}
Some(a1)
}
}
}
}
impl Field<Bls381> for Fq2
{
fn zero() -> Self {
Fq2 {
c0: Fq::zero(),
c1: Fq::zero()
}
}
fn one(engine: &Bls381) -> Self {
Fq2 {
c0: Fq::one(engine),
c1: Fq::zero()
}
}
fn random<R: rand::Rng>(engine: &Bls381, rng: &mut R) -> Self {
Fq2 {
c0: Fq::random(engine, rng),
c1: Fq::random(engine, rng)
}
}
fn is_zero(&self) -> bool {
self.c0.is_zero() && self.c1.is_zero()
}
fn double(&mut self, engine: &Bls381) {
self.c0.double(engine);
self.c1.double(engine);
}
fn negate(&mut self, engine: &Bls381) {
self.c0.negate(engine);
self.c1.negate(engine);
}
fn add_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.add_assign(engine, &other.c0);
self.c1.add_assign(engine, &other.c1);
}
fn sub_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.sub_assign(engine, &other.c0);
self.c1.sub_assign(engine, &other.c1);
}
fn frobenius_map(&mut self, e: &Bls381, power: usize)
{
self.c1.mul_assign(e, &e.frobenius_coeff_fq2[power % 2]);
}
fn square(&mut self, engine: &Bls381) {
let mut ab = self.c0;
ab.mul_assign(engine, &self.c1);
let mut c0c1 = self.c0;
c0c1.add_assign(engine, &self.c1);
let mut c0 = self.c1;
c0.negate(engine);
c0.add_assign(engine, &self.c0);
c0.mul_assign(engine, &c0c1);
c0.sub_assign(engine, &ab);
self.c1 = ab;
self.c1.add_assign(engine, &ab);
c0.add_assign(engine, &ab);
self.c0 = c0;
}
fn mul_assign(&mut self, engine: &Bls381, other: &Self) {
let mut aa = self.c0;
aa.mul_assign(engine, &other.c0);
let mut bb = self.c1;
bb.mul_assign(engine, &other.c1);
let mut o = other.c0;
o.add_assign(engine, &other.c1);
self.c1.add_assign(engine, &self.c0);
self.c1.mul_assign(engine, &o);
self.c1.sub_assign(engine, &aa);
self.c1.sub_assign(engine, &bb);
self.c0 = aa;
self.c0.sub_assign(engine, &bb);
}
fn inverse(&self, engine: &Bls381) -> Option<Self> {
let mut t1 = self.c1;
t1.square(engine);
let mut t0 = self.c0;
t0.square(engine);
t0.add_assign(engine, &t1);
t0.inverse(engine).map(|t| {
let mut tmp = Fq2 {
c0: self.c0,
c1: self.c1
};
tmp.c0.mul_assign(engine, &t);
tmp.c1.mul_assign(engine, &t);
tmp.c1.negate(engine);
tmp
})
}
}

@ -1,295 +0,0 @@
use super::{Bls381, Fq2};
use rand;
use super::Field;
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Fq6 {
pub c0: Fq2,
pub c1: Fq2,
pub c2: Fq2
}
impl Fq6 {
pub fn mul_by_nonresidue(&mut self, e: &Bls381) {
use std::mem::swap;
swap(&mut self.c0, &mut self.c1);
swap(&mut self.c0, &mut self.c2);
self.c0.mul_by_nonresidue(e);
}
pub fn mul_by_1(&mut self, e: &Bls381, c1: &Fq2)
{
let mut b_b = self.c1;
b_b.mul_assign(e, c1);
let mut t1 = *c1;
{
let mut tmp = self.c1;
tmp.add_assign(e, &self.c2);
t1.mul_assign(e, &tmp);
t1.sub_assign(e, &b_b);
t1.mul_by_nonresidue(e);
}
let mut t2 = *c1;
{
let mut tmp = self.c0;
tmp.add_assign(e, &self.c1);
t2.mul_assign(e, &tmp);
t2.sub_assign(e, &b_b);
}
self.c0 = t1;
self.c1 = t2;
self.c2 = b_b;
}
pub fn mul_by_01(&mut self, e: &Bls381, c0: &Fq2, c1: &Fq2)
{
let mut a_a = self.c0;
let mut b_b = self.c1;
a_a.mul_assign(e, c0);
b_b.mul_assign(e, c1);
let mut t1 = *c1;
{
let mut tmp = self.c1;
tmp.add_assign(e, &self.c2);
t1.mul_assign(e, &tmp);
t1.sub_assign(e, &b_b);
t1.mul_by_nonresidue(e);
t1.add_assign(e, &a_a);
}
let mut t3 = *c0;
{
let mut tmp = self.c0;
tmp.add_assign(e, &self.c2);
t3.mul_assign(e, &tmp);
t3.sub_assign(e, &a_a);
t3.add_assign(e, &b_b);
}
let mut t2 = *c0;
t2.add_assign(e, c1);
{
let mut tmp = self.c0;
tmp.add_assign(e, &self.c1);
t2.mul_assign(e, &tmp);
t2.sub_assign(e, &a_a);
t2.sub_assign(e, &b_b);
}
self.c0 = t1;
self.c1 = t2;
self.c2 = t3;
}
}
impl Field<Bls381> for Fq6
{
fn zero() -> Self {
Fq6 {
c0: Fq2::zero(),
c1: Fq2::zero(),
c2: Fq2::zero()
}
}
fn one(engine: &Bls381) -> Self {
Fq6 {
c0: Fq2::one(engine),
c1: Fq2::zero(),
c2: Fq2::zero()
}
}
fn random<R: rand::Rng>(engine: &Bls381, rng: &mut R) -> Self {
Fq6 {
c0: Fq2::random(engine, rng),
c1: Fq2::random(engine, rng),
c2: Fq2::random(engine, rng)
}
}
fn is_zero(&self) -> bool {
self.c0.is_zero() && self.c1.is_zero() && self.c2.is_zero()
}
fn double(&mut self, engine: &Bls381) {
self.c0.double(engine);
self.c1.double(engine);
self.c2.double(engine);
}
fn negate(&mut self, engine: &Bls381) {
self.c0.negate(engine);
self.c1.negate(engine);
self.c2.negate(engine);
}
fn add_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.add_assign(engine, &other.c0);
self.c1.add_assign(engine, &other.c1);
self.c2.add_assign(engine, &other.c2);
}
fn sub_assign(&mut self, engine: &Bls381, other: &Self) {
self.c0.sub_assign(engine, &other.c0);
self.c1.sub_assign(engine, &other.c1);
self.c2.sub_assign(engine, &other.c2);
}
fn frobenius_map(&mut self, e: &Bls381, power: usize)
{
self.c0.frobenius_map(e, power);
self.c1.frobenius_map(e, power);
self.c2.frobenius_map(e, power);
self.c1.mul_assign(e, &e.frobenius_coeff_fq6_c1[power % 6]);
self.c2.mul_assign(e, &e.frobenius_coeff_fq6_c2[power % 6]);
}
fn square(&mut self, e: &Bls381) {
let mut s0 = self.c0;
s0.square(e);
let mut ab = self.c0;
ab.mul_assign(e, &self.c1);
let mut s1 = ab;
s1.double(e);
let mut s2 = self.c0;
s2.sub_assign(e, &self.c1);
s2.add_assign(e, &self.c2);
s2.square(e);
let mut bc = self.c1;
bc.mul_assign(e, &self.c2);
let mut s3 = bc;
s3.double(e);
let mut s4 = self.c2;
s4.square(e);
self.c0 = s3;
self.c0.mul_by_nonresidue(e);
self.c0.add_assign(e, &s0);
self.c1 = s4;
self.c1.mul_by_nonresidue(e);
self.c1.add_assign(e, &s1);
self.c2 = s1;
self.c2.add_assign(e, &s2);
self.c2.add_assign(e, &s3);
self.c2.sub_assign(e, &s0);
self.c2.sub_assign(e, &s4);
}
fn mul_assign(&mut self, e: &Bls381, other: &Self) {
let mut a_a = self.c0;
let mut b_b = self.c1;
let mut c_c = self.c2;
a_a.mul_assign(e, &other.c0);
b_b.mul_assign(e, &other.c1);
c_c.mul_assign(e, &other.c2);
let mut t1 = other.c1;
t1.add_assign(e, &other.c2);
{
let mut tmp = self.c1;
tmp.add_assign(e, &self.c2);
t1.mul_assign(e, &tmp);
t1.sub_assign(e, &b_b);
t1.sub_assign(e, &c_c);
t1.mul_by_nonresidue(e);
t1.add_assign(e, &a_a);
}
let mut t3 = other.c0;
t3.add_assign(e, &other.c2);
{
let mut tmp = self.c0;
tmp.add_assign(e, &self.c2);
t3.mul_assign(e, &tmp);
t3.sub_assign(e, &a_a);
t3.add_assign(e, &b_b);
t3.sub_assign(e, &c_c);
}
let mut t2 = other.c0;
t2.add_assign(e, &other.c1);
{
let mut tmp = self.c0;
tmp.add_assign(e, &self.c1);
t2.mul_assign(e, &tmp);
t2.sub_assign(e, &a_a);
t2.sub_assign(e, &b_b);
c_c.mul_by_nonresidue(e);
t2.add_assign(e, &c_c);
}
self.c0 = t1;
self.c1 = t2;
self.c2 = t3;
}
fn inverse(&self, e: &Bls381) -> Option<Self> {
let mut c0 = self.c2;
c0.mul_by_nonresidue(e);
c0.mul_assign(e, &self.c1);
c0.negate(e);
{
let mut c0s = self.c0;
c0s.square(e);
c0.add_assign(e, &c0s);
}
let mut c1 = self.c2;
c1.square(e);
c1.mul_by_nonresidue(e);
{
let mut c01 = self.c0;
