170 lines
5.8 KiB
Plaintext
170 lines
5.8 KiB
Plaintext
// SPDX-License-Identifier: MIT
|
|
|
|
pragma solidity ^0.7.0;
|
|
|
|
library Pairing {
|
|
uint256 constant PRIME_Q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
|
|
|
|
struct G1Point {
|
|
uint256 X;
|
|
uint256 Y;
|
|
}
|
|
|
|
// Encoding of field elements is: X[0] * z + X[1]
|
|
struct G2Point {
|
|
uint256[2] X;
|
|
uint256[2] Y;
|
|
}
|
|
|
|
/*
|
|
* @return The negation of p, i.e. p.plus(p.negate()) should be zero
|
|
*/
|
|
function negate(G1Point memory p) internal pure returns (G1Point memory) {
|
|
// The prime q in the base field F_q for G1
|
|
if (p.X == 0 && p.Y == 0) {
|
|
return G1Point(0, 0);
|
|
} else {
|
|
return G1Point(p.X, PRIME_Q - (p.Y % PRIME_Q));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* @return r the sum of two points of G1
|
|
*/
|
|
function plus(
|
|
G1Point memory p1,
|
|
G1Point memory p2
|
|
) internal view returns (G1Point memory r) {
|
|
uint256[4] memory input = [
|
|
p1.X, p1.Y,
|
|
p2.X, p2.Y
|
|
];
|
|
bool success;
|
|
|
|
// solium-disable-next-line security/no-inline-assembly
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 6, input, 0xc0, r, 0x60)
|
|
// Use "invalid" to make gas estimation work
|
|
switch success case 0 { invalid() }
|
|
}
|
|
|
|
require(success, "pairing-add-failed");
|
|
}
|
|
|
|
/*
|
|
* @return r the product of a point on G1 and a scalar, i.e.
|
|
* p == p.scalarMul(1) and p.plus(p) == p.scalarMul(2) for all
|
|
* points p.
|
|
*/
|
|
function scalarMul(G1Point memory p, uint256 s) internal view returns (G1Point memory r) {
|
|
uint256[3] memory input = [p.X, p.Y, s];
|
|
bool success;
|
|
|
|
// solium-disable-next-line security/no-inline-assembly
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 7, input, 0x80, r, 0x60)
|
|
// Use "invalid" to make gas estimation work
|
|
switch success case 0 { invalid() }
|
|
}
|
|
|
|
require(success, "pairing-mul-failed");
|
|
}
|
|
|
|
/* @return The result of computing the pairing check
|
|
* e(p1[0], p2[0]) * .... * e(p1[n], p2[n]) == 1
|
|
* For example,
|
|
* pairing([P1(), P1().negate()], [P2(), P2()]) should return true.
|
|
*/
|
|
function pairing(
|
|
G1Point memory a1,
|
|
G2Point memory a2,
|
|
G1Point memory b1,
|
|
G2Point memory b2,
|
|
G1Point memory c1,
|
|
G2Point memory c2,
|
|
G1Point memory d1,
|
|
G2Point memory d2
|
|
) internal view returns (bool) {
|
|
uint256[24] memory input = [
|
|
a1.X, a1.Y, a2.X[0], a2.X[1], a2.Y[0], a2.Y[1],
|
|
b1.X, b1.Y, b2.X[0], b2.X[1], b2.Y[0], b2.Y[1],
|
|
c1.X, c1.Y, c2.X[0], c2.X[1], c2.Y[0], c2.Y[1],
|
|
d1.X, d1.Y, d2.X[0], d2.X[1], d2.Y[0], d2.Y[1]
|
|
];
|
|
uint256[1] memory out;
|
|
bool success;
|
|
|
|
// solium-disable-next-line security/no-inline-assembly
|
|
assembly {
|
|
success := staticcall(sub(gas(), 2000), 8, input, mul(24, 0x20), out, 0x20)
|
|
// Use "invalid" to make gas estimation work
|
|
switch success case 0 { invalid() }
|
|
}
|
|
|
|
require(success, "pairing-opcode-failed");
|
|
return out[0] != 0;
|
|
}
|
|
}
|
|
|
|
contract Verifier {
|
|
uint256 constant SNARK_SCALAR_FIELD = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
|
|
uint256 constant PRIME_Q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
|
|
using Pairing for *;
|
|
|
|
struct VerifyingKey {
|
|
Pairing.G1Point alfa1;
|
|
Pairing.G2Point beta2;
|
|
Pairing.G2Point gamma2;
|
|
Pairing.G2Point delta2;
|
|
Pairing.G1Point[<%=IC.length%>] IC;
|
|
}
|
|
|
|
function verifyingKey() internal pure returns (VerifyingKey memory vk) {
|
|
vk.alfa1 = Pairing.G1Point(<%=vk_alpha_1[0]%>, <%=vk_alpha_1[1]%>);
|
|
vk.beta2 = Pairing.G2Point([<%=vk_beta_2[0][1]%>, <%=vk_beta_2[0][0]%>], [<%=vk_beta_2[1][1]%>, <%=vk_beta_2[1][0]%>]);
|
|
vk.gamma2 = Pairing.G2Point([<%=vk_gamma_2[0][1]%>, <%=vk_gamma_2[0][0]%>], [<%=vk_gamma_2[1][1]%>, <%=vk_gamma_2[1][0]%>]);
|
|
vk.delta2 = Pairing.G2Point([<%=vk_delta_2[0][1]%>, <%=vk_delta_2[0][0]%>], [<%=vk_delta_2[1][1]%>, <%=vk_delta_2[1][0]%>]);
|
|
<% for (let i=0; i<IC.length; i++) { %>
|
|
vk.IC[<%=i%>] = Pairing.G1Point(<%=IC[i][0]%>, <%=IC[i][1]%>);<% } %>
|
|
}
|
|
|
|
/*
|
|
* @returns Whether the proof is valid given the hardcoded verifying key
|
|
* above and the public inputs
|
|
*/
|
|
function verifyProof(
|
|
bytes memory proof,
|
|
uint256[<%=IC.length-1%>] memory input
|
|
) public view returns (bool) {
|
|
uint256[8] memory p = abi.decode(proof, (uint256[8]));
|
|
for (uint8 i = 0; i < p.length; i++) {
|
|
// Make sure that each element in the proof is less than the prime q
|
|
require(p[i] < PRIME_Q, "verifier-proof-element-gte-prime-q");
|
|
}
|
|
Pairing.G1Point memory proofA = Pairing.G1Point(p[0], p[1]);
|
|
Pairing.G2Point memory proofB = Pairing.G2Point([p[2], p[3]], [p[4], p[5]]);
|
|
Pairing.G1Point memory proofC = Pairing.G1Point(p[6], p[7]);
|
|
|
|
VerifyingKey memory vk = verifyingKey();
|
|
// Compute the linear combination vkX
|
|
Pairing.G1Point memory vkX = vk.IC[0];
|
|
for (uint256 i = 0; i < input.length; i++) {
|
|
// Make sure that every input is less than the snark scalar field
|
|
require(input[i] < SNARK_SCALAR_FIELD, "verifier-input-gte-snark-scalar-field");
|
|
vkX = Pairing.plus(vkX, Pairing.scalarMul(vk.IC[i + 1], input[i]));
|
|
}
|
|
|
|
return Pairing.pairing(
|
|
Pairing.negate(proofA),
|
|
proofB,
|
|
vk.alfa1,
|
|
vk.beta2,
|
|
vkX,
|
|
vk.gamma2,
|
|
proofC,
|
|
vk.delta2
|
|
);
|
|
}
|
|
}
|
|
|