fix compilation warnings, disable sonics in default features

This commit is contained in:
Alex Vlasov 2019-03-05 10:26:28 +01:00
parent 2a453c3325
commit f12986aaeb
5 changed files with 448 additions and 401 deletions

@ -32,8 +32,8 @@ git = "https://github.com/gtank/blake2-rfc"
rev = "7a5b5fc99ae483a0043db7547fb79a6fa44b88a9" rev = "7a5b5fc99ae483a0043db7547fb79a6fa44b88a9"
[features] [features]
#default = ["multicore"] default = ["multicore"]
default = ["multicore", "gm17", "sonic"] #default = ["multicore", "gm17", "sonic"]
#default = ["singlecore"] #default = ["singlecore"]
multicore = ["futures-cpupool", "num_cpus", "crossbeam"] multicore = ["futures-cpupool", "num_cpus", "crossbeam"]
sonic = ["tiny-keccak"] sonic = ["tiny-keccak"]

@ -185,6 +185,7 @@ pub fn multiexp<Q, D, G, S>(
/// Perform multi-exponentiation. The caller is responsible for ensuring that /// Perform multi-exponentiation. The caller is responsible for ensuring that
/// the number of bases is the same as the number of exponents. /// the number of bases is the same as the number of exponents.
#[allow(dead_code)]
pub fn dense_multiexp<G: CurveAffine>( pub fn dense_multiexp<G: CurveAffine>(
pool: &Worker, pool: &Worker,
bases: & [G], bases: & [G],
@ -220,7 +221,6 @@ fn dense_multiexp_inner<G: CurveAffine>(
let this_region = Mutex::new(<G as CurveAffine>::Projective::zero()); let this_region = Mutex::new(<G as CurveAffine>::Projective::zero());
let arc = Arc::new(this_region); let arc = Arc::new(this_region);
pool.scope(bases.len(), |scope, chunk| { pool.scope(bases.len(), |scope, chunk| {
let mut this_acc = <G as CurveAffine>::Projective::zero();
for (base, exp) in bases.chunks(chunk).zip(exponents.chunks(chunk)) { for (base, exp) in bases.chunks(chunk).zip(exponents.chunks(chunk)) {
let this_region_rwlock = arc.clone(); let this_region_rwlock = arc.clone();
// let handle = // let handle =
@ -265,7 +265,7 @@ fn dense_multiexp_inner<G: CurveAffine>(
let mut guard = match this_region_rwlock.lock() { let mut guard = match this_region_rwlock.lock() {
Ok(guard) => guard, Ok(guard) => guard,
Err(poisoned) => { Err(_) => {
panic!("poisoned!"); panic!("poisoned!");
// poisoned.into_inner() // poisoned.into_inner()
} }
@ -387,7 +387,7 @@ fn test_dense_multiexp() {
const SAMPLES: usize = 1 << 16; const SAMPLES: usize = 1 << 16;
let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]); let rng = &mut XorShiftRng::from_seed([0x3dbe6259, 0x8d313d76, 0x3237db17, 0xe5bc0654]);
let mut v = (0..SAMPLES).map(|_| <Bn256 as ScalarEngine>::Fr::rand(rng).into_repr()).collect::<Vec<_>>(); let v = (0..SAMPLES).map(|_| <Bn256 as ScalarEngine>::Fr::rand(rng).into_repr()).collect::<Vec<_>>();
let g = (0..SAMPLES).map(|_| <Bn256 as Engine>::G1::rand(rng).into_affine()).collect::<Vec<_>>(); let g = (0..SAMPLES).map(|_| <Bn256 as Engine>::G1::rand(rng).into_affine()).collect::<Vec<_>>();
println!("Done generating test points and scalars"); println!("Done generating test points and scalars");
@ -397,7 +397,7 @@ fn test_dense_multiexp() {
let start = std::time::Instant::now(); let start = std::time::Instant::now();
let dense = dense_multiexp( let dense = dense_multiexp(
&pool, &g, &mut v.clone()).unwrap(); &pool, &g, &v.clone()).unwrap();
let duration_ns = start.elapsed().as_nanos() as f64; let duration_ns = start.elapsed().as_nanos() as f64;
println!("{} ns for dense for {} samples", duration_ns, SAMPLES); println!("{} ns for dense for {} samples", duration_ns, SAMPLES);

@ -11,5 +11,7 @@ pub mod unhelped;
mod transcript; mod transcript;
#[cfg(test)]
mod tests;

436
src/sonic/tests/sonics.rs Normal file

@ -0,0 +1,436 @@
extern crate bellman;
extern crate pairing;
extern crate rand;
// For randomness (during paramgen and proof generation)
use rand::{thread_rng, Rng};
// For benchmarking
use std::time::{Duration, Instant};
// Bring in some tools for using pairing-friendly curves
use pairing::{
Engine
};
use pairing::ff::{
Field,
};
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
use pairing::bls12_381::{
Bls12
};
use pairing::bn256::{
Bn256
};
// We'll use these interfaces to construct our circuit.