c01.mul_assign(e, &self.c1);
c1.sub_assign(e, &c01);
}
let mut c2 = self.c1;
c2.square(e);
{
let mut c02 = self.c0;
c02.mul_assign(e, &self.c2);
c2.sub_assign(e, &c02);
}
let mut tmp1 = self.c2;
tmp1.mul_assign(e, &c1);
let mut tmp2 = self.c1;
tmp2.mul_assign(e, &c2);
tmp1.add_assign(e, &tmp2);
tmp1.mul_by_nonresidue(e);
tmp2 = self.c0;
tmp2.mul_assign(e, &c0);
tmp1.add_assign(e, &tmp2);
match tmp1.inverse(e) {
Some(t) => {
let mut tmp = Fq6 {
c0: t,
c1: t,
c2: t
};
tmp.c0.mul_assign(e, &c0);
tmp.c1.mul_assign(e, &c1);
tmp.c2.mul_assign(e, &c2);
Some(tmp)
},
None => None
}
}
}

File diff suppressed because it is too large Load Diff

@ -1,41 +0,0 @@
extern crate bincode;
use curves::*;
use super::*;
fn test_vectors<E: Engine, G: Curve<E>>(e: &E, expected: &[u8]) {
let mut bytes = vec![];
let mut acc = G::zero(e);
let mut expected_reader = expected;
for _ in 0..10000 {
{
let acc = acc.to_affine(e);
let exp: <G::Affine as CurveAffine<E>>::Uncompressed =
bincode::deserialize_from(&mut expected_reader, bincode::Infinite).unwrap();
assert!(acc == exp.to_affine(e).unwrap());
let acc = acc.to_uncompressed(e);
bincode::serialize_into(&mut bytes, &acc, bincode::Infinite).unwrap();
}
acc.double(e);
acc.add_assign(e, &G::one(e));
}
assert_eq!(&bytes[..], expected);
}
#[test]
fn g1_serialization_test_vectors() {
let engine = Bls381::new();
test_vectors::<Bls381, G1>(&engine, include_bytes!("g1_serialized.bin"));
}
#[test]
fn g2_serialization_test_vectors() {
let engine = Bls381::new();
test_vectors::<Bls381, G2>(&engine, include_bytes!("g2_serialized.bin"));
}

@ -1,374 +0,0 @@
use super::{Engine, Field, SnarkField, PrimeField, Group};
use crossbeam;
use num_cpus;
pub struct EvaluationDomain<E: Engine> {
pub m: u64,
exp: u64,
omega: E::Fr,
omegainv: E::Fr,
geninv: E::Fr,
minv: E::Fr
}
impl<E: Engine> EvaluationDomain<E> {
pub fn new(e: &E, needed: u64) -> Self {
if needed > 268435456 {
panic!("circuit depths larger than 2^28 are not supported");
}
let mut m = 1;
let mut exp = 0;
while m < needed {
m *= 2;
exp += 1;
assert!(exp < E::Fr::s(e));
}
let mut omega = E::Fr::root_of_unity(e);
for _ in exp..E::Fr::s(e) {
omega.square(e);
}
EvaluationDomain {
m: m,
exp: exp,
omega: omega,
omegainv: omega.inverse(e).unwrap(),
geninv: E::Fr::multiplicative_generator(e).inverse(e).unwrap(),
minv: E::Fr::from_u64(e, m).inverse(e).unwrap()
}
}
pub fn z(&self, e: &E, tau: &E::Fr) -> E::Fr {
let mut tmp = tau.pow(e, &[self.m]);
tmp.sub_assign(e, &E::Fr::one(e));
tmp
}
pub fn ifft<T: Group<E>>(&self, e: &E, v: &mut [T])
{
assert!(v.len() == self.m as usize);
best_fft(e, v, &self.omegainv, self.exp);
let chunk = (v.len() / num_cpus::get()) + 1;
crossbeam::scope(|scope| {
for v in v.chunks_mut(chunk) {
scope.spawn(move || {
for v in v {
v.group_mul_assign(e, &self.minv);
}
});
}
});
}
fn mul_coset(&self, e: &E, v: &mut [E::Fr], g: &E::Fr)
{
let chunk = (v.len() / num_cpus::get()) + 1;
crossbeam::scope(|scope| {
for (i, v) in v.chunks_mut(chunk).enumerate() {
scope.spawn(move || {
let mut u = g.pow(e, &[(i * chunk) as u64]);
for v in v.iter_mut() {
v.mul_assign(e, &u);
u.mul_assign(e, g);
}
});
}
});
}
pub fn coset_fft(&self, e: &E, v: &mut [E::Fr])
{
self.mul_coset(e, v, &E::Fr::multiplicative_generator(e));
self.fft(e, v);
}
pub fn icoset_fft(&self, e: &E, v: &mut [E::Fr])
{
self.ifft(e, v);
self.mul_coset(e, v, &self.geninv);
}
pub fn divide_by_z_on_coset(&self, e: &E, v: &mut [E::Fr])
{
let i = self.z(e, &E::Fr::multiplicative_generator(e)).inverse(e).unwrap();
let chunk = (v.len() / num_cpus::get()) + 1;
crossbeam::scope(|scope| {
for v in v.chunks_mut(chunk) {
scope.spawn(move || {
for v in v {
v.mul_assign(e, &i);
}
});
}
});
}
pub fn mul_assign(&self, e: &E, a: &mut [E::Fr], b: Vec<E::Fr>) {
assert_eq!(a.len(), b.len());
let chunk = (a.len() / num_cpus::get()) + 1;
crossbeam::scope(|scope| {
for (a, b) in a.chunks_mut(chunk).zip(b.chunks(chunk)) {
scope.spawn(move || {
for (a, b) in a.iter_mut().zip(b.iter()) {
a.mul_assign(e, b);
}
});
}
});
}
pub fn sub_assign(&self, e: &E, a: &mut [E::Fr], b: Vec<E::Fr>) {
assert_eq!(a.len(), b.len());
let chunk = (a.len() / num_cpus::get()) + 1;
crossbeam::scope(|scope| {
for (a, b) in a.chunks_mut(chunk).zip(b.chunks(chunk)) {
scope.spawn(move || {
for (a, b) in a.iter_mut().zip(b.iter()) {
a.sub_assign(e, b);
}
});
}
});
}
pub fn fft<T: Group<E>>(&self, e: &E, a: &mut [T])
{
best_fft(e, a, &self.omega, self.exp);
}
}
fn best_fft<E: Engine, T: Group<E>>(e: &E, a: &mut [T], omega: &E::Fr, log_n: u64)
{
let log_cpus = get_log_cpus();
if log_n < log_cpus {
serial_fft(e, a, omega, log_n);
} else {
parallel_fft(e, a, omega, log_n, log_cpus);
}
}
fn parallel_fft<E: Engine, T: Group<E>>(e: &E, a: &mut [T], omega: &E::Fr, log_n: u64, log_cpus: u64)
{
assert!(log_n >= log_cpus);
let num_cpus = 1 << log_cpus;
let log_new_n = log_n - log_cpus;
let mut tmp = vec![vec![T::group_zero(e); 1 << log_new_n]; num_cpus];
let omega_num_cpus = omega.pow(e, &[num_cpus as u64]);
crossbeam::scope(|scope| {
let a = &*a;
for (j, tmp) in tmp.iter_mut().enumerate() {
scope.spawn(move || {
let omega_j = omega.pow(e, &[j as u64]);
let omega_step = omega.pow(e, &[(j as u64) << log_new_n]);
let mut elt = E::Fr::one(e);
for i in 0..(1 << log_new_n) {
for s in 0..num_cpus {
let idx = (i + (s << log_new_n)) % (1 << log_n);
let mut t = a[idx];
t.group_mul_assign(e, &elt);
tmp[i].group_add_assign(e, &t);
elt.mul_assign(e, &omega_step);
}
elt.mul_assign(e, &omega_j);
}
serial_fft(e, tmp, &omega_num_cpus, log_new_n);
});
}
});
let chunk = (a.len() / num_cpus) + 1;
crossbeam::scope(|scope| {
let tmp = &tmp;
for (idx, a) in a.chunks_mut(chunk).enumerate() {
scope.spawn(move || {
let mut idx = idx * chunk;
let mask = (1 << log_cpus) - 1;
for a in a {
*a = tmp[idx & mask][idx >> log_cpus];
idx += 1;
}
});
}
});
}
fn serial_fft<E: Engine, T: Group<E>>(e: &E, a: &mut [T], omega: &E::Fr, log_n: u64)
{
fn bitreverse(mut n: usize, l: u64) -> usize {
let mut r = 0;
for _ in 0..l {
r = (r << 1) | (n & 1);
n >>= 1;
}
r
}
let n = a.len();
assert_eq!(n, 1 << log_n);
for k in 0..n {
let rk = bitreverse(k, log_n);
if k < rk {
let tmp1 = a[rk];
let tmp2 = a[k];
a[rk] = tmp2;
a[k] = tmp1;
}
}
let mut m = 1;
for _ in 0..log_n {
let w_m = omega.pow(e, &[(n / (2*m)) as u64]);
let mut k = 0;
while k < n {
let mut w = E::Fr::one(e);
for j in 0..m {
let mut t = a[(k+j+m) as usize];
t.group_mul_assign(e, &w);
let mut tmp = a[(k+j) as usize];
tmp.group_sub_assign(e, &t);
a[(k+j+m) as usize] = tmp;
a[(k+j) as usize].group_add_assign(e, &t);
w.mul_assign(e, &w_m);
}
k += 2*m;
}
m *= 2;
}
}
// Test multiplying various (low degree) polynomials together and
// comparing with naive evaluations.
