start implementing unhelped sonic

This commit is contained in:
Alex Vlasov 2019-02-18 17:56:15 -05:00
parent 6dc9055cf3
commit d4b8a481f1
3 changed files with 86 additions and 0 deletions

@ -8,6 +8,7 @@ pub mod srs;
pub mod util;
pub mod helped;
pub mod cs;
pub mod unhelped;
mod transcript;

@ -0,0 +1,6 @@
/// Largeley this module is implementation of provable evaluation of s(z, y), that is represented in two parts
/// s2(X, Y) = \sum_{i=1}^{N} (Y^{-i} + Y^{i})X^{i}
/// s1(X, Y) = ...
/// s1 part requires grand product and permutation arguments, that are also implemented
pub mod s2_proof;

@ -0,0 +1,79 @@
use ff::{Field};
use pairing::{Engine, CurveProjective, CurveAffine};
use std::marker::PhantomData;
use crate::sonic::srs::SRS;
use crate::sonic::util::*;
#[derive(Clone)]
pub struct S2Eval<E: Engine> {
n: usize,
_marker: PhantomData<E>
}
#[derive(Clone)]
pub struct S2Proof<E: Engine> {
o: E::G1Affine,
c_value: E::Fr,
d_value: E::Fr,
c_opening: E::G1Affine,
d_opening: E::G1Affine
}
impl<E: Engine> S2Eval<E> {
pub fn new(n: usize) -> Self {
S2Eval {
n: n,
_marker: PhantomData
}
}
pub fn evaluate(&self, x: E::Fr, y: E::Fr, srs: &SRS<E>) -> S2Proof<E> {
// create a reference element first
// TODO: parallelize
let mut o = E::G1::zero();
for i in 0..self.n {
o.add_assign_mixed(&srs.g_positive_x_alpha[i]);
}
let mut poly = vec![E::Fr::one(); self.n+1];
let (c, c_opening) = {
let mut point = y;
point.mul_assign(&x);
let val = evaluate_at_consequitive_powers(&poly[1..], E::Fr::one(), point);
poly[0] = val;
poly[0].negate();
let opening = polynomial_commitment_opening(0, self.n, poly.iter(), point, &srs);
(val, opening)
};
let (d, d_opening) = {
let mut point = y.inverse().unwrap();
point.mul_assign(&x);
let val = evaluate_at_consequitive_powers(&poly[1..], E::Fr::one(), point);
poly[0] = val;
poly[0].negate();
let opening = polynomial_commitment_opening(0, self.n, poly.iter(), point, &srs);
(val, opening)
};
S2Proof {
o: o.into_affine(),
c_value: c,
d_value: d,
c_opening: c_opening,
d_opening: d_opening
}
}
pub fn verify(proof: &S2Proof<E>, srs: &SRS<E>) -> bool {
true
}
}