use bellman::{
Circuit,
ConstraintSystem,
SynthesisError
};
// We're going to use the Groth16 proving system.
use bellman::groth16::{
Proof,
generate_random_parameters,
prepare_verifying_key,
create_random_proof,
verify_proof,
};
const MIMC_ROUNDS: usize = 322;
/// This is our demo circuit for proving knowledge of the
/// preimage of a MiMC hash invocation.
#[derive(Clone)]
struct MiMCDemoNoInputs<'a, E: Engine> {
xl: Option<E::Fr>,
xr: Option<E::Fr>,
image: Option<E::Fr>,
constants: &'a [E::Fr]
}
/// Our demo circuit implements this `Circuit` trait which
/// is used during paramgen and proving in order to
/// synthesize the constraint system.
impl<'a, E: Engine> Circuit<E> for MiMCDemoNoInputs<'a, E> {
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
assert_eq!(self.constants.len(), MIMC_ROUNDS);
// Allocate the first component of the preimage.
let mut xl_value = self.xl;
let mut xl = cs.alloc(|| "preimage xl", || {
xl_value.ok_or(SynthesisError::AssignmentMissing)
})?;
// Allocate the second component of the preimage.
let mut xr_value = self.xr;
let mut xr = cs.alloc(|| "preimage xr", || {
xr_value.ok_or(SynthesisError::AssignmentMissing)
})?;
for i in 0..MIMC_ROUNDS {
// xL, xR := xR + (xL + Ci)^3, xL
let cs = &mut cs.namespace(|| format!("round {}", i));
// tmp = (xL + Ci)^2
let tmp_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.square();
e
});
let tmp = cs.alloc(|| "tmp", || {
tmp_value.ok_or(SynthesisError::AssignmentMissing)
})?;
cs.enforce(
|| "tmp = (xL + Ci)^2",
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + tmp
);
// new_xL = xR + (xL + Ci)^3
// new_xL = xR + tmp * (xL + Ci)
// new_xL - xR = tmp * (xL + Ci)
let new_xl_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.mul_assign(&tmp_value.unwrap());
e.add_assign(&xr_value.unwrap());
e
});
let new_xl = if i == (MIMC_ROUNDS-1) {
// This is the last round, xL is our image and so
// we use the image
let image_value = self.image;
cs.alloc(|| "image", || {
image_value.ok_or(SynthesisError::AssignmentMissing)
})?
} else {
cs.alloc(|| "new_xl", || {
new_xl_value.ok_or(SynthesisError::AssignmentMissing)
})?