#[test]
fn polynomial_arith() {
use curves::*;
use curves::bls381::Bls381;
use rand;
fn test_mul<E: Engine, R: rand::Rng>(e: &E, rng: &mut R)
{
for coeffs_a in 1..70 {
for coeffs_b in 1..70 {
let final_degree = coeffs_a + coeffs_b - 1;
let domain = EvaluationDomain::new(e, final_degree as u64);
let mut a: Vec<_> = (0..coeffs_a).map(|_| E::Fr::random(e, rng)).collect();
let mut b: Vec<_> = (0..coeffs_b).map(|_| E::Fr::random(e, rng)).collect();
// naive evaluation
let mut naive = vec![E::Fr::zero(); domain.m as usize];
for (i1, a) in a.iter().enumerate() {
for (i2, b) in b.iter().enumerate() {
let mut prod = *a;
prod.mul_assign(e, b);
naive[i1 + i2].add_assign(e, &prod);
}
}
a.resize(domain.m as usize, E::Fr::zero());
b.resize(domain.m as usize, E::Fr::zero());
let mut c = vec![];
c.resize(domain.m as usize, E::Fr::zero());
domain.fft(e, &mut a);
domain.fft(e, &mut b);
for ((a, b), c) in a.iter().zip(b.iter()).zip(c.iter_mut()) {
*c = *a;
c.mul_assign(e, b);
}
domain.ifft(e, &mut c);
for (naive, fft) in naive.iter().zip(c.iter()) {
assert_eq!(naive, fft);
}
}
}
}
let e = &Bls381::new();
let rng = &mut rand::thread_rng();
test_mul(e, rng);
}
fn get_log_cpus() -> u64 {
let num = num_cpus::get();
log2_floor(num)
}
fn log2_floor(num: usize) -> u64 {
assert!(num > 0);
let mut pow = 0;
while (1 << (pow+1)) <= num {
pow += 1;
}
pow
}
#[test]
fn test_log2_floor() {
assert_eq!(log2_floor(1), 0);
assert_eq!(log2_floor(2), 1);
assert_eq!(log2_floor(3), 1);
assert_eq!(log2_floor(4), 2);
assert_eq!(log2_floor(5), 2);
assert_eq!(log2_floor(6), 2);
assert_eq!(log2_floor(7), 2);
assert_eq!(log2_floor(8), 3);
}
#[test]
fn parallel_fft_consistency() {
use curves::*;
use curves::bls381::{Bls381, Fr};
use std::cmp::min;
use rand;
let e = &Bls381::new();
let rng = &mut rand::thread_rng();
for log_d in 0..10 {
let d = 1 << log_d;
let domain = EvaluationDomain::new(e, d);
assert_eq!(domain.m, d);
for log_cpus in 0..min(log_d, 3) {
let mut v1 = (0..d).map(|_| Fr::random(e, rng)).collect::<Vec<_>>();
let mut v2 = v1.clone();
parallel_fft(e, &mut v1, &domain.omega, log_d, log_cpus);
serial_fft(e, &mut v2, &domain.omega, log_d);
assert_eq!(v1, v2);
}
}
}

@ -1,258 +0,0 @@
use rand;
use std::fmt;
use std::borrow::Borrow;
use serde::{Serialize, Deserialize};
use super::BitIterator;
use super::{Cow, Convert};
pub mod bls381;
pub mod multiexp;
pub mod wnaf;
pub mod domain;
pub trait Engine: Sized + Clone + Send + Sync
{
type Fq: PrimeField<Self> + Convert<<Self::Fq as PrimeField<Self>>::Repr, Self>;
type Fr: SnarkField<Self> + Convert<<Self::Fr as PrimeField<Self>>::Repr, Self>;
type Fqe: SqrtField<Self>;
type Fqk: Field<Self>;
type G1: Curve<Self> + Convert<<Self::G1 as Curve<Self>>::Affine, Self>;
type G2: Curve<Self> + Convert<<Self::G2 as Curve<Self>>::Affine, Self>;
fn new() -> Self;
/// Operate over the thread-local engine instance
fn with<R, F: for<'a> FnOnce(&'a Self) -> R>(F) -> R;
fn pairing<G1, G2>(&self, p: &G1, q: &G2) -> Self::Fqk
where G1: Convert<<Self::G1 as Curve<Self>>::Affine, Self>,
G2: Convert<<Self::G2 as Curve<Self>>::Affine, Self>
{
self.final_exponentiation(&self.miller_loop(
[(
&(*p.convert(self)).borrow().prepare(self),
&(*q.convert(self)).borrow().prepare(self)
)].into_iter()
))
}
fn miller_loop<'a, I>(&self, I) -> Self::Fqk
where I: IntoIterator<Item=&'a (
&'a <Self::G1 as Curve<Self>>::Prepared,
&'a <Self::G2 as Curve<Self>>::Prepared
)>;
fn final_exponentiation(&self, &Self::Fqk) -> Self::Fqk;
/// Perform multi-exponentiation. g and s must have the same length.
fn multiexp<G: Curve<Self>>(&self, g: &[G::Affine], s: &[Self::Fr]) -> Result<G, ()>;
fn batch_baseexp<G: Curve<Self>, S: AsRef<[Self::Fr]>>(&self, table: &wnaf::WindowTable<Self, G>, scalars: S) -> Vec<G::Affine>;
fn batchexp<G: Curve<Self>, S: AsRef<[Self::Fr]>>(&self, g: &mut [G::Affine], scalars: S, coeff: Option<&Self::Fr>);
}
pub trait Group<E: Engine>: Copy + Send + Sync + Sized
{
fn group_zero(&E) -> Self;
fn group_mul_assign(&mut self, &E, scalar: &E::Fr);
fn group_add_assign(&mut self, &E, other: &Self);
fn group_sub_assign(&mut self, &E, other: &Self);
}
pub trait Curve<E: Engine>: Sized +
Copy +
Clone +
Send +
Sync +
fmt::Debug +
'static +
Group<E> +
self::multiexp::Projective<E>
{
type Affine: CurveAffine<E, Jacobian=Self>;
type Prepared: Clone + Send + Sync + 'static;
fn zero(&E) -> Self;
fn one(&E) -> Self;
fn random<R: rand::Rng>(&E, &mut R) -> Self;
fn is_zero(&self) -> bool;
fn is_equal(&self, &E, other: &Self) -> bool;
fn to_affine(&self, &E) -> Self::Affine;
fn prepare(&self, &E) -> Self::Prepared;
fn double(&mut self, &E);
fn negate(&mut self, engine: &E);
fn add_assign(&mut self, &E, other: &Self);
fn sub_assign(&mut self, &E, other: &Self);
fn add_assign_mixed(&mut self, &E, other: &Self::Affine);
fn mul_assign<S: Convert<<E::Fr as PrimeField<E>>::Repr, E>>(&mut self, &E, other: &S);
fn optimal_window(&E, scalar_bits: usize) -> Option<usize>;
fn optimal_window_batch(&self, &E, scalars: usize) -> wnaf::WindowTable<E, Self>;
/// Performs optimal exponentiation of this curve element given the scalar, using
/// wNAF when necessary.
fn optimal_exp(
&self,
e: &E,
scalar: <E::Fr as PrimeField<E>>::Repr,
table: &mut wnaf::WindowTable<E, Self>,
scratch: &mut wnaf::WNAFTable
) -> Self {
let bits = scalar.num_bits();
match Self::optimal_window(e, bits) {
Some(window) => {
table.set_base(e, *self, window);
scratch.set_scalar(table, scalar);
table.exp(e, scratch)
},
None => {
let mut tmp = *self;
tmp.mul_assign(e, &scalar);
tmp
}
}
}
}
pub trait CurveAffine<E: Engine>: Copy +
Clone +
Sized +
Send +
Sync +
fmt::Debug +
PartialEq +
Eq +
'static
{
type Jacobian: Curve<E, Affine=Self>;
type Uncompressed: CurveRepresentation<E, Affine=Self>;
fn to_jacobian(&self, &E) -> Self::Jacobian;
fn prepare(self, &E) -> <Self::Jacobian as Curve<E>>::Prepared;
fn is_zero(&self) -> bool;
fn mul<S: Convert<<E::Fr as PrimeField<E>>::Repr, E>>(&self, &E, other: &S) -> Self::Jacobian;
fn negate(&mut self, &E);
/// Returns true iff the point is on the curve and in the correct
/// subgroup. This is guaranteed to return true unless the user
/// invokes `to_affine_unchecked`.
fn is_valid(&self, &E) -> bool;
/// Produces an "uncompressed" representation of the curve point according
/// to IEEE standards.
fn to_uncompressed(&self, &E) -> Self::Uncompressed;
}
pub trait CurveRepresentation<E: Engine>: Serialize + for<'a> Deserialize<'a>
{
type Affine: CurveAffine<E>;
/// If the point representation is valid (lies on the curve, correct
/// subgroup) this function will return it.
fn to_affine(&self, e: &E) -> Result<Self::Affine, ()> {
let p = try!(self.to_affine_unchecked(e));
if p.is_valid(e) {
Ok(p)
} else {
Err(())
}
}
/// Returns the point under the assumption that it is valid. Undefined
/// behavior if `to_affine` would have rejected the point.
fn to_affine_unchecked(&self, &E) -> Result<Self::Affine, ()>;
}
pub trait Field<E: Engine>: Sized +
Eq +
PartialEq +
Copy +
Clone +
Send +
Sync +
fmt::Debug +
'static
{
fn zero() -> Self;
fn one(&E) -> Self;
fn random<R: rand::Rng>(&E, &mut R) -> Self;
fn is_zero(&self) -> bool;
fn square(&mut self, engine: &E);
fn double(&mut self, engine: &E);
fn negate(&mut self, &E);
fn add_assign(&mut self, &E, other: &Self);
fn sub_assign(&mut self, &E, other: &Self);
fn mul_assign(&mut self, &E, other: &Self);
fn inverse(&self, &E) -> Option<Self>;
fn frobenius_map(&mut self, &E, power: usize);
fn pow<S: AsRef<[u64]>>(&self, engine: &E, exp: S) -> Self
{
let mut res = Self::one(engine);
for i in BitIterator::new(exp) {
res.square(engine);
if i {
res.mul_assign(engine, self);
}
}
res
}
}
pub trait SqrtField<E: Engine>: Field<E>
{
/// Returns a square root of the field element, if it is
/// quadratic residue.
fn sqrt(&self, engine: &E) -> Option<Self>;
}
pub trait PrimeFieldRepr: Clone + Eq + Ord + AsRef<[u64]> {
fn from_u64(a: u64) -> Self;
fn sub_noborrow(&mut self, other: &Self);
fn add_nocarry(&mut self, other: &Self);
fn num_bits(&self) -> usize;
fn is_zero(&self) -> bool;
fn is_odd(&self) -> bool;
fn div2(&mut self);
}
pub trait PrimeField<E: Engine>: SqrtField<E>
{
type Repr: PrimeFieldRepr;
fn from_u64(&E, u64) -> Self;
fn from_str(&E, s: &str) -> Result<Self, ()>;
fn from_repr(&E, Self::Repr) -> Result<Self, ()>;
fn into_repr(&self, &E) -> Self::Repr;
/// Returns the field characteristic; the modulus.
fn char(&E) -> Self::Repr;
/// Returns how many bits are needed to represent an element of this
/// field.
fn num_bits(&E) -> usize;
/// Returns how many bits of information can be reliably stored in the
/// field element.
fn capacity(&E) -> usize;
}
pub trait SnarkField<E: Engine>: PrimeField<E> + Group<E>
{
fn s(&E) -> u64;
fn multiplicative_generator(&E) -> Self;
fn root_of_unity(&E) -> Self;
}
#[cfg(test)]
mod tests;
#[test]
fn bls381_test_suite() {
tests::test_engine::<bls381::Bls381>();
}

@ -1,232 +0,0 @@
//! This module provides an abstract implementation of the Bos-Coster multi-exponentiation algorithm.
use super::{Engine, Curve, CurveAffine, Field, PrimeField, PrimeFieldRepr};
use super::wnaf;
use std::cmp::Ordering;
use std::collections::BinaryHeap;
pub trait Projective<E: Engine>: Sized + Copy + Clone + Send {
type WindowTable;
/// Constructs an identity element.
fn identity(e: &E) -> Self;
/// Adds this projective element to another projective element.
fn add_to_projective(&self, e: &E, projective: &mut Self);
/// Exponentiates by a scalar.
fn exponentiate(
&mut self,
e: &E,
scalar: <E::Fr as PrimeField<E>>::Repr,
table: &mut Self::WindowTable,
scratch: &mut wnaf::WNAFTable
);
/// Construct a blank window table
fn new_window_table(e: &E) -> Self::WindowTable;
}
pub trait Chunk<E: Engine>: Send {
type Projective: Projective<E>;
/// Skips the next element from the source.
fn skip(&mut self, e: &E) -> Result<(), ()>;
/// Adds the next element from the source to a projective element
fn add_to_projective(&mut self, e: &E, acc: &mut Self::Projective) -> Result<(), ()>;
/// Turns the next element of the source into a projective element.
fn into_projective(&mut self, e: &E) -> Result<Self::Projective, ()>;
}
/// An `ElementSource` is something that contains a sequence of group elements or
/// group element tuples.
pub trait ElementSource<E: Engine> {
type Chunk: Chunk<E>;
/// Gets the number of elements from the source.
