adds circom importer

This commit is contained in:
Kobi Gurkan 2019-09-07 00:03:48 +03:00
parent 18c190c298
commit c6f95b3997
2 changed files with 205 additions and 0 deletions

@ -15,3 +15,6 @@ byteorder = "1"
num_cpus = "1" num_cpus = "1"
crossbeam = "0.3" crossbeam = "0.3"
blake2-rfc = "0.2" blake2-rfc = "0.2"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
memmap = "0.7"

202
phase2/src/bin/circom.rs Normal file

@ -0,0 +1,202 @@
extern crate bellman_ce;
extern crate rand;
extern crate phase2;
extern crate memmap;
#[macro_use]
extern crate serde;
extern crate serde_json;
use serde::{Deserialize, Serialize};
use std::str;
// For randomness (during paramgen and proof generation)
use rand::{thread_rng, Rng};
// For benchmarking
use std::time::{Duration, Instant};
use std::fs::File;
use std::io;
// Bring in some tools for using pairing-friendly curves
use bellman_ce::pairing::{
Engine,
ff::{Field, PrimeField},
};
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
use bellman_ce::pairing::bn256::{
Bn256,
};
// We'll use these interfaces to construct our circuit.
use bellman_ce::{
Circuit,
Variable,
Index,
LinearCombination,
ConstraintSystem,
SynthesisError
};
// We're going to use the Groth16 proving system.
use bellman_ce::groth16::{
Proof,
prepare_verifying_key,
create_random_proof,
verify_proof,
};
use std::collections::HashMap;
#[derive(Serialize, Deserialize)]
struct CircuitJson {
pub constraints: Vec<Vec<HashMap<String, String>>>,
#[serde(rename = "nInputs")]
pub num_inputs: usize,
#[serde(rename = "nOutputs")]
pub num_outputs: usize,
#[serde(rename = "nVars")]
pub num_variables: usize,
}
struct CircomCircuit<'a> {
pub file_name: &'a str,
}
/// Our demo circuit implements this `Circuit` trait which
/// is used during paramgen and proving in order to
/// synthesize the constraint system.
impl<'a, E: Engine> Circuit<E> for CircomCircuit<'a> {
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
let mmap = unsafe { memmap::Mmap::map(&File::open(self.file_name)?) }?;
let content = str::from_utf8(&mmap).unwrap();
let circuit_json: CircuitJson = serde_json::from_str(&content).unwrap();
let return_err = || Err(SynthesisError::AssignmentMissing);
let num_public_inputs = circuit_json.num_inputs + circuit_json.num_outputs;
for i in 0..circuit_json.num_variables {
if i < num_public_inputs {
cs.alloc_input(|| format!("variable {}", i), return_err);
} else {
cs.alloc(|| format!("variable {}", i), return_err);
}
}
let mut constraint_num = 0;
for constraint in circuit_json.constraints.iter() {
let mut lcs = vec![];
for lc_description in constraint {
let mut lc = LinearCombination::<E>::zero();
for (var_index_str, coefficient_str) in lc_description {
let var_index_num: usize = var_index_str.parse().unwrap();
let var_index = if var_index_num < num_public_inputs {
Index::Input(var_index_num)
} else {
Index::Aux(var_index_num - num_public_inputs)
};
lc = lc + (E::Fr::from_str(coefficient_str).unwrap(), Variable::new_unchecked(var_index));
}
lcs.push(lc);
}
cs.enforce(|| format!("constraint {}", constraint_num), |_| lcs[0].clone(), |_| lcs[1].clone(), |_| lcs[2].clone());
constraint_num += 1;
}
Ok(())
}
}
fn main() {
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let rng = &mut thread_rng();
println!("Creating parameters...");
let file_name = "circuit.json";
// Create parameters for our circuit
let mut params = {
let c = CircomCircuit {
file_name,
};
phase2::MPCParameters::new(c).unwrap()
};
let old_params = params.clone();
params.contribute(rng);
let first_contrib = phase2::verify_contribution(&old_params, &params).expect("should verify");
let old_params = params.clone();
params.contribute(rng);
let second_contrib = phase2::verify_contribution(&old_params, &params).expect("should verify");
let verification_result = params.verify(CircomCircuit {
file_name,
}).unwrap();
assert!(phase2::contains_contribution(&verification_result, &first_contrib));
assert!(phase2::contains_contribution(&verification_result, &second_contrib));
let params = params.get_params();
// Prepare the verification key (for proof verification)
let pvk = prepare_verifying_key(&params.vk);
println!("Creating proofs...");
// Let's benchmark stuff!
const SAMPLES: u32 = 50;
let mut total_proving = Duration::new(0, 0);
let mut total_verifying = Duration::new(0, 0);
// Just a place to put the proof data, so we can
// benchmark deserialization.
let mut proof_vec = vec![];
for _ in 0..SAMPLES {
proof_vec.truncate(0);
let start = Instant::now();
{
// Create an instance of our circuit (with the
// witness)
let c = CircomCircuit {
file_name,
};
// Create a groth16 proof with our parameters.
let proof = create_random_proof(c, params, rng).unwrap();
proof.write(&mut proof_vec).unwrap();
}
total_proving += start.elapsed();
let start = Instant::now();
let proof = Proof::read(&proof_vec[..]).unwrap();
// Check the proof
assert!(verify_proof(
&pvk,
&proof,
&[]
).unwrap());
total_verifying += start.elapsed();
}
let proving_avg = total_proving / SAMPLES;
let proving_avg = proving_avg.subsec_nanos() as f64 / 1_000_000_000f64
+ (proving_avg.as_secs() as f64);
let verifying_avg = total_verifying / SAMPLES;
let verifying_avg = verifying_avg.subsec_nanos() as f64 / 1_000_000_000f64
+ (verifying_avg.as_secs() as f64);
println!("Average proving time: {:?} seconds", proving_avg);
println!("Average verifying time: {:?} seconds", verifying_avg);
}