phase2-bn254/src/domain.rs
2018-12-08 05:31:26 +08:00

512 lines
14 KiB
Rust

//! This module contains an `EvaluationDomain` abstraction for
//! performing various kinds of polynomial arithmetic on top of
//! the scalar field.
//!
//! In pairing-based SNARKs like Groth16, we need to calculate
//! a quotient polynomial over a target polynomial with roots
//! at distinct points associated with each constraint of the
//! constraint system. In order to be efficient, we choose these
//! roots to be the powers of a 2^n root of unity in the field.
//! This allows us to perform polynomial operations in O(n)
//! by performing an O(n log n) FFT over such a domain.
use pairing::{
Engine,
CurveProjective
};
use ff::{
Field,
PrimeField
};
use super::{
SynthesisError
};
use super::multicore::Worker;
pub struct EvaluationDomain<E: Engine, G: Group<E>> {
coeffs: Vec<G>,
exp: u32,
omega: E::Fr,
omegainv: E::Fr,
geninv: E::Fr,
minv: E::Fr
}
impl<E: Engine, G: Group<E>> EvaluationDomain<E, G> {
pub fn as_ref(&self) -> &[G] {
&self.coeffs
}
pub fn as_mut(&mut self) -> &mut [G] {
&mut self.coeffs
}
pub fn into_coeffs(self) -> Vec<G> {
self.coeffs
}
pub fn from_coeffs(mut coeffs: Vec<G>) -> Result<EvaluationDomain<E, G>, SynthesisError>
{
use ff::PrimeField;
// Compute the size of our evaluation domain
let coeffs_len = coeffs.len();
// m is a size of domain where Z polynomial does NOT vanish
// in normal domain Z is in a form of (X-1)(X-2)...(X-N)
let mut m = 1;
let mut exp = 0;
let mut omega = E::Fr::root_of_unity();
let max_degree = (1 << E::Fr::S) - 1;
if coeffs_len > max_degree {
return Err(SynthesisError::PolynomialDegreeTooLarge)
}
while m < coeffs_len {
m *= 2;
exp += 1;
// The pairing-friendly curve may not be able to support
// large enough (radix2) evaluation domains.
if exp > E::Fr::S {
return Err(SynthesisError::PolynomialDegreeTooLarge)
}
}
// If full domain is not needed - limit it,
// e.g. if (2^N)th power is not required, just double omega and get 2^(N-1)th
// Compute omega, the 2^exp primitive root of unity
for _ in exp..E::Fr::S {
omega.square();
}
// Extend the coeffs vector with zeroes if necessary
coeffs.resize(m, G::group_zero());
Ok(EvaluationDomain {
coeffs: coeffs,
exp: exp,
omega: omega,
omegainv: omega.inverse().unwrap(),
geninv: E::Fr::multiplicative_generator().inverse().unwrap(),
minv: E::Fr::from_str(&format!("{}", m)).unwrap().inverse().unwrap()
})
}
pub fn fft(&mut self, worker: &Worker)
{
best_fft(&mut self.coeffs, worker, &self.omega, self.exp);
}
pub fn ifft(&mut self, worker: &Worker)
{
best_fft(&mut self.coeffs, worker, &self.omegainv, self.exp);
worker.scope(self.coeffs.len(), |scope, chunk| {
let minv = self.minv;
for v in self.coeffs.chunks_mut(chunk) {
scope.spawn(move || {
for v in v {
v.group_mul_assign(&minv);
}
});
}
});
}
pub fn distribute_powers(&mut self, worker: &Worker, g: E::Fr)
{
worker.scope(self.coeffs.len(), |scope, chunk| {
for (i, v) in self.coeffs.chunks_mut(chunk).enumerate() {
scope.spawn(move || {
let mut u = g.pow(&[(i * chunk) as u64]);
for v in v.iter_mut() {
v.group_mul_assign(&u);
u.mul_assign(&g);
}
});
}
});
}
pub fn coset_fft(&mut self, worker: &Worker)
{
self.distribute_powers(worker, E::Fr::multiplicative_generator());
self.fft(worker);
}
pub fn icoset_fft(&mut self, worker: &Worker)
{
let geninv = self.geninv;
self.ifft(worker);
self.distribute_powers(worker, geninv);
}
/// This evaluates t(tau) for this domain, which is
/// tau^m - 1 for these radix-2 domains.
pub fn z(&self, tau: &E::Fr) -> E::Fr {
let mut tmp = tau.pow(&[self.coeffs.len() as u64]);
tmp.sub_assign(&E::Fr::one());
tmp
}
/// The target polynomial is the zero polynomial in our
/// evaluation domain, so we must perform division over
/// a coset.
pub fn divide_by_z_on_coset(&mut self, worker: &Worker)
{
let i = self.z(&E::Fr::multiplicative_generator()).inverse().unwrap();
worker.scope(self.coeffs.len(), |scope, chunk| {
for v in self.coeffs.chunks_mut(chunk) {
scope.spawn(move || {
for v in v {
v.group_mul_assign(&i);
}
});
}
});
}
/// Perform O(n) multiplication of two polynomials in the domain.
