2018-02-23 10:56:08 +01:00
|
|
|
package metrics
|
|
|
|
|
|
|
|
import (
|
|
|
|
"sync"
|
|
|
|
"time"
|
|
|
|
)
|
|
|
|
|
|
|
|
// Initial slice capacity for the values stored in a ResettingTimer
|
|
|
|
const InitialResettingTimerSliceCap = 10
|
|
|
|
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
type ResettingTimerSnapshot interface {
|
|
|
|
Count() int
|
|
|
|
Mean() float64
|
|
|
|
Max() int64
|
|
|
|
Min() int64
|
|
|
|
Percentiles([]float64) []float64
|
|
|
|
}
|
|
|
|
|
2018-02-23 10:56:08 +01:00
|
|
|
// ResettingTimer is used for storing aggregated values for timers, which are reset on every flush interval.
|
|
|
|
type ResettingTimer interface {
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
Snapshot() ResettingTimerSnapshot
|
2018-02-23 10:56:08 +01:00
|
|
|
Time(func())
|
|
|
|
Update(time.Duration)
|
|
|
|
UpdateSince(time.Time)
|
|
|
|
}
|
|
|
|
|
|
|
|
// GetOrRegisterResettingTimer returns an existing ResettingTimer or constructs and registers a
|
|
|
|
// new StandardResettingTimer.
|
|
|
|
func GetOrRegisterResettingTimer(name string, r Registry) ResettingTimer {
|
|
|
|
if nil == r {
|
|
|
|
r = DefaultRegistry
|
|
|
|
}
|
|
|
|
return r.GetOrRegister(name, NewResettingTimer).(ResettingTimer)
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewRegisteredResettingTimer constructs and registers a new StandardResettingTimer.
|
|
|
|
func NewRegisteredResettingTimer(name string, r Registry) ResettingTimer {
|
|
|
|
c := NewResettingTimer()
|
|
|
|
if nil == r {
|
|
|
|
r = DefaultRegistry
|
|
|
|
}
|
|
|
|
r.Register(name, c)
|
|
|
|
return c
|
|
|
|
}
|
|
|
|
|
|
|
|
// NewResettingTimer constructs a new StandardResettingTimer
|
|
|
|
func NewResettingTimer() ResettingTimer {
|
|
|
|
if !Enabled {
|
|
|
|
return NilResettingTimer{}
|
|
|
|
}
|
|
|
|
return &StandardResettingTimer{
|
|
|
|
values: make([]int64, 0, InitialResettingTimerSliceCap),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// NilResettingTimer is a no-op ResettingTimer.
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
type NilResettingTimer struct{}
|
|
|
|
|
|
|
|
func (NilResettingTimer) Values() []int64 { return nil }
|
|
|
|
func (n NilResettingTimer) Snapshot() ResettingTimerSnapshot { return n }
|
|
|
|
func (NilResettingTimer) Time(f func()) { f() }
|
|
|
|
func (NilResettingTimer) Update(time.Duration) {}
|
|
|
|
func (NilResettingTimer) Percentiles([]float64) []float64 { return nil }
|
|
|
|
func (NilResettingTimer) Mean() float64 { return 0.0 }
|
|
|
|
func (NilResettingTimer) Max() int64 { return 0 }
|
|
|
|
func (NilResettingTimer) Min() int64 { return 0 }
|
|
|
|
func (NilResettingTimer) UpdateSince(time.Time) {}
|
|
|
|
func (NilResettingTimer) Count() int { return 0 }
|
2018-02-23 10:56:08 +01:00
|
|
|
|
|
|
|
// StandardResettingTimer is the standard implementation of a ResettingTimer.
|
|
|
|
// and Meter.
|
|
|
|
type StandardResettingTimer struct {
|
|
|
|
values []int64
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
sum int64 // sum is a running count of the total sum, used later to calculate mean
|
2018-02-23 10:56:08 +01:00
|
|
|
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
mutex sync.Mutex
|
2018-02-23 10:56:08 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Snapshot resets the timer and returns a read-only copy of its contents.
