adds circom json exporters

This commit is contained in:
Kobi Gurkan 2019-09-07 18:35:10 +03:00
parent e7a10f72d6
commit fcdca6e890
7 changed files with 654 additions and 18 deletions

@ -18,8 +18,8 @@ bit-vec = "0.4.4"
futures = "0.1"
cfg-if = "0.1.7"
#pairing = {package = "pairing_ce", path = "../pairing" }
pairing = {package = "pairing_ce", version = "0.18.0" }
pairing = {package = "pairing_ce", path = "../pairing" }
#pairing = {package = "pairing_ce", version = "0.18.0" }
byteorder = "1"
futures-cpupool = {version = "0.1", optional = true}

@ -383,7 +383,7 @@ impl<E: Engine> Parameters<E> {
pub struct PreparedVerifyingKey<E: Engine> {
/// Pairing result of alpha*beta
alpha_g1_beta_g2: E::Fqk,
pub alpha_g1_beta_g2: E::Fqk,
/// -gamma in G2
neg_gamma_g2: <E::G2Affine as CurveAffine>::Prepared,
/// -delta in G2
@ -573,4 +573,4 @@ mod test_with_bls12_381 {
assert!(!verify_proof(&pvk, &proof, &[a]).unwrap());
}
}
}
}

@ -85,6 +85,14 @@ macro_rules! curve_impl {
}
impl $affine {
pub fn get_x(&self) -> $basefield {
self.x.clone()
}
pub fn get_y(&self) -> $basefield {
self.y.clone()
}
fn mul_bits<S: AsRef<[u64]>>(&self, bits: BitIterator<S>) -> $projective {
let mut res = $projective::zero();
for i in bits {

@ -18,3 +18,5 @@ blake2-rfc = "0.2"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
memmap = "0.7"
num-bigint = "0.2.3"
num-traits = "0.2.8"

@ -2,26 +2,62 @@ extern crate bellman_ce;
extern crate rand;
extern crate phase2;
extern crate memmap;
extern crate num_bigint;
extern crate num_traits;
#[macro_use]
extern crate serde;
extern crate serde_json;
use serde::{Deserialize, Serialize};
use std::str;
use num_bigint::BigUint;
use num_traits::Num;
// For randomness (during paramgen and proof generation)
use rand::{thread_rng, Rng};
// For benchmarking
use std::time::{Duration, Instant};
use std::str;
use std::fs::File;
use std::io;
use std::fs::{OpenOptions, remove_file};
use std::io::Write;
use std::ops::DerefMut;
#[derive(Serialize, Deserialize)]
struct ProvingKeyJson {
#[serde(rename = "A")]
pub a: Vec<Vec<String>>,
#[serde(rename = "B1")]
pub b1: Vec<Vec<String>>,
#[serde(rename = "B2")]
pub b2: Vec<Vec<Vec<String>>>,
#[serde(rename = "C")]
pub c: Vec<Option<Vec<String>>>,
pub vk_alfa_1: Vec<String>,
pub vk_beta_1: Vec<String>,
pub vk_delta_1: Vec<String>,
pub vk_beta_2: Vec<Vec<String>>,
pub vk_delta_2: Vec<Vec<String>>,
#[serde(rename = "hExps")]
pub h: Vec<Vec<String>>,
}
#[derive(Serialize, Deserialize)]
struct VerifyingKeyJson {
#[serde(rename = "IC")]
pub ic: Vec<Vec<String>>,
pub vk_alfa_1: Vec<String>,
pub vk_beta_2: Vec<Vec<String>>,
pub vk_gamma_2: Vec<Vec<String>>,
pub vk_delta_2: Vec<Vec<String>>,
}
// Bring in some tools for using pairing-friendly curves
use bellman_ce::pairing::{
Engine,
CurveAffine,
ff::{Field, PrimeField},
};
@ -117,6 +153,8 @@ fn main() {
println!("Creating parameters...");
let should_filter_points_at_infinity = false;
let file_name = "circuit.json";
// Create parameters for our circuit
let mut params = {
@ -124,7 +162,7 @@ fn main() {