};
cs.enforce(
|| "new_xL = xR + (xL + Ci)^3",
|lc| lc + tmp,
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + new_xl - xr
);
// xR = xL
xr = xl;
xr_value = xl_value;
// xL = new_xL
xl = new_xl;
xl_value = new_xl_value;
}
Ok(())
}
}
#[test]
fn test_sonic_mimc() {
use pairing::ff::{Field, PrimeField};
use pairing::{Engine, CurveAffine, CurveProjective};
use pairing::bls12_381::{Bls12, Fr};
use std::time::{Instant};
use bellman::sonic::srs::SRS;
let srs_x = Fr::from_str("23923").unwrap();
let srs_alpha = Fr::from_str("23728792").unwrap();
println!("making srs");
let start = Instant::now();
let srs = SRS::<Bls12>::dummy(830564, srs_x, srs_alpha);
println!("done in {:?}", start.elapsed());
{
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let rng = &mut thread_rng();
// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS).map(|_| rng.gen()).collect::<Vec<_>>();
let samples: usize = 100;
let xl = rng.gen();
let xr = rng.gen();
let image = mimc::<Bls12>(xl, xr, &constants);
// Create an instance of our circuit (with the
// witness)
let circuit = MiMCDemoNoInputs {
xl: Some(xl),
xr: Some(xr),
image: Some(image),
constants: &constants
};
use bellman::sonic::cs::Basic;
use bellman::sonic::sonic::AdaptorCircuit;
use bellman::sonic::helped::prover::{create_advice_on_srs, create_proof_on_srs};
use bellman::sonic::helped::{MultiVerifier, get_circuit_parameters};
use bellman::sonic::helped::helper::{create_aggregate_on_srs};
println!("creating proof");
let start = Instant::now();
let proof = create_proof_on_srs::<Bls12, _, Basic>(&AdaptorCircuit(circuit.clone()), &srs).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating advice");
let start = Instant::now();
let advice = create_advice_on_srs::<Bls12, _, Basic>(&AdaptorCircuit(circuit.clone()), &proof, &srs).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating aggregate for {} proofs", samples);
let start = Instant::now();
let proofs: Vec<_> = (0..samples).map(|_| (proof.clone(), advice.clone())).collect();
let aggregate = create_aggregate_on_srs::<Bls12, _, Basic>(&AdaptorCircuit(circuit.clone()), &proofs, &srs);
println!("done in {:?}", start.elapsed());
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bls12, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying 1 proof without advice");
let start = Instant::now();
{
for _ in 0..1 {
verifier.add_proof(&proof, &[], |_, _| None);
}
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bls12, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying {} proofs without advice", samples);
let start = Instant::now();
{
for _ in 0..samples {
verifier.add_proof(&proof, &[], |_, _| None);
}
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bls12, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying 100 proofs with advice");
let start = Instant::now();
{
for (ref proof, ref advice) in &proofs {
verifier.add_proof_with_advice(proof, &[], advice);
}
verifier.add_aggregate(&proofs, &aggregate);
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
}
}
#[test]
fn test_inputs_into_sonic_mimc() {
use pairing::ff::{Field, PrimeField};
use pairing::{Engine, CurveAffine, CurveProjective};
use pairing::bn256::{Bn256, Fr};
// use pairing::bls12_381::{Bls12, Fr};
use std::time::{Instant};
use bellman::sonic::srs::SRS;
let srs_x = Fr::from_str("23923").unwrap();
let srs_alpha = Fr::from_str("23728792").unwrap();
println!("making srs");
let start = Instant::now();
let srs = SRS::<Bn256>::dummy(830564, srs_x, srs_alpha);
println!("done in {:?}", start.elapsed());
{
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let rng = &mut thread_rng();
// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS).map(|_| rng.gen()).collect::<Vec<_>>();
let samples: usize = 100;
let xl = rng.gen();
let xr = rng.gen();
let image = mimc::<Bn256>(xl, xr, &constants);
// Create an instance of our circuit (with the
// witness)
let circuit = MiMCDemo {
xl: Some(xl),
xr: Some(xr),
constants: &constants
};
use bellman::sonic::cs::Basic;
use bellman::sonic::sonic::AdaptorCircuit;
use bellman::sonic::helped::prover::{create_advice_on_srs, create_proof_on_srs};
use bellman::sonic::helped::{MultiVerifier, get_circuit_parameters};
use bellman::sonic::helped::helper::{create_aggregate_on_srs};
let info = get_circuit_parameters::<Bn256, _>(circuit.clone()).expect("Must get circuit info");
println!("{:?}", info);
println!("creating proof");
let start = Instant::now();
let proof = create_proof_on_srs::<Bn256, _, Basic>(&AdaptorCircuit(circuit.clone()), &srs).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating advice");
let start = Instant::now();
let advice = create_advice_on_srs::<Bn256, _, Basic>(&AdaptorCircuit(circuit.clone()), &proof, &srs).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating aggregate for {} proofs", samples);
let start = Instant::now();
