bsc/p2p/nodestate/nodestate.go

881 lines
25 KiB
Go
Raw Normal View History

// Copyright 2020 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package nodestate
import (
"errors"
"reflect"
"sync"
"time"
"unsafe"
"github.com/ethereum/go-ethereum/common/mclock"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/enr"
"github.com/ethereum/go-ethereum/rlp"
)
type (
// NodeStateMachine connects different system components operating on subsets of
// network nodes. Node states are represented by 64 bit vectors with each bit assigned
// to a state flag. Each state flag has a descriptor structure and the mapping is
// created automatically. It is possible to subscribe to subsets of state flags and
// receive a callback if one of the nodes has a relevant state flag changed.
// Callbacks can also modify further flags of the same node or other nodes. State
// updates only return after all immediate effects throughout the system have happened
// (deadlocks should be avoided by design of the implemented state logic). The caller
// can also add timeouts assigned to a certain node and a subset of state flags.
// If the timeout elapses, the flags are reset. If all relevant flags are reset then
// the timer is dropped. State flags with no timeout are persisted in the database
// if the flag descriptor enables saving. If a node has no state flags set at any
// moment then it is discarded.
//
// Extra node fields can also be registered so system components can also store more
// complex state for each node that is relevant to them, without creating a custom
// peer set. Fields can be shared across multiple components if they all know the
// field ID. Subscription to fields is also possible. Persistent fields should have
// an encoder and a decoder function.
NodeStateMachine struct {
started, stopped bool
lock sync.Mutex
clock mclock.Clock
db ethdb.KeyValueStore
dbNodeKey []byte
nodes map[enode.ID]*nodeInfo
offlineCallbackList []offlineCallback
// Registered state flags or fields. Modifications are allowed
// only when the node state machine has not been started.
setup *Setup
fields []*fieldInfo
saveFlags bitMask
// Installed callbacks. Modifications are allowed only when the
// node state machine has not been started.
stateSubs []stateSub
// Testing hooks, only for testing purposes.
saveNodeHook func(*nodeInfo)
}
// Flags represents a set of flags from a certain setup
Flags struct {
mask bitMask
setup *Setup
}
// Field represents a field from a certain setup
Field struct {
index int
setup *Setup
}
// flagDefinition describes a node state flag. Each registered instance is automatically
// mapped to a bit of the 64 bit node states.
// If persistent is true then the node is saved when state machine is shutdown.
flagDefinition struct {
name string
persistent bool
}
// fieldDefinition describes an optional node field of the given type. The contents
// of the field are only retained for each node as long as at least one of the
// state flags is set.
fieldDefinition struct {
name string
ftype reflect.Type
encode func(interface{}) ([]byte, error)
decode func([]byte) (interface{}, error)
}
// stateSetup contains the list of flags and fields used by the application
Setup struct {
Version uint
flags []flagDefinition
fields []fieldDefinition
}
// bitMask describes a node state or state mask. It represents a subset
// of node flags with each bit assigned to a flag index (LSB represents flag 0).
bitMask uint64
// StateCallback is a subscription callback which is called when one of the
// state flags that is included in the subscription state mask is changed.
// Note: oldState and newState are also masked with the subscription mask so only
// the relevant bits are included.
StateCallback func(n *enode.Node, oldState, newState Flags)
// FieldCallback is a subscription callback which is called when the value of
// a specific field is changed.