file_name,
};
phase2::MPCParameters::new(c).unwrap()
phase2::MPCParameters::new(c, should_filter_points_at_infinity).unwrap()
};
let old_params = params.clone();
@ -139,13 +177,142 @@ fn main() {
let verification_result = params.verify(CircomCircuit {
file_name,
}).unwrap();
}, should_filter_points_at_infinity).unwrap();
assert!(phase2::contains_contribution(&verification_result, &first_contrib));
assert!(phase2::contains_contribution(&verification_result, &second_contrib));
let params = params.get_params();
let mut f = File::create("circom.params").unwrap();
params.write(&mut f);
let mut proving_key = ProvingKeyJson {
a: vec![],
b1: vec![],
b2: vec![],
c: vec![],
vk_alfa_1: vec![],
vk_beta_1: vec![],
vk_delta_1: vec![],
vk_beta_2: vec![],
vk_delta_2: vec![],
h: vec![],
};
let repr_to_big = |r| {
BigUint::from_str_radix(&format!("{}", r)[2..], 16).unwrap().to_str_radix(10)
};
let p1_to_vec = |p : &<Bn256 as Engine>::G1Affine| {
let mut v = vec![];
let x = repr_to_big(p.get_x().into_repr());
v.push(x);
let y = repr_to_big(p.get_y().into_repr());
v.push(y);
if p.is_zero() {
v.push("0".to_string());
} else {
v.push("1".to_string());
}
v
};
let p2_to_vec = |p : &<Bn256 as Engine>::G2Affine| {
let mut v = vec![];
let x = p.get_x();
let mut x_v = vec![];
x_v.push(repr_to_big(x.c0.into_repr()));
x_v.push(repr_to_big(x.c1.into_repr()));
v.push(x_v);
let y = p.get_y();
let mut y_v = vec![];
y_v.push(repr_to_big(y.c0.into_repr()));
y_v.push(repr_to_big(y.c1.into_repr()));
v.push(y_v);
if p.is_zero() {
v.push(["0".to_string(), "0".to_string()].to_vec());
} else {
v.push(["1".to_string(), "0".to_string()].to_vec());
}
v
};
let a = params.a.clone();
for e in a.iter() {
proving_key.a.push(p1_to_vec(e));
}
let b1 = params.b_g1.clone();
for e in b1.iter() {
proving_key.b1.push(p1_to_vec(e));
}
let b2 = params.b_g2.clone();
for e in b2.iter() {
proving_key.b2.push(p2_to_vec(e));
}
let c = params.l.clone();
for _ in 0..params.vk.ic.len() {
proving_key.c.push(None);
}
for e in c.iter() {
proving_key.c.push(Some(p1_to_vec(e)));
}
let vk_alfa_1 = params.vk.alpha_g1.clone();
proving_key.vk_alfa_1 = p1_to_vec(&vk_alfa_1);
let vk_beta_1 = params.vk.beta_g1.clone();
proving_key.vk_beta_1 = p1_to_vec(&vk_beta_1);
let vk_delta_1 = params.vk.delta_g1.clone();
proving_key.vk_delta_1 = p1_to_vec(&vk_delta_1);
let vk_beta_2 = params.vk.beta_g2.clone();
proving_key.vk_beta_2 = p2_to_vec(&vk_beta_2);
let vk_delta_2 = params.vk.delta_g2.clone();
proving_key.vk_delta_2 = p2_to_vec(&vk_delta_2);
let h = params.h.clone();
for e in h.iter() {
proving_key.h.push(p1_to_vec(e));
}
let mut verification_key = VerifyingKeyJson {
ic: vec![],
vk_alfa_1: vec![],
vk_beta_2: vec![],
vk_gamma_2: vec![],
vk_delta_2: vec![],
};
let ic = params.vk.ic.clone();
for e in ic.iter() {
verification_key.ic.push(p1_to_vec(e));
}
verification_key.vk_alfa_1 = p1_to_vec(&vk_alfa_1);
verification_key.vk_beta_2 = p2_to_vec(&vk_beta_2);
let vk_gamma_2 = params.vk.gamma_g2.clone();
verification_key.vk_gamma_2 = p2_to_vec(&vk_gamma_2);