fn num_elements(&self) -> usize;
/// Returns a chunk size and a vector of chunks.
fn chunks(&mut self, chunks: usize) -> (usize, Vec<Self::Chunk>);
}
impl<'a, E: Engine, G: CurveAffine<E>> ElementSource<E> for &'a [G] {
type Chunk = &'a [G];
fn num_elements(&self) -> usize {
self.len()
}
fn chunks(&mut self, chunks: usize) -> (usize, Vec<Self::Chunk>) {
let chunk_size = (self.len() / chunks) + 1;
(chunk_size, (*self).chunks(chunk_size).collect())
}
}
impl<'a, E: Engine, G: CurveAffine<E>> Chunk<E> for &'a [G]
{
type Projective = G::Jacobian;
fn skip(&mut self, _: &E) -> Result<(), ()> {
if self.len() == 0 {
Err(())
} else {
*self = &self[1..];
Ok(())
}
}
/// Adds the next element from the source to a projective element
fn add_to_projective(&mut self, e: &E, acc: &mut Self::Projective) -> Result<(), ()> {
if self.len() == 0 {
Err(())
} else {
acc.add_assign_mixed(e, &self[0]);
*self = &self[1..];
Ok(())
}
}
/// Turns the next element of the accumulator into a projective element.
fn into_projective(&mut self, e: &E) -> Result<Self::Projective, ()> {
if self.len() == 0 {
Err(())
} else {
let ret = Ok(self[0].to_jacobian(e));
*self = &self[1..];
ret
}
}
}
fn justexp<E: Engine>(
largest: &<E::Fr as PrimeField<E>>::Repr,
smallest: &<E::Fr as PrimeField<E>>::Repr
) -> bool
{
use std::cmp::min;
let abits = largest.num_bits();
let bbits = smallest.num_bits();
let limit = min(abits-bbits, 20);
if bbits < (1<<limit) {
true
} else {
false
}
}
pub fn perform_multiexp<E: Engine, Source: ElementSource<E>>(
e: &E,
mut bases: Source,
scalars: &[E::Fr]
) -> Result<<Source::Chunk as Chunk<E>>::Projective, ()>
{
if bases.num_elements() != scalars.len() {
return Err(())
}
use crossbeam;
use num_cpus;
let (chunk_len, bases) = bases.chunks(num_cpus::get());
return crossbeam::scope(|scope| {
let mut threads = vec![];
for (mut chunk, scalars) in bases.into_iter().zip(scalars.chunks(chunk_len)) {
threads.push(scope.spawn(move || {
let mut heap: BinaryHeap<Exp<E>> = BinaryHeap::with_capacity(scalars.len());
let mut elements = Vec::with_capacity(scalars.len());
let mut acc = Projective::<E>::identity(e);
let one = E::Fr::one(e);
for scalar in scalars {
if scalar.is_zero() {
// Skip processing bases when we're multiplying by a zero anyway.
chunk.skip(e)?;
} else if *scalar == one {
// Just perform mixed addition when we're multiplying by one.
chunk.add_to_projective(e, &mut acc)?;
} else {
elements.push(chunk.into_projective(e)?);
heap.push(Exp {
scalar: scalar.into_repr(e),
index: elements.len() - 1
});
}
}
let mut window = <<Source::Chunk as Chunk<E>>::Projective as Projective<E>>::new_window_table(e);
let mut scratch = wnaf::WNAFTable::new();
// Now that the heap is populated...
while let Some(mut greatest) = heap.pop() {
{
let second_greatest = heap.peek();
if second_greatest.is_none() || justexp::<E>(&greatest.scalar, &second_greatest.unwrap().scalar) {
// Either this is the last value or multiplying is considered more efficient than
// rewriting and reinsertion into the heap.
//opt_exp(engine, &mut elements[greatest.index], greatest.scalar, &mut table);
elements[greatest.index].exponentiate(e, greatest.scalar, &mut window, &mut scratch);
elements[greatest.index].add_to_projective(e, &mut acc);
continue;
} else {
// Rewrite
let second_greatest = second_greatest.unwrap();
greatest.scalar.sub_noborrow(&second_greatest.scalar);
let mut tmp = elements[second_greatest.index];
elements[greatest.index].add_to_projective(e, &mut tmp);
elements[second_greatest.index] = tmp;
}
}
if !greatest.scalar.is_zero() {
// Reinsert only nonzero scalars.
heap.push(greatest);
}
}
Ok(acc)
}));
}
let mut acc = Projective::<E>::identity(e);
for t in threads {
t.join()?.add_to_projective(e, &mut acc);
}
Ok(acc)
})
}
struct Exp<E: Engine> {
scalar: <E::Fr as PrimeField<E>>::Repr,
index: usize
}
impl<E: Engine> Ord for Exp<E> {
fn cmp(&self, other: &Exp<E>) -> Ordering {
self.scalar.cmp(&other.scalar)
}
}
impl<E: Engine> PartialOrd for Exp<E> {
fn partial_cmp(&self, other: &Exp<E>) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<E: Engine> PartialEq for Exp<E> {
fn eq(&self, other: &Exp<E>) -> bool {
self.scalar == other.scalar
}
}
impl<E: Engine> Eq for Exp<E> { }

@ -1,277 +0,0 @@
use rand;
use super::super::{Engine, Field, PrimeField, Curve, CurveAffine};
fn random_test_mixed_addition<E: Engine, G: Curve<E>>(e: &E)
{
let rng = &mut rand::thread_rng();
// affine is zero
{
let a = G::zero(e).to_affine(e);
let mut b = G::random(e, rng);
let bcpy = b;
b.add_assign_mixed(e, &a);
assert!(bcpy.is_equal(e, &b));
assert_eq!(bcpy.to_affine(e), b.to_affine(e));
}
// self is zero
{
let a = G::random(e, rng).to_affine(e);
let mut b = G::zero(e);
let acpy = a.to_jacobian(e);
b.add_assign_mixed(e, &a);
assert!(acpy.is_equal(e, &b));
assert_eq!(acpy.to_affine(e), b.to_affine(e));
}
// both are zero
{
let a = G::zero(e).to_affine(e);
let mut b = G::zero(e);
let acpy = a.to_jacobian(e);
b.add_assign_mixed(e, &a);
assert!(acpy.is_equal(e, &b));
assert_eq!(acpy.to_affine(e), b.to_affine(e));
}
// one is negative of the other
{
let a = G::random(e, rng);
let mut b = a;
b.negate(e);
let a = a.to_affine(e);
b.add_assign_mixed(e, &a);
assert!(b.is_zero());
assert_eq!(b.to_affine(e), G::zero(e).to_affine(e));
}
// doubling case
{
let a = G::random(e, rng);
let b = a.to_affine(e);
let mut acpy = a;
acpy.add_assign_mixed(e, &b);
let mut t = a;
t.double(e);
assert!(acpy.is_equal(e, &t));
}
for _ in 0..100 {
let mut x = G::random(e, rng);
let mut y = x;
let b = G::random(e, rng);
let baffine = b.to_affine(e);
x.add_assign(e, &b);
y.add_assign_mixed(e, &baffine);
assert!(x.is_equal(e, &y));
}
}
fn random_test_addition<E: Engine, G: Curve<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..50 {
let r1 = G::random(e, rng);
let r2 = G::random(e, rng);
let r3 = G::random(e, rng);
{
let mut tmp1 = r1;
tmp1.add_assign(e, &r2);
tmp1.add_assign(e, &r3);
let mut tmp2 = r2;
tmp2.add_assign(e, &r3);
tmp2.add_assign(e, &r1);
assert!(tmp1.is_equal(e, &tmp2));
}
{
let mut tmp = r1;
tmp.add_assign(e, &r2);
tmp.add_assign(e, &r3);
tmp.sub_assign(e, &r1);
tmp.sub_assign(e, &r2);
tmp.sub_assign(e, &r3);
assert!(tmp.is_zero());
}
}
}
fn random_test_doubling<E: Engine, G: Curve<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..50 {
let r1 = G::random(e, rng);
let r2 = G::random(e, rng);
let ti = E::Fr::from_str(e, "2").unwrap().inverse(e).unwrap();
{
let mut tmp_1 = r1;
tmp_1.add_assign(e, &r2);
tmp_1.add_assign(e, &r1);
let mut tmp_2 = r1;
tmp_2.double(e);
tmp_2.add_assign(e, &r2);
assert!(tmp_1.is_equal(e, &tmp_2));
}
{
let mut tmp = r1;
tmp.double(e);
tmp.mul_assign(e, &ti);
assert!(tmp.is_equal(e, &r1));
}
}
}
fn random_test_dh<E: Engine, G: Curve<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..50 {
let alice_sk = E::Fr::random(e, rng);
let bob_sk = E::Fr::random(e, rng);
let mut alice_pk = G::one(e);
alice_pk.mul_assign(e, &alice_sk);
let mut bob_pk = G::one(e);
bob_pk.mul_assign(e, &bob_sk);
let mut alice_shared = bob_pk;
alice_shared.mul_assign(e, &alice_sk);
let mut bob_shared = alice_pk;
bob_shared.mul_assign(e, &bob_sk);
assert!(alice_shared.is_equal(e, &bob_shared));
}
}
fn random_mixed_addition<E: Engine, G: Curve<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..50 {
let a = G::random(e, rng);
let mut res = a;
res.double(e);
let affine = a.to_affine(e);
let mut jacobian = affine.to_jacobian(e);
jacobian.double(e);
assert!(jacobian.is_equal(e, &res));
}
}
fn random_test_equality<E: Engine, G: Curve<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..50 {
let begin = G::random(e, rng);
let mut acc = begin;
let a = E::Fr::random(e, rng);
let b = G::random(e, rng);
let c = E::Fr::random(e, rng);
let d = G::random(e, rng);
for _ in 0..10 {
acc.mul_assign(e, &a);
acc.negate(e);
acc.add_assign(e, &b);
acc.mul_assign(e, &c);
acc.negate(e);
acc.sub_assign(e, &d);
acc.double(e);
}
assert!(!acc.is_equal(e, &begin));
let ai = a.inverse(e).unwrap();
let ci = c.inverse(e).unwrap();
let ti = E::Fr::from_str(e, "2").unwrap().inverse(e).unwrap();
for _ in 0..10 {
acc.mul_assign(e, &ti);
acc.add_assign(e, &d);
acc.negate(e);
acc.mul_assign(e, &ci);
acc.sub_assign(e, &b);
acc.negate(e);
acc.mul_assign(e, &ai);
}
assert!(acc.is_equal(e, &begin));
}
}
pub fn test_curve<E: Engine, G: Curve<E>>(e: &E) {
{
let rng = &mut rand::thread_rng();
let mut g = G::random(e, rng);
let order = <E::Fr as PrimeField<E>>::char(e);
g.mul_assign(e, &order);
assert!(g.is_zero());
}
{
let rng = &mut rand::thread_rng();
let mut neg1 = E::Fr::one(e);
neg1.negate(e);
for _ in 0..1000 {
let orig = G::random(e, rng);
let mut a = orig;
a.mul_assign(e, &neg1);
assert!(!a.is_zero());
a.add_assign(e, &orig);
assert!(a.is_zero());
}
}