pub fn mul_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, Scalar<E>>) {
assert_eq!(self.coeffs.len(), other.coeffs.len());
worker.scope(self.coeffs.len(), |scope, chunk| {
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
scope.spawn(move || {
for (a, b) in a.iter_mut().zip(b.iter()) {
a.group_mul_assign(&b.0);
}
});
}
});
}
/// Perform O(n) subtraction of one polynomial from another in the domain.
pub fn sub_assign(&mut self, worker: &Worker, other: &EvaluationDomain<E, G>) {
assert_eq!(self.coeffs.len(), other.coeffs.len());
worker.scope(self.coeffs.len(), |scope, chunk| {
for (a, b) in self.coeffs.chunks_mut(chunk).zip(other.coeffs.chunks(chunk)) {
scope.spawn(move || {
for (a, b) in a.iter_mut().zip(b.iter()) {
a.group_sub_assign(&b);
}
});
}
});
}
}
pub trait Group<E: Engine>: Sized + Copy + Clone + Send + Sync {
fn group_zero() -> Self;
fn group_mul_assign(&mut self, by: &E::Fr);
fn group_add_assign(&mut self, other: &Self);
fn group_sub_assign(&mut self, other: &Self);
}
pub struct Point<G: CurveProjective>(pub G);
impl<G: CurveProjective> PartialEq for Point<G> {
fn eq(&self, other: &Point<G>) -> bool {
self.0 == other.0
}
}
impl<G: CurveProjective> Copy for Point<G> { }
impl<G: CurveProjective> Clone for Point<G> {
fn clone(&self) -> Point<G> {
*self
}
}
impl<G: CurveProjective> Group<G::Engine> for Point<G> {
fn group_zero() -> Self {
Point(G::zero())
}
fn group_mul_assign(&mut self, by: &G::Scalar) {
self.0.mul_assign(by.into_repr());
}
fn group_add_assign(&mut self, other: &Self) {
self.0.add_assign(&other.0);
}
fn group_sub_assign(&mut self, other: &Self) {
self.0.sub_assign(&other.0);
}
}
pub struct Scalar<E: Engine>(pub E::Fr);
impl<E: Engine> PartialEq for Scalar<E> {
fn eq(&self, other: &Scalar<E>) -> bool {
self.0 == other.0
}
}
impl<E: Engine> Copy for Scalar<E> { }
impl<E: Engine> Clone for Scalar<E> {
fn clone(&self) -> Scalar<E> {
*self
}
}
impl<E: Engine> Group<E> for Scalar<E> {
fn group_zero() -> Self {
Scalar(E::Fr::zero())
}
fn group_mul_assign(&mut self, by: &E::Fr) {
self.0.mul_assign(by);
}
fn group_add_assign(&mut self, other: &Self) {
self.0.add_assign(&other.0);
}
fn group_sub_assign(&mut self, other: &Self) {
self.0.sub_assign(&other.0);
}
}
fn best_fft<E: Engine, T: Group<E>>(a: &mut [T], worker: &Worker, omega: &E::Fr, log_n: u32)
{
let log_cpus = worker.log_num_cpus();
if log_n <= log_cpus {
serial_fft(a, omega, log_n);
} else {
parallel_fft(a, worker, omega, log_n, log_cpus);
}
}
fn serial_fft<E: Engine, T: Group<E>>(a: &mut [T], omega: &E::Fr, log_n: u32)
{
fn bitreverse(mut n: u32, l: u32) -> u32 {
let mut r = 0;
for _ in 0..l {
r = (r << 1) | (n & 1);
n >>= 1;
}
r
}
let n = a.len() as u32;
assert_eq!(n, 1 << log_n);
for k in 0..n {
let rk = bitreverse(k, log_n);
if k < rk {
a.swap(rk as usize, k as usize);
}
}
let mut m = 1;
for _ in 0..log_n {
let w_m = omega.pow(&[(n / (2*m)) as u64]);
let mut k = 0;
while k < n {
let mut w = E::Fr::one();
for j in 0..m {
let mut t = a[(k+j+m) as usize];
t.group_mul_assign(&w);
let mut tmp = a[(k+j) as usize];
tmp.group_sub_assign(&t);
a[(k+j+m) as usize] = tmp;
a[(k+j) as usize].group_add_assign(&t);
w.mul_assign(&w_m);
}
k += 2*m;
}
m *= 2;
}
}
fn parallel_fft<E: Engine, T: Group<E>>(
a: &mut [T],
worker: &Worker,
omega: &E::Fr,
log_n: u32,
log_cpus: u32
)
{
assert!(log_n >= log_cpus);
let num_cpus = 1 << log_cpus;
let log_new_n = log_n - log_cpus;
let mut tmp = vec![vec![T::group_zero(); 1 << log_new_n]; num_cpus];
let new_omega = omega.pow(&[num_cpus as u64]);
worker.scope(0, |scope, _| {
let a = &*a;
for (j, tmp) in tmp.iter_mut().enumerate() {
scope.spawn(move || {
// Shuffle into a sub-FFT
let omega_j = omega.pow(&[j as u64]);
let omega_step = omega.pow(&[(j as u64) << log_new_n]);
let mut elt = E::Fr::one();
for i in 0..(1 << log_new_n) {
for s in 0..num_cpus {
let idx = (i + (s << log_new_n)) % (1 << log_n);
let mut t = a[idx];
t.group_mul_assign(&elt);
tmp[i].group_add_assign(&t);
elt.mul_assign(&omega_step);
}
elt.mul_assign(&omega_j);
}
// Perform sub-FFT
serial_fft(tmp, &new_omega, log_new_n);
});
}
});
// TODO: does this hurt or help?