verification_key.vk_delta_2 = p2_to_vec(&vk_delta_2);
let mut pk_file = OpenOptions::new().read(true).write(true).create_new(true).open("pk.json").unwrap();
let pk_json = serde_json::to_string(&proving_key).unwrap();
pk_file.set_len(pk_json.len() as u64);
let mut mmap = unsafe { memmap::Mmap::map(&pk_file) }.unwrap().make_mut().unwrap();
mmap.deref_mut().write_all(pk_json.as_bytes()).unwrap();
let mut vk_file = OpenOptions::new().read(true).write(true).create_new(true).open("vk.json").unwrap();
let vk_json = serde_json::to_string(&verification_key).unwrap();
vk_file.set_len(vk_json.len() as u64);
let mut mmap = unsafe { memmap::Mmap::map(&vk_file) }.unwrap().make_mut().unwrap();
mmap.deref_mut().write_all(vk_json.as_bytes()).unwrap();
/*
// Prepare the verification key (for proof verification)
let pvk = prepare_verifying_key(&params.vk);
@ -199,4 +366,5 @@ fn main() {
println!("Average proving time: {:?} seconds", proving_avg);
println!("Average verifying time: {:?} seconds", verifying_avg);
*/
}

445
phase2/src/bin/mimc.rs Normal file

@ -0,0 +1,445 @@
extern crate bellman_ce;
extern crate rand;
extern crate phase2;
extern crate num_bigint;
extern crate num_traits;
#[macro_use]
extern crate serde;
extern crate serde_json;
use num_bigint::BigUint;
use num_traits::Num;
use std::ops::DerefMut;
use std::io::Write;
use std::sync::Arc;
use serde::{Deserialize, Serialize};
// For randomness (during paramgen and proof generation)
use rand::{thread_rng, Rng};
// For benchmarking
use std::time::{Duration, Instant};
// Bring in some tools for using pairing-friendly curves
use bellman_ce::pairing::{
Engine,
CurveAffine,
ff::{Field, PrimeField},
};
// We're going to use the BLS12-381 pairing-friendly elliptic curve.
use bellman_ce::pairing::bn256::{
Bn256
};
// We'll use these interfaces to construct our circuit.
use bellman_ce::{
Circuit,
ConstraintSystem,
SynthesisError
};
// We're going to use the Groth16 proving system.
use bellman_ce::groth16::{
Proof,
prepare_verifying_key,
create_random_proof,
verify_proof,
};
use std::fs::File;
use std::fs::{OpenOptions, remove_file};
#[derive(Serialize, Deserialize)]
struct ProvingKeyJson {
#[serde(rename = "A")]
pub a: Vec<Vec<String>>,
#[serde(rename = "B1")]
pub b1: Vec<Vec<String>>,
#[serde(rename = "B2")]
pub b2: Vec<Vec<Vec<String>>>,
#[serde(rename = "C")]
pub c: Vec<Option<Vec<String>>>,
pub vk_alfa_1: Vec<String>,
pub vk_beta_1: Vec<String>,
pub vk_delta_1: Vec<String>,
pub vk_beta_2: Vec<Vec<String>>,
pub vk_delta_2: Vec<Vec<String>>,
#[serde(rename = "hExps")]
pub h: Vec<Vec<String>>,
}
#[derive(Serialize, Deserialize)]
struct VerifyingKeyJson {
#[serde(rename = "IC")]
pub ic: Vec<Vec<String>>,
pub vk_alfa_1: Vec<String>,
pub vk_beta_2: Vec<Vec<String>>,
pub vk_gamma_2: Vec<Vec<String>>,
pub vk_delta_2: Vec<Vec<String>>,
}
const MIMC_ROUNDS: usize = 322;
/// This is an implementation of MiMC, specifically a
/// variant named `LongsightF322p3` for BLS12-381.
/// See http://eprint.iacr.org/2016/492 for more
/// information about this construction.