{
let mut o = G::one(e);
o.sub_assign(e, &G::one(e));
assert!(o.is_zero());
}
{
let mut o = G::one(e);
o.add_assign(e, &G::one(e));
let mut r = G::one(e);
r.mul_assign(e, &E::Fr::from_str(e, "2").unwrap());
assert!(o.is_equal(e, &r));
}
{
let mut z = G::zero(e);
assert!(z.is_zero());
z.double(e);
assert!(z.is_zero());
let zaffine = z.to_affine(e);
let zjacobian = zaffine.to_jacobian(e);
assert!(zjacobian.is_zero());
}
random_test_equality::<E, G>(e);
random_test_dh::<E, G>(e);
random_test_doubling::<E, G>(e);
random_test_addition::<E, G>(e);
random_mixed_addition::<E, G>(e);
random_test_mixed_addition::<E, G>(e);
}

@ -1,219 +0,0 @@
use rand::{self, Rng};
use super::super::{Engine, Field, SqrtField, PrimeField};
fn inversion_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
let mut a = F::one(e);
for _ in 0..10000 {
let mut b = a.inverse(e).unwrap();
b.mul_assign(e, &a);
assert_eq!(b, F::one(e));
a.add_assign(e, &F::one(e));
}
a = F::one(e);
a.negate(e);
for _ in 0..10000 {
let mut b = a.inverse(e).unwrap();
b.mul_assign(e, &a);
assert_eq!(b, F::one(e));
a.sub_assign(e, &F::one(e));
}
a = F::zero();
assert!(a.inverse(e).is_none());
for _ in 0..10000 {
let r = F::random(e, rng);
assert!(!r.is_zero());
let mut rinv = r.inverse(e).unwrap();
rinv.mul_assign(e, &r);
assert_eq!(rinv, F::one(e));
}
}
fn expansion_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
for _ in 0..100 {
let a = F::random(e, rng);
let b = F::random(e, rng);
let c = F::random(e, rng);
let d = F::random(e, rng);
let lhs;
{
let mut t0 = a;
t0.add_assign(e, &b);
let mut t1 = c;
t1.add_assign(e, &d);
t0.mul_assign(e, &t1);
lhs = t0;
}
let rhs;
{
let mut t0 = a;
t0.mul_assign(e, &c);
let mut t1 = b;
t1.mul_assign(e, &c);
let mut t2 = a;
t2.mul_assign(e, &d);
let mut t3 = b;
t3.mul_assign(e, &d);
t0.add_assign(e, &t1);
t0.add_assign(e, &t2);
t0.add_assign(e, &t3);
rhs = t0;
}
assert_eq!(lhs, rhs);
}
}
fn squaring_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
for _ in 0..100 {
let mut a = F::random(e, rng);
let mut b = a;
b.mul_assign(e, &a);
a.square(e);
assert_eq!(a, b);
}
let mut cur = F::zero();
for _ in 0..100 {
let mut a = cur;
a.square(e);
let mut b = cur;
b.mul_assign(e, &cur);
assert_eq!(a, b);
cur.add_assign(e, &F::one(e));
}
}
fn operation_tests<E: Engine, F: Field<E>, R: Rng>(e: &E, rng: &mut R) {
{
let mut acc = F::zero();
for _ in 0..1000 {
let mut a = acc;
a.negate(e);
a.add_assign(e, &acc);
assert_eq!(a, F::zero());
acc.add_assign(e, &F::one(e));
}
}
{
for _ in 0..1000 {
let mut a = F::random(e, rng);
let mut at = a;
let mut b = F::random(e, rng);
a.sub_assign(e, &b);
b.negate(e);
at.add_assign(e, &b);
assert_eq!(a, at);
}
}
}
pub fn test_field<E: Engine, F: Field<E>>(e: &E) {
let rng = &mut rand::thread_rng();
inversion_tests::<E, F, _>(e, rng);
expansion_tests::<E, F, _>(e, rng);
squaring_tests::<E, F, _>(e, rng);
operation_tests::<E, F, _>(e, rng);
}
pub fn test_sqrt_field<E: Engine, F: SqrtField<E>>(e: &E) {
const SAMPLES: isize = 10000;
{
let mut acc = F::one(e);
for _ in 0..SAMPLES {
let mut b = acc;
b.square(e);
let mut c = b.sqrt(e).unwrap();
if c != acc {
c.negate(e);
}
assert_eq!(acc, c);
acc.add_assign(e, &F::one(e));
}
}
{
let mut acc = F::one(e);
for _ in 0..SAMPLES {
match acc.sqrt(e) {
Some(mut a) => {
a.square(e);
assert_eq!(a, acc);
},
None => {}
}
acc.add_assign(e, &F::one(e));
}
}
{
let rng = &mut rand::thread_rng();
for _ in 0..SAMPLES {
let a = F::random(e, rng);
let mut b = a;
b.square(e);
let mut c = b.sqrt(e).unwrap();
if c != a {
c.negate(e);
}
assert_eq!(a, c);
}
}
{
let rng = &mut rand::thread_rng();
let mut qr: isize = 0;
let mut nqr: isize = 0;
for _ in 0..SAMPLES {
let a = F::random(e, rng);
match a.sqrt(e) {
Some(mut b) => {
qr += 1;
b.square(e);
assert_eq!(a, b);
},
None => {
nqr += 1;
}
}
}
assert!((qr - nqr < (SAMPLES / 20)) || (qr - nqr > -(SAMPLES / 20)));
}
}
pub fn test_prime_field<E: Engine, F: PrimeField<E>>(e: &E) {
let rng = &mut rand::thread_rng();
for _ in 0..100 {
let a = F::random(e, rng);
let b = F::random(e, rng);
let mut c = a;
c.mul_assign(e, &b);
let a = a.into_repr(e);
let b = b.into_repr(e);
let expected_a = F::from_repr(e, a).unwrap();
let expected_b = F::from_repr(e, b).unwrap();
let mut expected_c = expected_a;
expected_c.mul_assign(e, &expected_b);
assert_eq!(c, expected_c);
}
}

@ -1,182 +0,0 @@
use super::{Engine, Curve, CurveAffine, Field, PrimeField};
use rand::{self, Rng};
mod fields;
mod curves;
fn test_batchexp<E: Engine, G: Curve<E>>(e: &E) {
let rng = &mut rand::thread_rng();
fn test_batchexp_case<E: Engine, G: Curve<E>, R: Rng>(e: &E, rng: &mut R, amount: usize, coeff: Option<&E::Fr>)
{
let mut g: Vec<G::Affine> = (0..amount).map(|_| G::random(e, rng).to_affine(e)).collect();
let mut s: Vec<E::Fr> = (0..amount).map(|_| E::Fr::random(e, rng)).collect();
let mut g_batch = g.clone();
e.batchexp::<G, _>(&mut g_batch, &s, coeff);
for (g, s) in g.iter_mut().zip(s.iter_mut()) {
match coeff {
Some(coeff) => {
s.mul_assign(e, &coeff);
},
_ => {}
}
*g = g.mul(e, s).to_affine(e);
}
assert_eq!(g_batch, g);
}
for amt in 10..100 {
if amt % 2 == 0 {
let coeff = &E::Fr::random(e, rng);
test_batchexp_case::<E, G, _>(e, rng, amt, Some(coeff));
} else {
test_batchexp_case::<E, G, _>(e, rng, amt, None);
}
}
}
fn test_multiexp<E: Engine, G: Curve<E>>(e: &E) {
fn naiveexp<E: Engine, G: Curve<E>>(e: &E, g: &[G::Affine], s: &[E::Fr]) -> G
{
assert!(g.len() == s.len());
let mut expected = G::zero(e);
for (g, s) in g.iter().zip(s.iter()) {
expected.add_assign(e, &g.mul(e, s));
}
expected
}
{
let rng = &mut rand::thread_rng();
let g: Vec<G::Affine> = (0..1000).map(|_| G::random(e, rng).to_affine(e)).collect();
let s: Vec<E::Fr> = (0..1000).map(|_| E::Fr::random(e, rng)).collect();
let naive = naiveexp::<E, G>(e, &g, &s);
let multi = e.multiexp::<G>(&g, &s).unwrap();
assert!(naive.is_equal(e, &multi));
assert!(multi.is_equal(e, &naive));
}
{
let rng = &mut rand::thread_rng();
let g: Vec<G::Affine> = (0..2).map(|_| G::random(e, rng).to_affine(e)).collect();
let s = vec![E::Fr::from_str(e, "3435973836800000000000000000000000").unwrap(), E::Fr::from_str(e, "3435973836700000000000000000000000").unwrap()];
let naive = naiveexp::<E, G>(e, &g, &s);
let multi = e.multiexp::<G>(&g, &s).unwrap();
assert!(naive.is_equal(e, &multi));
assert!(multi.is_equal(e, &naive));
}
{
let rng = &mut rand::thread_rng();
let s = vec![E::Fr::one(e); 100];
let g = vec![G::random(e, rng).to_affine(e); 101];
assert!(e.multiexp::<G>(&g, &s).is_err());
}
}
fn test_bilinearity<E: Engine>(e: &E) {
let rng = &mut rand::thread_rng();
let a = E::G1::random(e, rng);
let b = E::G2::random(e, rng);
let s = E::Fr::random(e, rng);
let mut a_s = a;
a_s.mul_assign(e, &s);
let mut b_s = b;
b_s.mul_assign(e, &s);
let test1 = e.pairing(&a_s, &b);
assert!(test1 != E::Fqk::one(e));
let test2 = e.pairing(&a, &b_s);
assert_eq!(test1, test2);
let mut test4 = e.pairing(&a, &b);
assert!(test4 != test1);
test4 = test4.pow(e, &s.into_repr(e));
assert_eq!(test1, test4);
}
fn test_multimiller<E: Engine>(e: &E) {
let rng = &mut rand::thread_rng();
let a1 = E::G1::random(e, rng);
let a2 = E::G2::random(e, rng);
let b1 = E::G1::random(e, rng);
let b2 = E::G2::random(e, rng);
let mut p1 = e.pairing(&a1, &a2);
let p2 = e.pairing(&b1, &b2);
p1.mul_assign(e, &p2);
let mm = e.final_exponentiation(&e.miller_loop(
[
(&a1.prepare(e), &a2.prepare(e)),
(&b1.prepare(e), &b2.prepare(e))
].into_iter()
));
assert_eq!(p1, mm);
}
pub fn test_engine<E: Engine>() {
let engine = E::new();
fields::test_prime_field::<E, E::Fq>(&engine);
fields::test_prime_field::<E, E::Fr>(&engine);
fields::test_sqrt_field::<E, E::Fq>(&engine);
fields::test_sqrt_field::<E, E::Fr>(&engine);
fields::test_sqrt_field::<E, E::Fqe>(&engine);
fields::test_field::<E, E::Fq>(&engine);
fields::test_field::<E, E::Fr>(&engine);
fields::test_field::<E, E::Fqe>(&engine);
fields::test_field::<E, E::Fqk>(&engine);
curves::test_curve::<E, E::G1>(&engine);
curves::test_curve::<E, E::G2>(&engine);
test_bilinearity(&engine);
test_multimiller(&engine);
test_frobenius(&engine);
test_multiexp::<E, E::G1>(&engine);
test_multiexp::<E, E::G2>(&engine);
test_batchexp::<E, E::G1>(&engine);
test_batchexp::<E, E::G2>(&engine);
}
fn test_frobenius<E: Engine>(e: &E) {
let rng = &mut rand::thread_rng();
let modulus = E::Fq::char(e);
let a = E::Fqk::random(e, rng);
let mut acpy = a;
acpy.frobenius_map(e, 0);
assert_eq!(acpy, a);
let mut a_q = a.pow(e, &modulus);
for p in 1..12 {
acpy = a;
acpy.frobenius_map(e, p);
assert_eq!(acpy, a_q);
a_q = a_q.pow(e, &modulus);
}
}

@ -1,110 +0,0 @@
use std::marker::PhantomData;
use super::{Engine, Curve, PrimeField, PrimeFieldRepr};
/// Represents the scratch space for a wNAF form scalar.