let proofs: Vec<_> = (0..samples).map(|_| (proof.clone(), advice.clone())).collect();
let aggregate = create_aggregate_on_srs::<Bn256, _, Basic>(&AdaptorCircuit(circuit.clone()), &proofs, &srs);
println!("done in {:?}", start.elapsed());
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bn256, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying 1 proof without advice");
let start = Instant::now();
{
for _ in 0..1 {
verifier.add_proof(&proof, &[image], |_, _| None);
}
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bn256, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying {} proofs without advice", samples);
let start = Instant::now();
{
for _ in 0..samples {
verifier.add_proof(&proof, &[image], |_, _| None);
}
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bn256, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying 100 proofs with advice and aggregate");
let start = Instant::now();
{
for (ref proof, ref advice) in &proofs {
verifier.add_proof_with_advice(proof, &[image], advice);
}
verifier.add_aggregate(&proofs, &aggregate);
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
}
}
#[test]
fn test_high_level_sonic_api() {
use pairing::bn256::{Bn256};
use std::time::{Instant};
use bellman::sonic::helped::{
generate_random_parameters,
verify_aggregate,
verify_proofs,
create_proof,
create_advice,
create_aggregate,
get_circuit_parameters
};
{
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let mut rng = &mut thread_rng();
// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS).map(|_| rng.gen()).collect::<Vec<_>>();
let samples: usize = 100;
let xl = rng.gen();
let xr = rng.gen();
let image = mimc::<Bn256>(xl, xr, &constants);
// Create an instance of our circuit (with the
// witness)
let circuit = MiMCDemo {
xl: Some(xl),
xr: Some(xr),
constants: &constants
};
let info = get_circuit_parameters::<Bn256, _>(circuit.clone()).expect("Must get circuit info");
println!("{:?}", info);
let params = generate_random_parameters(circuit.clone(), &mut rng).unwrap();
println!("creating proof");
let start = Instant::now();
let proof = create_proof(circuit.clone(), &params).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating advice");
let start = Instant::now();
let advice = create_advice(circuit.clone(), &proof, &params).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating aggregate for {} proofs", samples);
let start = Instant::now();
let proofs: Vec<_> = (0..samples).map(|_| (proof.clone(), advice.clone())).collect();
let aggregate = create_aggregate::<Bn256, _>(circuit.clone(), &proofs, &params);
println!("done in {:?}", start.elapsed());
{
println!("verifying 1 proof without advice");
let rng = thread_rng();
let start = Instant::now();
assert_eq!(verify_proofs(&vec![proof.clone()], &vec![vec![image.clone()]], circuit.clone(), rng, &params).unwrap(), true);
println!("done in {:?}", start.elapsed());
}
{
println!("verifying {} proofs without advice", samples);
let rng = thread_rng();
let start = Instant::now();
assert_eq!(verify_proofs(&vec![proof.clone(); 100], &vec![vec![image.clone()]; 100], circuit.clone(), rng, &params).unwrap(), true);
println!("done in {:?}", start.elapsed());
}
{
println!("verifying 100 proofs with advice and aggregate");
let rng = thread_rng();
let start = Instant::now();
assert_eq!(verify_aggregate(&vec![(proof.clone(), advice.clone()); 100], &aggregate, &vec![vec![image.clone()]; 100], circuit.clone(), rng, &params).unwrap(), true);
println!("done in {:?}", start.elapsed());
}
}
}

@ -116,12 +116,12 @@ impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
let cs = &mut cs.namespace(|| format!("round {}", i)); let cs = &mut cs.namespace(|| format!("round {}", i));
// tmp = (xL + Ci)^2 // tmp = (xL + Ci)^2
let mut tmp_value = xl_value.map(|mut e| { let tmp_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]); e.add_assign(&self.constants[i]);
e.square(); e.square();
e e
}); });
let mut tmp = cs.alloc(|| "tmp", || { let tmp = cs.alloc(|| "tmp", || {
tmp_value.ok_or(SynthesisError::AssignmentMissing) tmp_value.ok_or(SynthesisError::AssignmentMissing)
})?; })?;
@ -135,14 +135,14 @@ impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
// new_xL = xR + (xL + Ci)^3 // new_xL = xR + (xL + Ci)^3
// new_xL = xR + tmp * (xL + Ci) // new_xL = xR + tmp * (xL + Ci)
// new_xL - xR = tmp * (xL + Ci) // new_xL - xR = tmp * (xL + Ci)
let mut new_xl_value = xl_value.map(|mut e| { let new_xl_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]); e.add_assign(&self.constants[i]);
e.mul_assign(&tmp_value.unwrap()); e.mul_assign(&tmp_value.unwrap());
e.add_assign(&xr_value.unwrap()); e.add_assign(&xr_value.unwrap());
e e
}); });
let mut new_xl = if i == (MIMC_ROUNDS-1) { let new_xl = if i == (MIMC_ROUNDS-1) {
// This is the last round, xL is our image and so // This is the last round, xL is our image and so
// we allocate a public input. // we allocate a public input.