worker.scope(a.len(), |scope, chunk| {
let tmp = &tmp;
for (idx, a) in a.chunks_mut(chunk).enumerate() {
scope.spawn(move || {
let mut idx = idx * chunk;
let mask = (1 << log_cpus) - 1;
for a in a {
*a = tmp[idx & mask][idx >> log_cpus];
idx += 1;
}
});
}
});
}
// Test multiplying various (low degree) polynomials together and
// comparing with naive evaluations.
#[test]
fn polynomial_arith() {
use pairing::bls12_381::Bls12;
use rand::{self, Rand};
fn test_mul<E: Engine, R: rand::Rng>(rng: &mut R)
{
let worker = Worker::new();
for coeffs_a in 0..70 {
for coeffs_b in 0..70 {
let mut a: Vec<_> = (0..coeffs_a).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
let mut b: Vec<_> = (0..coeffs_b).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect();
// naive evaluation
let mut naive = vec![Scalar(E::Fr::zero()); coeffs_a + coeffs_b];
for (i1, a) in a.iter().enumerate() {
for (i2, b) in b.iter().enumerate() {
let mut prod = *a;
prod.group_mul_assign(&b.0);
naive[i1 + i2].group_add_assign(&prod);
}
}
a.resize(coeffs_a + coeffs_b, Scalar(E::Fr::zero()));
b.resize(coeffs_a + coeffs_b, Scalar(E::Fr::zero()));
let mut a = EvaluationDomain::from_coeffs(a).unwrap();
let mut b = EvaluationDomain::from_coeffs(b).unwrap();
a.fft(&worker);
b.fft(&worker);
a.mul_assign(&worker, &b);
a.ifft(&worker);
for (naive, fft) in naive.iter().zip(a.coeffs.iter()) {
assert!(naive == fft);
}
}
}
}
let rng = &mut rand::thread_rng();
test_mul::<Bls12, _>(rng);
}
#[test]
fn fft_composition() {
use pairing::bls12_381::Bls12;
use rand;
fn test_comp<E: Engine, R: rand::Rng>(rng: &mut R)
{
let worker = Worker::new();
for coeffs in 0..10 {
let coeffs = 1 << coeffs;
let mut v = vec![];
for _ in 0..coeffs {
v.push(Scalar::<E>(rng.gen()));
}
let mut domain = EvaluationDomain::from_coeffs(v.clone()).unwrap();
domain.ifft(&worker);
domain.fft(&worker);
assert!(v == domain.coeffs);
domain.fft(&worker);
domain.ifft(&worker);
assert!(v == domain.coeffs);
domain.icoset_fft(&worker);
domain.coset_fft(&worker);
assert!(v == domain.coeffs);
domain.coset_fft(&worker);
domain.icoset_fft(&worker);
assert!(v == domain.coeffs);
}
}
let rng = &mut rand::thread_rng();
test_comp::<Bls12, _>(rng);
}
#[test]
fn parallel_fft_consistency() {
use pairing::bls12_381::Bls12;
use rand::{self, Rand};
use std::cmp::min;
fn test_consistency<E: Engine, R: rand::Rng>(rng: &mut R)
{
let worker = Worker::new();
for _ in 0..5 {
for log_d in 0..10 {
let d = 1 << log_d;
let v1 = (0..d).map(|_| Scalar::<E>(E::Fr::rand(rng))).collect::<Vec<_>>();
let mut v1 = EvaluationDomain::from_coeffs(v1).unwrap();
let mut v2 = EvaluationDomain::from_coeffs(v1.coeffs.clone()).unwrap();
for log_cpus in log_d..min(log_d+1, 3) {
parallel_fft(&mut v1.coeffs, &worker, &v1.omega, log_d, log_cpus);
serial_fft(&mut v2.coeffs, &v2.omega, log_d);
assert!(v1.coeffs == v2.coeffs);
}
}
}
}
let rng = &mut rand::thread_rng();
test_consistency::<Bls12, _>(rng);
}