pub struct WNAFTable {
window: usize,
wnaf: Vec<i64>
}
impl WNAFTable {
pub fn new() -> WNAFTable {
WNAFTable {
window: 0,
wnaf: vec![]
}
}
/// Convert the scalar into wNAF form.
pub fn set_scalar<E: Engine, G: Curve<E>>(&mut self, table: &WindowTable<E, G>, mut c: <E::Fr as PrimeField<E>>::Repr) {
self.window = table.window;
self.wnaf.truncate(0);
while !c.is_zero() {
let mut u;
if c.is_odd() {
u = (c.as_ref()[0] % (1 << (self.window+1))) as i64;
if u > (1 << self.window) {
u -= 1 << (self.window+1);
}
if u > 0 {
c.sub_noborrow(&<<E::Fr as PrimeField<E>>::Repr as PrimeFieldRepr>::from_u64(u as u64));
} else {
c.add_nocarry(&<<E::Fr as PrimeField<E>>::Repr as PrimeFieldRepr>::from_u64((-u) as u64));
}
} else {
u = 0;
}
self.wnaf.push(u);
c.div2();
}
}
}
/// Represents a window table for a base curve point.
pub struct WindowTable<E: Engine, G: Curve<E>>{
window: usize,
table: Vec<G>,
_marker: PhantomData<E>
}
impl<E: Engine, G: Curve<E>> WindowTable<E, G> {
/// Construct a new window table for a given base.
pub fn new(e: &E, base: G, window: usize) -> Self {
let mut tmp = WindowTable {
window: 0,
table: vec![],
_marker: PhantomData
};
tmp.set_base(e, base, window);
tmp
}
/// Replace this window table with a new one generated by a different base.
pub fn set_base(&mut self, e: &E, mut base: G, window: usize) {
assert!(window < 23);
assert!(window > 1);
self.window = window;
self.table.truncate(0);
self.table.reserve(1 << (window-1));
let mut dbl = base;
dbl.double(e);
for _ in 0..(1 << (window-1)) {
self.table.push(base);
base.add_assign(e, &dbl);
}
}
pub fn exp(&self, e: &E, wnaf: &WNAFTable) -> G {
assert_eq!(wnaf.window, self.window);
let mut result = G::zero(e);
for n in wnaf.wnaf.iter().rev() {
result.double(e);
if *n != 0 {
if *n > 0 {
result.add_assign(e, &self.table[(n/2) as usize]);
} else {
result.sub_assign(e, &self.table[((-n)/2) as usize]);
}
}
}
result
}
pub fn current_window(&self) -> usize {
self.window
}
}

@ -1,527 +0,0 @@
use curves::*;
use super::*;
pub struct ProvingKey<E: Engine> {
a_inputs: Vec<<E::G1 as Curve<E>>::Affine>,
b1_inputs: Vec<<E::G1 as Curve<E>>::Affine>,
b2_inputs: Vec<<E::G2 as Curve<E>>::Affine>,
a_aux: Vec<<E::G1 as Curve<E>>::Affine>,
b1_aux: Vec<<E::G1 as Curve<E>>::Affine>,
b2_aux: Vec<<E::G2 as Curve<E>>::Affine>,
h: Vec<<E::G1 as Curve<E>>::Affine>,
l: Vec<<E::G1 as Curve<E>>::Affine>,
alpha_g1: <E::G1 as Curve<E>>::Affine,
beta_g1: <E::G1 as Curve<E>>::Affine,
beta_g2: <E::G2 as Curve<E>>::Affine,
delta_g1: <E::G1 as Curve<E>>::Affine,
delta_g2: <E::G2 as Curve<E>>::Affine
}
pub struct VerifyingKey<E: Engine> {
alpha_g1: <E::G1 as Curve<E>>::Affine,
beta_g2: <E::G2 as Curve<E>>::Affine,
gamma_g2: <E::G2 as Curve<E>>::Affine,
delta_g2: <E::G2 as Curve<E>>::Affine,
ic: Vec<<E::G1 as Curve<E>>::Affine>
}
pub struct PreparedVerifyingKey<E: Engine> {
alpha_g1_beta_g2: E::Fqk,
neg_gamma_g2: <E::G2 as Curve<E>>::Prepared,
neg_delta_g2: <E::G2 as Curve<E>>::Prepared,
ic: Vec<<E::G1 as Curve<E>>::Affine>
}
pub struct Proof<E: Engine> {
a: E::G1,
b: E::G2,
c: E::G1
}
pub fn keypair<E: Engine, C: Circuit<E>>(
e: &E,
circuit: C,
tau: &E::Fr,
alpha: &E::Fr,
beta: &E::Fr,
gamma: &E::Fr,
delta: &E::Fr
) -> (ProvingKey<E>, VerifyingKey<E>)
{
struct KeypairAssembly<E: Engine> {
num_inputs: usize,
num_aux: usize,
num_constraints: usize,
at_inputs: Vec<Vec<(E::Fr, usize)>>,
bt_inputs: Vec<Vec<(E::Fr, usize)>>,
ct_inputs: Vec<Vec<(E::Fr, usize)>>,
at_aux: Vec<Vec<(E::Fr, usize)>>,
bt_aux: Vec<Vec<(E::Fr, usize)>>,
ct_aux: Vec<Vec<(E::Fr, usize)>>
}
impl<E: Engine> PublicConstraintSystem<E> for KeypairAssembly<E> {
fn alloc_input(&mut self, _: E::Fr) -> Variable {
let index = self.num_inputs;
self.num_inputs += 1;
self.at_inputs.push(vec![]);
self.bt_inputs.push(vec![]);
self.ct_inputs.push(vec![]);
Variable(Index::Input(index))
}
}
impl<E: Engine> ConstraintSystem<E> for KeypairAssembly<E> {
fn alloc(&mut self, _: E::Fr) -> Variable {
let index = self.num_aux;
self.num_aux += 1;
self.at_aux.push(vec![]);
self.bt_aux.push(vec![]);
self.ct_aux.push(vec![]);
Variable(Index::Aux(index))
}
fn enforce(
&mut self,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
)
{
fn qap_eval<E: Engine>(
l: LinearCombination<E>,
inputs: &mut [Vec<(E::Fr, usize)>],
aux: &mut [Vec<(E::Fr, usize)>],
this_constraint: usize
)
{
for (index, coeff) in l.0 {
match index {
Index::Input(id) => inputs[id].push((coeff, this_constraint)),
Index::Aux(id) => aux[id].push((coeff, this_constraint))
}
}
}
qap_eval(a, &mut self.at_inputs, &mut self.at_aux, self.num_constraints);
qap_eval(b, &mut self.bt_inputs, &mut self.bt_aux, self.num_constraints);
qap_eval(c, &mut self.ct_inputs, &mut self.ct_aux, self.num_constraints);
self.num_constraints += 1;
}
}
let mut assembly = KeypairAssembly {
num_inputs: 0,
num_aux: 0,
num_constraints: 0,
at_inputs: vec![],
bt_inputs: vec![],
ct_inputs: vec![],
at_aux: vec![],
bt_aux: vec![],
ct_aux: vec![]
};
assembly.alloc_input(E::Fr::one(e));
circuit.synthesize(e, &mut assembly).synthesize(e, &mut assembly);
// Input consistency constraints: x * 0 = 0
for i in 0..assembly.num_inputs {
assembly.enforce(LinearCombination::zero(e).add(E::Fr::one(e), Variable(Index::Input(i))),
LinearCombination::zero(e),
LinearCombination::zero(e));
}
let domain = domain::EvaluationDomain::new(e, assembly.num_constraints as u64);
let mut u = Vec::with_capacity(domain.m as usize);
{
let mut acc = E::Fr::one(e);
for _ in 0..domain.m {
u.push(acc);
acc.mul_assign(e, tau);
}
}
let gamma_inverse = gamma.inverse(e).unwrap();
let delta_inverse = delta.inverse(e).unwrap();
let g1_table;
let h;
{
let mut powers_of_tau = u.clone();
powers_of_tau.truncate((domain.m - 1) as usize);
let mut coeff = delta_inverse;
coeff.mul_assign(e, &domain.z(e, tau));
for h in &mut powers_of_tau {
h.mul_assign(e, &coeff);
}
g1_table = E::G1::one(e).optimal_window_batch(e,
(domain.m - 1) as usize + (assembly.num_inputs + assembly.num_aux) * 3
);
h = e.batch_baseexp(&g1_table, powers_of_tau);
}
domain.ifft(e, &mut u);
fn eval<E: Engine>(
e: &E,
u: &[E::Fr],
alpha: &E::Fr,
beta: &E::Fr,
inv: &E::Fr,
at_in: Vec<Vec<(E::Fr, usize)>>,
bt_in: Vec<Vec<(E::Fr, usize)>>,
ct_in: Vec<Vec<(E::Fr, usize)>>
) -> (Vec<E::Fr>, Vec<E::Fr>, Vec<E::Fr>)
{
assert_eq!(at_in.len(), bt_in.len());
assert_eq!(bt_in.len(), ct_in.len());
fn eval_at_tau<E: Engine>(
e: &E,
val: Vec<(E::Fr, usize)>,
u: &[E::Fr]
) -> E::Fr
{
let mut acc = E::Fr::zero();
for (coeff, index) in val {
let mut n = u[index];
n.mul_assign(e, &coeff);
acc.add_assign(e, &n);
}
acc
}
let mut a_out = Vec::with_capacity(at_in.len());
let mut b_out = Vec::with_capacity(at_in.len());
