snarkjs/templates/verifier_groth16.sol.ejs

170 lines
5.8 KiB
Plaintext
Raw Normal View History

// SPDX-License-Identifier: MIT
pragma solidity ^0.6.0;
library Pairing {
uint256 constant PRIME_Q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
2018-10-21 19:24:49 +03:00
struct G1Point {
uint256 X;
uint256 Y;
2018-10-21 19:24:49 +03:00
}
2018-10-21 19:24:49 +03:00
// Encoding of field elements is: X[0] * z + X[1]
struct G2Point {
uint256[2] X;
uint256[2] Y;
2018-10-21 19:24:49 +03:00
}
/*
* @return The negation of p, i.e. p.plus(p.negate()) should be zero
*/
function negate(G1Point memory p) internal pure returns (G1Point memory) {
2018-10-21 19:24:49 +03:00
// The prime q in the base field F_q for G1
if (p.X == 0 && p.Y == 0) {
2018-10-21 19:24:49 +03:00
return G1Point(0, 0);
} else {
return G1Point(p.X, PRIME_Q - (p.Y % PRIME_Q));
}
2018-10-21 19:24:49 +03:00
}
/*
* @return r the sum of two points of G1
*/
function plus(
G1Point memory p1,
G1Point memory p2
) internal view returns (G1Point memory r) {
uint256[4] memory input = [
p1.X, p1.Y,
p2.X, p2.Y
];
2018-10-21 19:24:49 +03:00
bool success;
// solium-disable-next-line security/no-inline-assembly
2018-10-21 19:24:49 +03:00
assembly {
2020-07-11 11:31:52 +03:00
success := staticcall(sub(gas(), 2000), 6, input, 0xc0, r, 0x60)
2018-10-21 19:24:49 +03:00
// Use "invalid" to make gas estimation work
switch success case 0 { invalid() }
}
require(success, "pairing-add-failed");
2018-10-21 19:24:49 +03:00
}
/*
* @return r the product of a point on G1 and a scalar, i.e.
* p == p.scalarMul(1) and p.plus(p) == p.scalarMul(2) for all
* points p.
*/
function scalarMul(G1Point memory p, uint256 s) internal view returns (G1Point memory r) {
uint256[3] memory input = [p.X, p.Y, s];
2018-10-21 19:24:49 +03:00
bool success;
// solium-disable-next-line security/no-inline-assembly
2018-10-21 19:24:49 +03:00
assembly {
2020-07-11 11:31:52 +03:00
success := staticcall(sub(gas(), 2000), 7, input, 0x80, r, 0x60)
2018-10-21 19:24:49 +03:00
// Use "invalid" to make gas estimation work
switch success case 0 { invalid() }
}
require(success, "pairing-mul-failed");
2018-10-21 19:24:49 +03:00
}
/* @return The result of computing the pairing check
* e(p1[0], p2[0]) * .... * e(p1[n], p2[n]) == 1
* For example,
* pairing([P1(), P1().negate()], [P2(), P2()]) should return true.
*/
function pairing(
G1Point memory a1,
G2Point memory a2,
G1Point memory b1,
G2Point memory b2,
G1Point memory c1,
G2Point memory c2,
G1Point memory d1,
G2Point memory d2
) internal view returns (bool) {
uint256[24] memory input = [
a1.X, a1.Y, a2.X[0], a2.X[1], a2.Y[0], a2.Y[1],
b1.X, b1.Y, b2.X[0], b2.X[1], b2.Y[0], b2.Y[1],
c1.X, c1.Y, c2.X[0], c2.X[1], c2.Y[0], c2.Y[1],
d1.X, d1.Y, d2.X[0], d2.X[1], d2.Y[0], d2.Y[1]
];
uint256[1] memory out;
2018-10-21 19:24:49 +03:00
bool success;
// solium-disable-next-line security/no-inline-assembly
2018-10-21 19:24:49 +03:00
assembly {
success := staticcall(sub(gas(), 2000), 8, input, mul(24, 0x20), out, 0x20)
2018-10-21 19:24:49 +03:00
// Use "invalid" to make gas estimation work
switch success case 0 { invalid() }
}
require(success, "pairing-opcode-failed");
2018-10-21 19:24:49 +03:00
return out[0] != 0;
}
}
contract Verifier {
uint256 constant SNARK_SCALAR_FIELD = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
uint256 constant PRIME_Q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
using Pairing for *;
2018-10-21 19:24:49 +03:00
struct VerifyingKey {
Pairing.G1Point alfa1;
Pairing.G2Point beta2;
Pairing.G2Point gamma2;
Pairing.G2Point delta2;
Pairing.G1Point[<%=IC.length%>] IC;
2018-10-21 19:24:49 +03:00
}
2021-05-31 14:21:07 +03:00
function verifyingKey() internal pure returns (VerifyingKey memory vk) {
vk.alfa1 = Pairing.G1Point(<%=vk_alpha_1[0]%>, <%=vk_alpha_1[1]%>);
vk.beta2 = Pairing.G2Point([<%=vk_beta_2[0][1]%>, <%=vk_beta_2[0][0]%>], [<%=vk_beta_2[1][1]%>, <%=vk_beta_2[1][0]%>]);
vk.gamma2 = Pairing.G2Point([<%=vk_gamma_2[0][1]%>, <%=vk_gamma_2[0][0]%>], [<%=vk_gamma_2[1][1]%>, <%=vk_gamma_2[1][0]%>]);
vk.delta2 = Pairing.G2Point([<%=vk_delta_2[0][1]%>, <%=vk_delta_2[0][0]%>], [<%=vk_delta_2[1][1]%>, <%=vk_delta_2[1][0]%>]);
<% for (let i=0; i<IC.length; i++) { %>
vk.IC[<%=i%>] = Pairing.G1Point(<%=IC[i][0]%>, <%=IC[i][1]%>);<% } %>
2018-10-21 19:24:49 +03:00
}
/*
* @returns Whether the proof is valid given the hardcoded verifying key
* above and the public inputs
*/
2018-10-21 19:24:49 +03:00
function verifyProof(
bytes memory proof,
uint256[<%=IC.length-1%>] memory input
) public view returns (bool) {
uint256[8] memory p = abi.decode(proof, (uint256[8]));
for (uint8 i = 0; i < p.length; i++) {
// Make sure that each element in the proof is less than the prime q
require(p[i] < PRIME_Q, "verifier-proof-element-gte-prime-q");
2018-10-21 19:24:49 +03:00
}
Pairing.G1Point memory proofA = Pairing.G1Point(p[0], p[1]);
Pairing.G2Point memory proofB = Pairing.G2Point([p[2], p[3]], [p[4], p[5]]);
Pairing.G1Point memory proofC = Pairing.G1Point(p[6], p[7]);
VerifyingKey memory vk = verifyingKey();
// Compute the linear combination vkX
Pairing.G1Point memory vkX = vk.IC[0];
for (uint256 i = 0; i < input.length; i++) {
// Make sure that every input is less than the snark scalar field
require(input[i] < SNARK_SCALAR_FIELD, "verifier-input-gte-snark-scalar-field");
vkX = Pairing.plus(vkX, Pairing.scalarMul(vk.IC[i + 1], input[i]));
2018-10-21 19:24:49 +03:00
}
return Pairing.pairing(
Pairing.negate(proofA),
proofB,
vk.alfa1,
vk.beta2,
vkX,
vk.gamma2,
proofC,
vk.delta2
);
2018-10-21 19:24:49 +03:00
}
}