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
func (t *StandardResettingTimer) Snapshot() ResettingTimerSnapshot {
|
2018-02-23 10:56:08 +01:00
|
|
|
t.mutex.Lock()
|
|
|
|
defer t.mutex.Unlock()
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
snapshot := &resettingTimerSnapshot{}
|
|
|
|
if len(t.values) > 0 {
|
|
|
|
snapshot.mean = float64(t.sum) / float64(len(t.values))
|
|
|
|
snapshot.values = t.values
|
|
|
|
t.values = make([]int64, 0, InitialResettingTimerSliceCap)
|
2018-02-23 10:56:08 +01:00
|
|
|
}
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
t.sum = 0
|
|
|
|
return snapshot
|
2018-02-23 10:56:08 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Record the duration of the execution of the given function.
|
|
|
|
func (t *StandardResettingTimer) Time(f func()) {
|
|
|
|
ts := time.Now()
|
|
|
|
f()
|
|
|
|
t.Update(time.Since(ts))
|
|
|
|
}
|
|
|
|
|
|
|
|
// Record the duration of an event.
|
|
|
|
func (t *StandardResettingTimer) Update(d time.Duration) {
|
|
|
|
t.mutex.Lock()
|
|
|
|
defer t.mutex.Unlock()
|
|
|
|
t.values = append(t.values, int64(d))
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
t.sum += int64(d)
|
2018-02-23 10:56:08 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Record the duration of an event that started at a time and ends now.
|
|
|
|
func (t *StandardResettingTimer) UpdateSince(ts time.Time) {
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
t.Update(time.Since(ts))
|
2018-02-23 10:56:08 +01:00
|
|
|
}
|
|
|
|
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
// resettingTimerSnapshot is a point-in-time copy of another ResettingTimer.
|
|
|
|
type resettingTimerSnapshot struct {
|
2018-02-23 10:56:08 +01:00
|
|
|
values []int64
|
|
|
|
mean float64
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
max int64
|
|
|
|
min int64
|
|
|
|
thresholdBoundaries []float64
|
2018-02-23 10:56:08 +01:00
|
|
|
calculated bool
|
|
|
|
}
|
|
|
|
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
// Count return the length of the values from snapshot.
|
|
|
|
func (t *resettingTimerSnapshot) Count() int {
|
|
|
|
return len(t.values)
|
2018-02-23 10:56:08 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
// Percentiles returns the boundaries for the input percentiles.
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
// note: this method is not thread safe
|
|
|
|
func (t *resettingTimerSnapshot) Percentiles(percentiles []float64) []float64 {
|
2018-02-23 10:56:08 +01:00
|
|
|
t.calc(percentiles)
|
|
|
|
return t.thresholdBoundaries
|
|
|
|
}
|
|
|
|
|
|
|
|
// Mean returns the mean of the snapshotted values
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
// note: this method is not thread safe
|
|
|
|
func (t *resettingTimerSnapshot) Mean() float64 {
|
2018-02-23 10:56:08 +01:00
|
|
|
if !t.calculated {
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
t.calc(nil)
|
2018-02-23 10:56:08 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
return t.mean
|
|
|
|
}
|
|
|
|
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
// Max returns the max of the snapshotted values
|
|
|
|
// note: this method is not thread safe
|
|
|
|
func (t *resettingTimerSnapshot) Max() int64 {
|
|
|
|
if !t.calculated {
|
|
|
|
t.calc(nil)
|
|
|
|
}
|
|
|
|
return t.max
|
|
|
|
}
|
|
|
|
|
|
|
|
// Min returns the min of the snapshotted values
|
|
|
|
// note: this method is not thread safe
|
|
|
|
func (t *resettingTimerSnapshot) Min() int64 {
|
|
|
|
if !t.calculated {
|
|
|
|
t.calc(nil)
|
2018-02-23 10:56:08 +01:00
|
|
|
}
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
return t.min
|
|
|
|
}
|
2018-02-23 10:56:08 +01:00
|
|
|
|
metrics: refactor metrics (#28035)
This change includes a lot of things, listed below.