let mut l_out = Vec::with_capacity(at_in.len());
for ((a, b), c) in at_in.into_iter().zip(bt_in.into_iter()).zip(ct_in.into_iter()) {
let a = eval_at_tau(e, a, u);
let b = eval_at_tau(e, b, u);
let mut t0 = a;
t0.mul_assign(e, beta);
let mut t1 = b;
t1.mul_assign(e, alpha);
t0.add_assign(e, &t1);
t0.add_assign(e, &eval_at_tau(e, c, u));
t0.mul_assign(e, inv);
a_out.push(a);
b_out.push(b);
l_out.push(t0);
}
(a_out, b_out, l_out)
}
let (a_inputs, b_inputs, ic_coeffs) = eval(e, &u, alpha, beta, &gamma_inverse, assembly.at_inputs, assembly.bt_inputs, assembly.ct_inputs);
let a_inputs = e.batch_baseexp(&g1_table, a_inputs);
let b1_inputs = e.batch_baseexp(&g1_table, &b_inputs);
let ic_coeffs = e.batch_baseexp(&g1_table, ic_coeffs);
let (a_aux, b_aux, l_coeffs) = eval(e, &u, alpha, beta, &delta_inverse, assembly.at_aux, assembly.bt_aux, assembly.ct_aux);
let a_aux = e.batch_baseexp(&g1_table, a_aux);
let b1_aux = e.batch_baseexp(&g1_table, &b_aux);
let l_coeffs = e.batch_baseexp(&g1_table, l_coeffs);
drop(g1_table);
let g2_table = E::G2::one(e).optimal_window_batch(e,
(assembly.num_inputs + assembly.num_aux)
);
let b2_inputs = e.batch_baseexp(&g2_table, b_inputs);
let b2_aux = e.batch_baseexp(&g2_table, b_aux);
let mut alpha_g1 = E::G1::one(e);
alpha_g1.mul_assign(e, alpha);
let mut beta_g1 = E::G1::one(e);
beta_g1.mul_assign(e, beta);
let mut beta_g2 = E::G2::one(e);
beta_g2.mul_assign(e, beta);
let mut gamma_g2 = E::G2::one(e);
gamma_g2.mul_assign(e, gamma);
let mut delta_g1 = E::G1::one(e);
delta_g1.mul_assign(e, delta);
let mut delta_g2 = E::G2::one(e);
delta_g2.mul_assign(e, delta);
(
ProvingKey {
a_inputs: a_inputs,
b1_inputs: b1_inputs,
b2_inputs: b2_inputs,
a_aux: a_aux,
b1_aux: b1_aux,
b2_aux: b2_aux,
h: h,
l: l_coeffs,
delta_g1: delta_g1.to_affine(e),
delta_g2: delta_g2.to_affine(e),
alpha_g1: alpha_g1.to_affine(e),
beta_g1: beta_g1.to_affine(e),
beta_g2: beta_g2.to_affine(e)
},
VerifyingKey {
alpha_g1: alpha_g1.to_affine(e),
beta_g2: beta_g2.to_affine(e),
gamma_g2: gamma_g2.to_affine(e),
delta_g2: delta_g2.to_affine(e),
ic: ic_coeffs
}
)
}
pub fn prepare_verifying_key<E: Engine>(
e: &E,
vk: &VerifyingKey<E>
) -> PreparedVerifyingKey<E>
{
let mut gamma = vk.gamma_g2;
gamma.negate(e);
let mut delta = vk.delta_g2;
delta.negate(e);
PreparedVerifyingKey {
alpha_g1_beta_g2: e.pairing(&vk.alpha_g1, &vk.beta_g2),
neg_gamma_g2: gamma.prepare(e),
neg_delta_g2: delta.prepare(e),
ic: vk.ic.clone()
}
}
pub struct VerifierInput<'a, E: Engine + 'a> {
e: &'a E,
acc: E::G1,
ic: &'a [<E::G1 as Curve<E>>::Affine],
insufficient_inputs: bool,
num_inputs: usize,
num_aux: usize
}
impl<'a, E: Engine> ConstraintSystem<E> for VerifierInput<'a, E> {
fn alloc(&mut self, _: E::Fr) -> Variable {
let index = self.num_aux;
self.num_aux += 1;
Variable(Index::Aux(index))
}
fn enforce(
&mut self,
_: LinearCombination<E>,
_: LinearCombination<E>,
_: LinearCombination<E>
)
{
// Do nothing; we don't care about the constraint system
// in this context.
}
}
pub fn verify<'a, E: Engine, C: Input<E>, F: FnOnce(&mut VerifierInput<'a, E>) -> C>(
e: &'a E,
circuit: F,
proof: &Proof<E>,
pvk: &'a PreparedVerifyingKey<E>
) -> bool
{
struct InputAllocator<T>(T);
impl<'a, 'b, E: Engine> PublicConstraintSystem<E> for InputAllocator<&'b mut VerifierInput<'a, E>> {
fn alloc_input(&mut self, value: E::Fr) -> Variable {
if self.0.ic.len() == 0 {
self.0.insufficient_inputs = true;
} else {
self.0.acc.add_assign(self.0.e, &self.0.ic[0].mul(self.0.e, &value));
self.0.ic = &self.0.ic[1..];
}
let index = self.0.num_inputs;
self.0.num_inputs += 1;
Variable(Index::Input(index))
}
}
impl<'a, 'b, E: Engine> ConstraintSystem<E> for InputAllocator<&'b mut VerifierInput<'a, E>> {
fn alloc(&mut self, num: E::Fr) -> Variable {
self.0.alloc(num)
}
fn enforce(
&mut self,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
)
{
self.0.enforce(a, b, c);
}
}
let mut witness = VerifierInput {
e: e,
acc: pvk.ic[0].to_jacobian(e),
ic: &pvk.ic[1..],
insufficient_inputs: false,
num_inputs: 1,
num_aux: 0
};
circuit(&mut witness).synthesize(e, &mut InputAllocator(&mut witness));
if witness.ic.len() != 0 || witness.insufficient_inputs {
return false;
}
e.final_exponentiation(
&e.miller_loop([
(&proof.a.prepare(e), &proof.b.prepare(e)),
(&witness.acc.prepare(e), &pvk.neg_gamma_g2),
(&proof.c.prepare(e), &pvk.neg_delta_g2)
].into_iter())
) == pvk.alpha_g1_beta_g2
}
pub fn prove<E: Engine, C: Circuit<E>>(
e: &E,
circuit: C,
r: &E::Fr,
s: &E::Fr,
pk: &ProvingKey<E>
) -> Result<Proof<E>, ()>
{
struct ProvingAssignment<'a, E: Engine + 'a> {
e: &'a E,
// Evaluations of A, B, C polynomials
a: Vec<E::Fr>,
b: Vec<E::Fr>,
c: Vec<E::Fr>,
// Assignments of variables
input_assignment: Vec<E::Fr>,
aux_assignment: Vec<E::Fr>
}
impl<'a, E: Engine> PublicConstraintSystem<E> for ProvingAssignment<'a, E> {
fn alloc_input(&mut self, value: E::Fr) -> Variable {
self.input_assignment.push(value);
Variable(Index::Input(self.input_assignment.len() - 1))
}
}
impl<'a, E: Engine> ConstraintSystem<E> for ProvingAssignment<'a, E> {
fn alloc(&mut self, value: E::Fr) -> Variable {
self.aux_assignment.push(value);
Variable(Index::Aux(self.aux_assignment.len() - 1))
}
fn enforce(
&mut self,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
)
{
self.a.push(a.evaluate(self.e, &self.input_assignment, &self.aux_assignment));
self.b.push(b.evaluate(self.e, &self.input_assignment, &self.aux_assignment));
self.c.push(c.evaluate(self.e, &self.input_assignment, &self.aux_assignment));
}
}
let mut prover = ProvingAssignment {
e: e,
a: vec![],
b: vec![],
c: vec![],
input_assignment: vec![],
aux_assignment: vec![]
};
prover.alloc_input(E::Fr::one(e));
circuit.synthesize(e, &mut prover).synthesize(e, &mut prover);
// Input consistency constraints: x * 0 = 0
for i in 0..prover.input_assignment.len() {
prover.enforce(LinearCombination::zero(e).add(E::Fr::one(e), Variable(Index::Input(i))),
LinearCombination::zero(e),
LinearCombination::zero(e));
}
// Perform FFTs
let h = {
let domain = domain::EvaluationDomain::new(e, prover.a.len() as u64);
prover.a.resize(domain.m as usize, E::Fr::zero());
prover.b.resize(domain.m as usize, E::Fr::zero());
prover.c.resize(domain.m as usize, E::Fr::zero());
domain.ifft(e, &mut prover.a);
domain.coset_fft(e, &mut prover.a);
domain.ifft(e, &mut prover.b);
domain.coset_fft(e, &mut prover.b);
domain.ifft(e, &mut prover.c);
domain.coset_fft(e, &mut prover.c);
let mut h = prover.a;
domain.mul_assign(e, &mut h, prover.b);
domain.sub_assign(e, &mut h, prover.c);
domain.divide_by_z_on_coset(e, &mut h);
domain.icoset_fft(e, &mut h);
e.multiexp(&pk.h, &h[0..(domain.m-1) as usize])?