cs.alloc_input(|| "image", || { cs.alloc_input(|| "image", || {
@ -341,394 +341,3 @@ fn test_mimc_bn256() {
println!("Average proving time: {:?} seconds", proving_avg); println!("Average proving time: {:?} seconds", proving_avg);
println!("Average verifying time: {:?} seconds", verifying_avg); println!("Average verifying time: {:?} seconds", verifying_avg);
} }
/// This is our demo circuit for proving knowledge of the
/// preimage of a MiMC hash invocation.
#[derive(Clone)]
struct MiMCDemoNoInputs<'a, E: Engine> {
xl: Option<E::Fr>,
xr: Option<E::Fr>,
image: Option<E::Fr>,
constants: &'a [E::Fr]
}
/// Our demo circuit implements this `Circuit` trait which
/// is used during paramgen and proving in order to
/// synthesize the constraint system.
impl<'a, E: Engine> Circuit<E> for MiMCDemoNoInputs<'a, E> {
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
assert_eq!(self.constants.len(), MIMC_ROUNDS);
// Allocate the first component of the preimage.
let mut xl_value = self.xl;
let mut xl = cs.alloc(|| "preimage xl", || {
xl_value.ok_or(SynthesisError::AssignmentMissing)
})?;
// Allocate the second component of the preimage.
let mut xr_value = self.xr;
let mut xr = cs.alloc(|| "preimage xr", || {
xr_value.ok_or(SynthesisError::AssignmentMissing)
})?;
for i in 0..MIMC_ROUNDS {
// xL, xR := xR + (xL + Ci)^3, xL
let cs = &mut cs.namespace(|| format!("round {}", i));
// tmp = (xL + Ci)^2
let mut tmp_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.square();
e
});
let mut tmp = cs.alloc(|| "tmp", || {
tmp_value.ok_or(SynthesisError::AssignmentMissing)
})?;
cs.enforce(
|| "tmp = (xL + Ci)^2",
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + tmp
);
// new_xL = xR + (xL + Ci)^3
// new_xL = xR + tmp * (xL + Ci)
// new_xL - xR = tmp * (xL + Ci)
let mut new_xl_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.mul_assign(&tmp_value.unwrap());
e.add_assign(&xr_value.unwrap());
e
});
let mut new_xl = if i == (MIMC_ROUNDS-1) {
// This is the last round, xL is our image and so
// we use the image
let image_value = self.image;
cs.alloc(|| "image", || {
image_value.ok_or(SynthesisError::AssignmentMissing)
})?
} else {
cs.alloc(|| "new_xl", || {
new_xl_value.ok_or(SynthesisError::AssignmentMissing)
})?