///
/// ```
/// function LongsightF322p3(xL ⦂ Fp, xR ⦂ Fp) {
/// for i from 0 up to 321 {
/// xL, xR := xR + (xL + Ci)^3, xL
/// }
/// return xL
/// }
/// ```
fn mimc<E: Engine>(
mut xl: E::Fr,
mut xr: E::Fr,
constants: &[E::Fr]
) -> E::Fr
{
assert_eq!(constants.len(), MIMC_ROUNDS);
for i in 0..MIMC_ROUNDS {
let mut tmp1 = xl;
tmp1.add_assign(&constants[i]);
let mut tmp2 = tmp1;
tmp2.square();
tmp2.mul_assign(&tmp1);
tmp2.add_assign(&xr);
xr = xl;
xl = tmp2;
}
xl
}
/// This is our demo circuit for proving knowledge of the
/// preimage of a MiMC hash invocation.
struct MiMCDemo<'a, E: Engine> {
xl: Option<E::Fr>,
xr: Option<E::Fr>,
constants: &'a [E::Fr]
}
/// Our demo circuit implements this `Circuit` trait which
/// is used during paramgen and proving in order to
/// synthesize the constraint system.
impl<'a, E: Engine> Circuit<E> for MiMCDemo<'a, E> {
fn synthesize<CS: ConstraintSystem<E>>(
self,
cs: &mut CS
) -> Result<(), SynthesisError>
{
assert_eq!(self.constants.len(), MIMC_ROUNDS);
// Allocate the first component of the preimage.
let mut xl_value = self.xl;
let mut xl = cs.alloc(|| "preimage xl", || {
xl_value.ok_or(SynthesisError::AssignmentMissing)
})?;
// Allocate the second component of the preimage.
let mut xr_value = self.xr;
let mut xr = cs.alloc(|| "preimage xr", || {
xr_value.ok_or(SynthesisError::AssignmentMissing)
})?;
for i in 0..MIMC_ROUNDS {
// xL, xR := xR + (xL + Ci)^3, xL
let cs = &mut cs.namespace(|| format!("round {}", i));
// tmp = (xL + Ci)^2
let mut tmp_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.square();
e
});
let mut tmp = cs.alloc(|| "tmp", || {
tmp_value.ok_or(SynthesisError::AssignmentMissing)
})?;
cs.enforce(
|| "tmp = (xL + Ci)^2",
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + tmp
);
// new_xL = xR + (xL + Ci)^3
// new_xL = xR + tmp * (xL + Ci)
// new_xL - xR = tmp * (xL + Ci)
let mut new_xl_value = xl_value.map(|mut e| {
e.add_assign(&self.constants[i]);
e.mul_assign(&tmp_value.unwrap());
e.add_assign(&xr_value.unwrap());
e
});
let mut new_xl = if i == (MIMC_ROUNDS-1) {
// This is the last round, xL is our image and so
// we allocate a public input.
cs.alloc_input(|| "image", || {
new_xl_value.ok_or(SynthesisError::AssignmentMissing)
})?
} else {
cs.alloc(|| "new_xl", || {
new_xl_value.ok_or(SynthesisError::AssignmentMissing)
})?
};
cs.enforce(
|| "new_xL = xR + (xL + Ci)^3",
|lc| lc + tmp,
|lc| lc + xl + (self.constants[i], CS::one()),
|lc| lc + new_xl - xr
);
// xR = xL
xr = xl;
xr_value = xl_value;
// xL = new_xL
xl = new_xl;
xl_value = new_xl_value;
}
Ok(())
}
}
fn main() {
// This may not be cryptographically safe, use
// `OsRng` (for example) in production software.