};
// Construct proof
let mut g_a = pk.delta_g1.mul(e, r);
g_a.add_assign(e, &pk.alpha_g1.to_jacobian(e));
let mut g_b = pk.delta_g2.mul(e, s);
g_b.add_assign(e, &pk.beta_g2.to_jacobian(e));
let mut g_c;
{
let mut rs = *r;
rs.mul_assign(e, s);
g_c = pk.delta_g1.mul(e, &rs);
g_c.add_assign(e, &pk.alpha_g1.mul(e, s));
g_c.add_assign(e, &pk.beta_g1.mul(e, r));
}
let mut a_answer: E::G1 = e.multiexp(&pk.a_inputs, &prover.input_assignment)?;
a_answer.add_assign(e, &e.multiexp(&pk.a_aux, &prover.aux_assignment)?);
g_a.add_assign(e, &a_answer);
a_answer.mul_assign(e, s);
g_c.add_assign(e, &a_answer);
let mut b1_answer: E::G1 = e.multiexp(&pk.b1_inputs, &prover.input_assignment)?;
b1_answer.add_assign(e, &e.multiexp(&pk.b1_aux, &prover.aux_assignment)?);
let mut b2_answer: E::G2 = e.multiexp(&pk.b2_inputs, &prover.input_assignment)?;
b2_answer.add_assign(e, &e.multiexp(&pk.b2_aux, &prover.aux_assignment)?);
g_b.add_assign(e, &b2_answer);
b1_answer.mul_assign(e, r);
g_c.add_assign(e, &b1_answer);
g_c.add_assign(e, &h);
g_c.add_assign(e, &e.multiexp(&pk.l, &prover.aux_assignment)?);
Ok(Proof {
a: g_a,
b: g_b,
c: g_c
})
}
#[cfg(test)]
mod tests;

@ -1,207 +0,0 @@
use super::*;
use rand::{Rng, thread_rng};
struct RootCircuit<E: Engine> {
root: E::Fr
}
impl<E: Engine> Circuit<E> for RootCircuit<E> {
type InputMap = RootInput<E>;
fn synthesize<CS: ConstraintSystem<E>>(self,
e: &E,
cs: &mut CS)
-> Self::InputMap
{
let root_var = cs.alloc(self.root);
let mut cur = root_var;
let mut cur_val = self.root;
for _ in 0..99 {
cur_val.mul_assign(e, &self.root);
let new = cs.alloc(cur_val);
cs.enforce(
LinearCombination::zero(e) + (E::Fr::from_str(e, "3").unwrap(), cur),
LinearCombination::zero(e) + (E::Fr::from_str(e, "4").unwrap(), root_var),
LinearCombination::zero(e) + (E::Fr::from_str(e, "12").unwrap(), new),
);
cur = new;
}
RootInput {
num: cur_val,
num_var: cur
}
}
}
struct RootInput<E: Engine> {
num: E::Fr,
num_var: Variable
}
impl<E: Engine> Input<E> for RootInput<E> {
fn synthesize<CS: PublicConstraintSystem<E>>(
self,
e: &E,
cs: &mut CS
)
{
let result_input = cs.alloc_input(self.num);
cs.enforce(
LinearCombination::zero(e) + result_input,
LinearCombination::one(e),
LinearCombination::zero(e) + self.num_var
);
}
}
fn test_snark_system<E: Engine, R: Rng>(
e: &E,
rng: &mut R
)
{
let tau = E::Fr::random(e, rng);
let alpha = E::Fr::random(e, rng);
let beta = E::Fr::random(e, rng);
let gamma = E::Fr::random(e, rng);
let delta = E::Fr::random(e, rng);
// create keypair
let (pk, vk) = {
let c = RootCircuit {
root: E::Fr::zero()
};
keypair(e, c, &tau, &alpha, &beta, &gamma, &delta)
};
// construct proof
let proof = {
let r = E::Fr::random(e, rng);
let s = E::Fr::random(e, rng);
let c = RootCircuit {
root: E::Fr::from_str(e, "2").unwrap()
};
prove(e, c, &r, &s, &pk).unwrap()
};
// prepare verifying key
let pvk = prepare_verifying_key(e, &vk);
// verify proof
assert!(verify(e, |cs| {
RootInput {
num: E::Fr::from_str(e, "1267650600228229401496703205376").unwrap(),
num_var: cs.alloc(E::Fr::one(e))
}
}, &proof, &pvk));
// verify invalid proof
assert!(!verify(e, |cs| {
RootInput {
num: E::Fr::from_str(e, "1267650600228229401496703205375").unwrap(),
num_var: cs.alloc(E::Fr::one(e))
}
}, &proof, &pvk));
// simulate a groth proof with trapdoors
// ----------------
// 99: a1 * a0 = l*
// 100: a0 * 0 = 0
// 101: a1 * 0 = 0
// ---
// u_0(tau) = tau^100
// u_1(tau) = tau^99 + tau^101
// v_0(tau) = tau^99
// v_1(tau) = 0
// w_0(tau) = 0
// w_1(tau) = 0
// ---
let mut lagrange_coeffs: Vec<E::Fr> = (0..128).map(|i| tau.pow(e, &[i])).collect();
let d = domain::EvaluationDomain::new(e, 128);
d.ifft(e, &mut lagrange_coeffs);
let a = E::Fr::random(e, rng);
let b = E::Fr::random(e, rng);
let mut c = a;
c.mul_assign(e, &b);
let mut alphabeta = alpha;
alphabeta.mul_assign(e, &beta);
c.sub_assign(e, &alphabeta);
let mut ic = E::Fr::zero();
{
let mut ic_i_beta = lagrange_coeffs[100];
ic_i_beta.mul_assign(e, &beta);
let mut ic_i_alpha = lagrange_coeffs[99];
ic_i_alpha.mul_assign(e, &alpha);
ic_i_beta.add_assign(e, &ic_i_alpha);
ic.add_assign(e, &ic_i_beta);
}
{
let mut ic_i_beta = lagrange_coeffs[99];
ic_i_beta.add_assign(e, &lagrange_coeffs[101]);
ic_i_beta.mul_assign(e, &beta);
ic_i_beta.mul_assign(e, &E::Fr::from_str(e, "100").unwrap());
ic.add_assign(e, &ic_i_beta);
}
c.sub_assign(e, &ic);
c.mul_assign(e, &delta.inverse(e).unwrap());
let mut a_g = E::G1::one(e);
a_g.mul_assign(e, &a);
let mut b_g = E::G2::one(e);
b_g.mul_assign(e, &b);
let mut c_g = E::G1::one(e);
c_g.mul_assign(e, &c);
let fake_proof = Proof {
a: a_g,
b: b_g,
c: c_g
};
// verify fake proof
assert!(verify(e, |cs| {
RootInput {
num: E::Fr::from_str(e, "100").unwrap(),
num_var: cs.alloc(E::Fr::one(e))
}
}, &fake_proof, &pvk));
// verify fake proof with wrong input
assert!(!verify(e, |cs| {
RootInput {
num: E::Fr::from_str(e, "101").unwrap(),
num_var: cs.alloc(E::Fr::one(e))
}
}, &fake_proof, &pvk));
}
#[test]
fn groth_with_bls381() {
use curves::bls381::Bls381;
let e = &Bls381::new();
let rng = &mut thread_rng();
test_snark_system(e, rng);
}

@ -1,215 +0,0 @@
#![feature(i128_type)]
extern crate rand;
extern crate num_cpus;
extern crate crossbeam;
extern crate byteorder;
extern crate serde;
pub mod curves;
pub mod groth16;
use std::collections::HashMap;
use std::ops;
use std::ops::Deref;
use std::borrow::Borrow;
use curves::{Engine, Field};
#[derive(Copy, Clone)]
pub struct Variable(Index);
impl Variable {
pub fn one() -> Self {
Variable(Index::Input(0))
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
enum Index {
Input(usize),
Aux(usize)
}
pub struct LinearCombination<'a, E: Engine + 'a>(HashMap<Index, E::Fr>, &'a E);
impl<'a, E: Engine + 'a> ops::Add<Variable> for LinearCombination<'a, E> {
type Output = LinearCombination<'a, E>;
fn add(self, other: Variable) -> LinearCombination<'a, E> {
let one = E::Fr::one(self.1);
self.add(one, other)
}
}
impl<'a, E: Engine + 'a> ops::Add<(E::Fr, Variable)> for LinearCombination<'a, E> {
type Output = LinearCombination<'a, E>;
fn add(self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<'a, E> {
self.add(coeff, var)
}
}
impl<'a, E: Engine + 'a> ops::Sub<Variable> for LinearCombination<'a, E> {
type Output = LinearCombination<'a, E>;
fn sub(self, other: Variable) -> LinearCombination<'a, E> {
let one = E::Fr::one(self.1);
self.sub(one, other)
}
}
impl<'a, E: Engine + 'a> ops::Sub<(E::Fr, Variable)> for LinearCombination<'a, E> {
type Output = LinearCombination<'a, E>;
fn sub(self, (coeff, var): (E::Fr, Variable)) -> LinearCombination<'a, E> {
self.sub(coeff, var)
}
}
impl<'a, E: Engine> LinearCombination<'a, E> {
pub fn zero(e: &'a E) -> LinearCombination<'a, E> {
LinearCombination(HashMap::new(), e)
}
pub fn one(e: &'a E) -> LinearCombination<'a, E> {
LinearCombination::zero(e).add(E::Fr::one(e), Variable::one())
}
pub fn add(mut self, coeff: E::Fr, var: Variable) -> Self
{
self.0.entry(var.0)
.or_insert(E::Fr::zero())
.add_assign(self.1, &coeff);
self
}
pub fn sub(self, mut coeff: E::Fr, var: Variable) -> Self
{
coeff.negate(self.1);
self.add(coeff, var)
}
fn evaluate(
&self,
e: &E,
input_assignment: &[E::Fr],
aux_assignment: &[E::Fr]
) -> E::Fr
{
let mut acc = E::Fr::zero();
for (index, coeff) in self.0.iter() {
let mut n = *coeff;
match index {
&Index::Input(id) => {
n.mul_assign(e, &input_assignment[id]);
},
&Index::Aux(id) => {
n.mul_assign(e, &aux_assignment[id]);
}
}
acc.add_assign(e, &n);
}
acc
}
}
pub trait Circuit<E: Engine> {
type InputMap: Input<E>;
/// Synthesize the circuit into a rank-1 quadratic constraint system
#[must_use]
fn synthesize<CS: ConstraintSystem<E>>(self, engine: &E, cs: &mut CS) -> Self::InputMap;
}
pub trait Input<E: Engine> {
/// Synthesize the circuit, except with additional access to public input
/// variables
fn synthesize<CS: PublicConstraintSystem<E>>(self, engine: &E, cs: &mut CS);
}
pub trait PublicConstraintSystem<E: Engine>: ConstraintSystem<E> {
/// Allocate a public input that the verifier knows.
fn alloc_input(&mut self, value: E::Fr) -> Variable;
}
pub trait ConstraintSystem<E: Engine> {
/// Allocate a private variable in the constraint system, setting it to
/// the provided value.
fn alloc(&mut self, value: E::Fr) -> Variable;
/// Enforce that `A` * `B` = `C`.
fn enforce(
&mut self,
a: LinearCombination<E>,
b: LinearCombination<E>,
c: LinearCombination<E>
);
}
pub enum Cow<'a, T: 'a> {
Owned(T),
Borrowed(&'a T)
}
impl<'a, T: 'a> Deref for Cow<'a, T> {
type Target = T;
fn deref(&self) -> &T {
match *self {
Cow::Owned(ref v) => v,
Cow::Borrowed(v) => v
}
}
}
pub trait Convert<T: ?Sized, E> {
type Target: Borrow<T>;
fn convert(&self, &E) -> Cow<Self::Target>;
}
impl<T, E> Convert<T, E> for T {
type Target = T;
fn convert(&self, _: &E) -> Cow<T> {
Cow::Borrowed(self)
}
}
pub struct BitIterator<T> {
t: T,
n: usize
}
impl<T: AsRef<[u64]>> BitIterator<T> {
fn new(t: T) -> Self {
let bits = 64 * t.as_ref().len();
BitIterator {
t: t,
n: bits
}
}
}
impl<T: AsRef<[u64]>> Iterator for BitIterator<T> {
type Item = bool;
fn next(&mut self) -> Option<bool> {
if self.n == 0 {
None
} else {
self.n -= 1;
let part = self.n / 64;
let bit = self.n - (64 * part);
Some(self.t.as_ref()[part] & (1 << bit) > 0)
}
}
}