};
cs.enforce(
|| "new_xL = xR + (xL + Ci)^3",
|lc| lc + tmp,
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + new_xl - xr
);
// xR = xL
xr = xl;
xr_value = xl_value;
// xL = new_xL
xl = new_xl;
xl_value = new_xl_value;
}
Ok(())
}
}
#[test]
fn test_sonic_mimc() {
use pairing::ff::{Field, PrimeField};
use pairing::{Engine, CurveAffine, CurveProjective};
use pairing::bls12_381::{Bls12, Fr};
use std::time::{Instant};
use bellman::sonic::srs::SRS;
let srs_x = Fr::from_str("23923").unwrap();
let srs_alpha = Fr::from_str("23728792").unwrap();
println!("making srs");
let start = Instant::now();
let srs = SRS::<Bls12>::dummy(830564, srs_x, srs_alpha);
println!("done in {:?}", start.elapsed());
{
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let rng = &mut thread_rng();
// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS).map(|_| rng.gen()).collect::<Vec<_>>();
let samples: usize = 100;
let xl = rng.gen();
let xr = rng.gen();
let image = mimc::<Bls12>(xl, xr, &constants);
// Create an instance of our circuit (with the
// witness)
let circuit = MiMCDemoNoInputs {
xl: Some(xl),
xr: Some(xr),
image: Some(image),
constants: &constants
};
use bellman::sonic::cs::Basic;
use bellman::sonic::sonic::AdaptorCircuit;
use bellman::sonic::helped::prover::{create_advice_on_srs, create_proof_on_srs};
use bellman::sonic::helped::{MultiVerifier, get_circuit_parameters};
use bellman::sonic::helped::helper::{create_aggregate_on_srs};
println!("creating proof");
let start = Instant::now();
let proof = create_proof_on_srs::<Bls12, _, Basic>(&AdaptorCircuit(circuit.clone()), &srs).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating advice");
let start = Instant::now();
let advice = create_advice_on_srs::<Bls12, _, Basic>(&AdaptorCircuit(circuit.clone()), &proof, &srs).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating aggregate for {} proofs", samples);
let start = Instant::now();
let proofs: Vec<_> = (0..samples).map(|_| (proof.clone(), advice.clone())).collect();
let aggregate = create_aggregate_on_srs::<Bls12, _, Basic>(&AdaptorCircuit(circuit.clone()), &proofs, &srs);
println!("done in {:?}", start.elapsed());
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bls12, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying 1 proof without advice");
let start = Instant::now();
{
for _ in 0..1 {
verifier.add_proof(&proof, &[], |_, _| None);
}
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bls12, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying {} proofs without advice", samples);
let start = Instant::now();
{
for _ in 0..samples {
verifier.add_proof(&proof, &[], |_, _| None);
}
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bls12, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying 100 proofs with advice");
let start = Instant::now();
{
for (ref proof, ref advice) in &proofs {
verifier.add_proof_with_advice(proof, &[], advice);
}
verifier.add_aggregate(&proofs, &aggregate);
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
}
}
#[test]
fn test_inputs_into_sonic_mimc() {
use pairing::ff::{Field, PrimeField};
use pairing::{Engine, CurveAffine, CurveProjective};
use pairing::bn256::{Bn256, Fr};
// use pairing::bls12_381::{Bls12, Fr};
use std::time::{Instant};
use bellman::sonic::srs::SRS;
let srs_x = Fr::from_str("23923").unwrap();
let srs_alpha = Fr::from_str("23728792").unwrap();
println!("making srs");
let start = Instant::now();
let srs = SRS::<Bn256>::dummy(830564, srs_x, srs_alpha);
println!("done in {:?}", start.elapsed());
{
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let rng = &mut thread_rng();
// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS).map(|_| rng.gen()).collect::<Vec<_>>();
let samples: usize = 100;
let xl = rng.gen();
let xr = rng.gen();
let image = mimc::<Bn256>(xl, xr, &constants);
// Create an instance of our circuit (with the
// witness)
let circuit = MiMCDemo {
xl: Some(xl),
xr: Some(xr),
constants: &constants
};
use bellman::sonic::cs::Basic;
use bellman::sonic::sonic::AdaptorCircuit;
use bellman::sonic::helped::prover::{create_advice_on_srs, create_proof_on_srs};
use bellman::sonic::helped::{MultiVerifier, get_circuit_parameters};
use bellman::sonic::helped::helper::{create_aggregate_on_srs};