### Split up interfaces, write vs read
The interfaces have been split up into one write-interface and one read-interface, with `Snapshot` being the gateway from write to read. This simplifies the semantics _a lot_.
Example of splitting up an interface into one readonly 'snapshot' part, and one updatable writeonly part:
```golang
type MeterSnapshot interface {
Count() int64
Rate1() float64
Rate5() float64
Rate15() float64
RateMean() float64
}
// Meters count events to produce exponentially-weighted moving average rates
// at one-, five-, and fifteen-minutes and a mean rate.
type Meter interface {
Mark(int64)
Snapshot() MeterSnapshot
Stop()
}
```
### A note about concurrency
This PR makes the concurrency model clearer. We have actual meters and snapshot of meters. The `meter` is the thing which can be accessed from the registry, and updates can be made to it.
- For all `meters`, (`Gauge`, `Timer` etc), it is assumed that they are accessed by different threads, making updates. Therefore, all `meters` update-methods (`Inc`, `Add`, `Update`, `Clear` etc) need to be concurrency-safe.
- All `meters` have a `Snapshot()` method. This method is _usually_ called from one thread, a backend-exporter. But it's fully possible to have several exporters simultaneously: therefore this method should also be concurrency-safe.
TLDR: `meter`s are accessible via registry, all their methods must be concurrency-safe.
For all `Snapshot`s, it is assumed that an individual exporter-thread has obtained a `meter` from the registry, and called the `Snapshot` method to obtain a readonly snapshot. This snapshot is _not_ guaranteed to be concurrency-safe. There's no need for a snapshot to be concurrency-safe, since exporters should not share snapshots.
Note, though: that by happenstance a lot of the snapshots _are_ concurrency-safe, being unmutable minimal representations of a value. Only the more complex ones are _not_ threadsafe, those that lazily calculate things like `Variance()`, `Mean()`.
Example of how a background exporter typically works, obtaining the snapshot and sequentially accessing the non-threadsafe methods in it:
```golang
ms := metric.Snapshot()
...
fields := map[string]interface{}{
"count": ms.Count(),
"max": ms.Max(),
"mean": ms.Mean(),
"min": ms.Min(),
"stddev": ms.StdDev(),
"variance": ms.Variance(),
```
TLDR: `snapshots` are not guaranteed to be concurrency-safe (but often are).
### Sample changes
I also changed the `Sample` type: previously, it iterated the samples fully every time `Mean()`,`Sum()`, `Min()` or `Max()` was invoked. Since we now have readonly base data, we can just iterate it once, in the constructor, and set all four values at once.
The same thing has been done for runtimehistogram.
### ResettingTimer API
Back when ResettingTImer was implemented, as part of https://github.com/ethereum/go-ethereum/pull/15910, Anton implemented a `Percentiles` on the new type. However, the method did not conform to the other existing types which also had a `Percentiles`.
1. The existing ones, on input, took `0.5` to mean `50%`. Anton used `50` to mean `50%`.
2. The existing ones returned `float64` outputs, thus interpolating between values. A value-set of `0, 10`, at `50%` would return `5`, whereas Anton's would return either `0` or `10`.
This PR removes the 'new' version, and uses only the 'legacy' percentiles, also for the ResettingTimer type.
The resetting timer snapshot was also defined so that it would expose the internal values. This has been removed, and getters for `Max, Min, Mean` have been added instead.
### Unexport types
A lot of types were exported, but do not need to be. This PR unexports quite a lot of them.
2023-09-13 19:13:47 +02:00
|
|
|
func (t *resettingTimerSnapshot) calc(percentiles []float64) {
|
|
|
|
scores := CalculatePercentiles(t.values, percentiles)
|
|
|
|
t.thresholdBoundaries = scores
|
|
|
|
if len(t.values) == 0 {
|
|
|
|
return
|
|
|
|
}
|
|
|
|
t.min = t.values[0]
|
|
|
|
t.max = t.values[len(t.values)-1]
|
2018-02-23 10:56:08 +01:00
|
|
|
}
|