let rng = &mut thread_rng();
// Generate the MiMC round constants
let constants = (0..MIMC_ROUNDS).map(|_| rng.gen()).collect::<Vec<_>>();
println!("Creating parameters...");
let should_filter_points_at_infinity = false;
// Create parameters for our circuit
let mut params = {
let c = MiMCDemo::<Bn256> {
xl: None,
xr: None,
constants: &constants
};
phase2::MPCParameters::new(c, should_filter_points_at_infinity).unwrap()
};
let old_params = params.clone();
params.contribute(rng);
let first_contrib = phase2::verify_contribution(&old_params, &params).expect("should verify");
let old_params = params.clone();
params.contribute(rng);
let second_contrib = phase2::verify_contribution(&old_params, &params).expect("should verify");
let verification_result = params.verify(MiMCDemo::<Bn256> {
xl: None,
xr: None,
constants: &constants
}, should_filter_points_at_infinity).unwrap();
assert!(phase2::contains_contribution(&verification_result, &first_contrib));
assert!(phase2::contains_contribution(&verification_result, &second_contrib));
let params = params.get_params();
let mut f = File::create("mimc.params").unwrap();
params.write(&mut f);
let mut proving_key = ProvingKeyJson {
a: vec![],
b1: vec![],
b2: vec![],
c: vec![],
vk_alfa_1: vec![],
vk_beta_1: vec![],
vk_delta_1: vec![],
vk_beta_2: vec![],
vk_delta_2: vec![],
h: vec![],
};
let repr_to_big = |r| {
BigUint::from_str_radix(&format!("{}", r)[2..], 16).unwrap().to_str_radix(10)
};
let p1_to_vec = |p : &<Bn256 as Engine>::G1Affine| {
let mut v = vec![];
let x = repr_to_big(p.get_x().into_repr());
v.push(x);
let y = repr_to_big(p.get_y().into_repr());
v.push(y);
if p.is_zero() {
v.push("0".to_string());
} else {
v.push("1".to_string());
}
v
};
let p2_to_vec = |p : &<Bn256 as Engine>::G2Affine| {
let mut v = vec![];
let x = p.get_x();
let mut x_v = vec![];
x_v.push(repr_to_big(x.c0.into_repr()));
x_v.push(repr_to_big(x.c1.into_repr()));
v.push(x_v);
let y = p.get_y();
let mut y_v = vec![];
y_v.push(repr_to_big(y.c0.into_repr()));
y_v.push(repr_to_big(y.c1.into_repr()));
v.push(y_v);
if p.is_zero() {
v.push(["0".to_string(), "0".to_string()].to_vec());
} else {
v.push(["1".to_string(), "0".to_string()].to_vec());
}
v
};
let a = params.a.clone();
for e in a.iter() {
proving_key.a.push(p1_to_vec(e));
}
let b1 = params.b_g1.clone();
for e in b1.iter() {
proving_key.b1.push(p1_to_vec(e));
}
let b2 = params.b_g2.clone();
for e in b2.iter() {
proving_key.b2.push(p2_to_vec(e));
}
let c = params.l.clone();
for _ in 0..params.vk.ic.len() {
proving_key.c.push(None);
}
for e in c.iter() {
proving_key.c.push(Some(p1_to_vec(e)));
}
let vk_alfa_1 = params.vk.alpha_g1.clone();
proving_key.vk_alfa_1 = p1_to_vec(&vk_alfa_1);
let vk_beta_1 = params.vk.beta_g1.clone();
proving_key.vk_beta_1 = p1_to_vec(&vk_beta_1);
let vk_delta_1 = params.vk.delta_g1.clone();
proving_key.vk_delta_1 = p1_to_vec(&vk_delta_1);
let vk_beta_2 = params.vk.beta_g2.clone();
proving_key.vk_beta_2 = p2_to_vec(&vk_beta_2);
let vk_delta_2 = params.vk.delta_g2.clone();
proving_key.vk_delta_2 = p2_to_vec(&vk_delta_2);
let h = params.h.clone();
for e in h.iter() {
proving_key.h.push(p1_to_vec(e));
}
let mut verification_key = VerifyingKeyJson {
ic: vec![],
vk_alfa_1: vec![],
vk_beta_2: vec![],
vk_gamma_2: vec![],
vk_delta_2: vec![],
};
let ic = params.vk.ic.clone();
for e in ic.iter() {
verification_key.ic.push(p1_to_vec(e));
}
verification_key.vk_alfa_1 = p1_to_vec(&vk_alfa_1);
verification_key.vk_beta_2 = p2_to_vec(&vk_beta_2);
let vk_gamma_2 = params.vk.gamma_g2.clone();
verification_key.vk_gamma_2 = p2_to_vec(&vk_gamma_2);
verification_key.vk_delta_2 = p2_to_vec(&vk_delta_2);
let mut pk_file = OpenOptions::new().read(true).write(true).create_new(true).open("pk.json").unwrap();
let pk_json = serde_json::to_string(&proving_key).unwrap();
pk_file.set_len(pk_json.len() as u64);
let mut mmap = unsafe { memmap::Mmap::map(&pk_file) }.unwrap().make_mut().unwrap();
mmap.deref_mut().write_all(pk_json.as_bytes()).unwrap();
let mut vk_file = OpenOptions::new().read(true).write(true).create_new(true).open("vk.json").unwrap();
let vk_json = serde_json::to_string(&verification_key).unwrap();
vk_file.set_len(vk_json.len() as u64);
let mut mmap = unsafe { memmap::Mmap::map(&vk_file) }.unwrap().make_mut().unwrap();
mmap.deref_mut().write_all(vk_json.as_bytes()).unwrap();
/*
// Prepare the verification key (for proof verification)
let pvk = prepare_verifying_key(&params.vk);
println!("Creating proofs...");
// Let's benchmark stuff!