let info = get_circuit_parameters::<Bn256, _>(circuit.clone()).expect("Must get circuit info");
println!("{:?}", info);
println!("creating proof");
let start = Instant::now();
let proof = create_proof_on_srs::<Bn256, _, Basic>(&AdaptorCircuit(circuit.clone()), &srs).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating advice");
let start = Instant::now();
let advice = create_advice_on_srs::<Bn256, _, Basic>(&AdaptorCircuit(circuit.clone()), &proof, &srs).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating aggregate for {} proofs", samples);
let start = Instant::now();
let proofs: Vec<_> = (0..samples).map(|_| (proof.clone(), advice.clone())).collect();
let aggregate = create_aggregate_on_srs::<Bn256, _, Basic>(&AdaptorCircuit(circuit.clone()), &proofs, &srs);
println!("done in {:?}", start.elapsed());
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bn256, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying 1 proof without advice");
let start = Instant::now();
{
for _ in 0..1 {
verifier.add_proof(&proof, &[image], |_, _| None);
}
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bn256, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying {} proofs without advice", samples);
let start = Instant::now();
{
for _ in 0..samples {
verifier.add_proof(&proof, &[image], |_, _| None);
}
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
{
let rng = thread_rng();
let mut verifier = MultiVerifier::<Bn256, _, Basic, _>::new(AdaptorCircuit(circuit.clone()), &srs, rng).unwrap();
println!("verifying 100 proofs with advice and aggregate");
let start = Instant::now();
{
for (ref proof, ref advice) in &proofs {
verifier.add_proof_with_advice(proof, &[image], advice);
}
verifier.add_aggregate(&proofs, &aggregate);
assert_eq!(verifier.check_all(), true); // TODO
}
println!("done in {:?}", start.elapsed());
}
}
}
#[test]
fn test_high_level_sonic_api() {
use pairing::bn256::{Bn256};
use std::time::{Instant};
use bellman::sonic::helped::{
generate_random_parameters,
verify_aggregate,
verify_proofs,
create_proof,
create_advice,
create_aggregate,
get_circuit_parameters
};
{
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let mut rng = &mut thread_rng();
// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS).map(|_| rng.gen()).collect::<Vec<_>>();
let samples: usize = 100;
let xl = rng.gen();
let xr = rng.gen();
let image = mimc::<Bn256>(xl, xr, &constants);
// Create an instance of our circuit (with the
// witness)
let circuit = MiMCDemo {
xl: Some(xl),
xr: Some(xr),
constants: &constants
};
let info = get_circuit_parameters::<Bn256, _>(circuit.clone()).expect("Must get circuit info");
println!("{:?}", info);
let params = generate_random_parameters(circuit.clone(), &mut rng).unwrap();
println!("creating proof");
let start = Instant::now();
let proof = create_proof(circuit.clone(), &params).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating advice");
let start = Instant::now();
let advice = create_advice(circuit.clone(), &proof, &params).unwrap();
println!("done in {:?}", start.elapsed());
println!("creating aggregate for {} proofs", samples);
let start = Instant::now();
let proofs: Vec<_> = (0..samples).map(|_| (proof.clone(), advice.clone())).collect();
let aggregate = create_aggregate::<Bn256, _>(circuit.clone(), &proofs, &params);
println!("done in {:?}", start.elapsed());
{
println!("verifying 1 proof without advice");
let rng = thread_rng();
let start = Instant::now();
assert_eq!(verify_proofs(&vec![proof.clone()], &vec![vec![image.clone()]], circuit.clone(), rng, &params).unwrap(), true);
println!("done in {:?}", start.elapsed());
}
{
println!("verifying {} proofs without advice", samples);
let rng = thread_rng();
let start = Instant::now();
assert_eq!(verify_proofs(&vec![proof.clone(); 100], &vec![vec![image.clone()]; 100], circuit.clone(), rng, &params).unwrap(), true);
println!("done in {:?}", start.elapsed());
}
{
println!("verifying 100 proofs with advice and aggregate");
let rng = thread_rng();
let start = Instant::now();
assert_eq!(verify_aggregate(&vec![(proof.clone(), advice.clone()); 100], &aggregate, &vec![vec![image.clone()]; 100], circuit.clone(), rng, &params).unwrap(), true);
println!("done in {:?}", start.elapsed());
}
}
}