const SAMPLES: u32 = 50;
let mut total_proving = Duration::new(0, 0);
let mut total_verifying = Duration::new(0, 0);
// Just a place to put the proof data, so we can
// benchmark deserialization.
let mut proof_vec = vec![];
for _ in 0..SAMPLES {
// Generate a random preimage and compute the image
let xl = rng.gen();
let xr = rng.gen();
let image = mimc::<Bn256>(xl, xr, &constants);
proof_vec.truncate(0);
let start = Instant::now();
{
// Create an instance of our circuit (with the
// witness)
let c = MiMCDemo {
xl: Some(xl),
xr: Some(xr),
constants: &constants
};
// Create a groth16 proof with our parameters.
let proof = create_random_proof(c, params, rng).unwrap();
proof.write(&mut proof_vec).unwrap();
}
total_proving += start.elapsed();
let start = Instant::now();
let proof = Proof::read(&proof_vec[..]).unwrap();
// Check the proof
assert!(verify_proof(
&pvk,
&proof,
&[image]
).unwrap());
total_verifying += start.elapsed();
}
let proving_avg = total_proving / SAMPLES;
let proving_avg = proving_avg.subsec_nanos() as f64 / 1_000_000_000f64
+ (proving_avg.as_secs() as f64);
let verifying_avg = total_verifying / SAMPLES;
let verifying_avg = verifying_avg.subsec_nanos() as f64 / 1_000_000_000f64
+ (verifying_avg.as_secs() as f64);
println!("Average proving time: {:?} seconds", proving_avg);
println!("Average verifying time: {:?} seconds", verifying_avg);
*/
}

@ -399,6 +399,7 @@ impl MPCParameters {
/// until there are contributions (see `contribute()`).
pub fn new<C>(
circuit: C,
should_filter_points_at_infinity: bool,
) -> Result<MPCParameters, SynthesisError>
where C: Circuit<Bn256>
{
@ -655,15 +656,26 @@ impl MPCParameters {
ic: ic.into_iter().map(|e| e.into_affine()).collect()
};
let params = Parameters {
vk: vk,
h: Arc::new(h),
l: Arc::new(l.into_iter().map(|e| e.into_affine()).collect()),
let params = if should_filter_points_at_infinity {
Parameters {
vk: vk,
h: Arc::new(h),
l: Arc::new(l.into_iter().map(|e| e.into_affine()).collect()),
// Filter points at infinity away from A/B queries
a: Arc::new(a_g1.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()),
b_g1: Arc::new(b_g1.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()),
b_g2: Arc::new(b_g2.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect())
// Filter points at infinity away from A/B queries
a: Arc::new(a_g1.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()),
b_g1: Arc::new(b_g1.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect()),
b_g2: Arc::new(b_g2.into_iter().filter(|e| !e.is_zero()).map(|e| e.into_affine()).collect())
}
} else {
Parameters {
vk: vk,
h: Arc::new(h),
l: Arc::new(l.into_iter().map(|e| e.into_affine()).collect()),
a: Arc::new(a_g1.into_iter().map(|e| e.into_affine()).collect()),
b_g1: Arc::new(b_g1.into_iter().map(|e| e.into_affine()).collect()),
b_g2: Arc::new(b_g2.into_iter().map(|e| e.into_affine()).collect())
}
};
let h = {
@ -783,10 +795,11 @@ impl MPCParameters {
/// exist in the final parameters.
pub fn verify<C: Circuit<Bn256>>(
&self,
circuit: C
circuit: C,
should_filter_points_at_infinity: bool,
) -> Result<Vec<[u8; 64]>, ()>
{
let initial_params = MPCParameters::new(circuit).map_err(|_| ())?;
let initial_params = MPCParameters::new(circuit, should_filter_points_at_infinity).map_err(|_| ())?;
// H/L will change, but should have same length
if initial_params.params.h.len() != self.params.h.len() {