FieldCallback func(n *enode.Node, state Flags, oldValue, newValue interface{})
// nodeInfo contains node state, fields and state timeouts
nodeInfo struct {
node *enode.Node
state bitMask
timeouts []*nodeStateTimeout
fields []interface{}
db, dirty bool
}
nodeInfoEnc struct {
Enr enr.Record
Version uint
State bitMask
Fields [][]byte
}
stateSub struct {
mask bitMask
callback StateCallback
}
nodeStateTimeout struct {
mask bitMask
timer mclock.Timer
}
fieldInfo struct {
fieldDefinition
subs []FieldCallback
}
offlineCallback struct {
node *enode.Node
state bitMask
fields []interface{}
}
)
// offlineState is a special state that is assumed to be set before a node is loaded from
// the database and after it is shut down.
const offlineState = bitMask(1)
// NewFlag creates a new node state flag
func (s *Setup) NewFlag(name string) Flags {
if s.flags == nil {
s.flags = []flagDefinition{{name: "offline"}}
}
f := Flags{mask: bitMask(1) << uint(len(s.flags)), setup: s}
s.flags = append(s.flags, flagDefinition{name: name})
return f
}
// NewPersistentFlag creates a new persistent node state flag
func (s *Setup) NewPersistentFlag(name string) Flags {
if s.flags == nil {
s.flags = []flagDefinition{{name: "offline"}}
}
f := Flags{mask: bitMask(1) << uint(len(s.flags)), setup: s}
s.flags = append(s.flags, flagDefinition{name: name, persistent: true})
return f
}
// OfflineFlag returns the system-defined offline flag belonging to the given setup
func (s *Setup) OfflineFlag() Flags {
return Flags{mask: offlineState, setup: s}
}
// NewField creates a new node state field
func (s *Setup) NewField(name string, ftype reflect.Type) Field {
f := Field{index: len(s.fields), setup: s}
s.fields = append(s.fields, fieldDefinition{
name: name,
ftype: ftype,
})
return f
}
// NewPersistentField creates a new persistent node field
func (s *Setup) NewPersistentField(name string, ftype reflect.Type, encode func(interface{}) ([]byte, error), decode func([]byte) (interface{}, error)) Field {
f := Field{index: len(s.fields), setup: s}
s.fields = append(s.fields, fieldDefinition{
name: name,
ftype: ftype,
encode: encode,
decode: decode,
})
return f
}
// flagOp implements binary flag operations and also checks whether the operands belong to the same setup
func flagOp(a, b Flags, trueIfA, trueIfB, trueIfBoth bool) Flags {
if a.setup == nil {
if a.mask != 0 {
panic("Node state flags have no setup reference")
}
a.setup = b.setup
}
if b.setup == nil {
if b.mask != 0 {
panic("Node state flags have no setup reference")
}
b.setup = a.setup
}
if a.setup != b.setup {
panic("Node state flags belong to a different setup")
}
res := Flags{setup: a.setup}
if trueIfA {
res.mask |= a.mask & ^b.mask
}
if trueIfB {
res.mask |= b.mask & ^a.mask
}
if trueIfBoth {
res.mask |= a.mask & b.mask
}
return res
}
// And returns the set of flags present in both a and b
func (a Flags) And(b Flags) Flags { return flagOp(a, b, false, false, true) }
// AndNot returns the set of flags present in a but not in b
func (a Flags) AndNot(b Flags) Flags { return flagOp(a, b, true, false, false) }
// Or returns the set of flags present in either a or b
func (a Flags) Or(b Flags) Flags { return flagOp(a, b, true, true, true) }
// Xor returns the set of flags present in either a or b but not both
func (a Flags) Xor(b Flags) Flags { return flagOp(a, b, true, true, false) }
// HasAll returns true if b is a subset of a
func (a Flags) HasAll(b Flags) bool { return flagOp(a, b, false, true, false).mask == 0 }
// HasNone returns true if a and b have no shared flags
func (a Flags) HasNone(b Flags) bool { return flagOp(a, b, false, false, true).mask == 0 }
// Equals returns true if a and b have the same flags set
func (a Flags) Equals(b Flags) bool { return flagOp(a, b, true, true, false).mask == 0 }
// IsEmpty returns true if a has no flags set
func (a Flags) IsEmpty() bool { return a.mask == 0 }
// MergeFlags merges multiple sets of state flags
func MergeFlags(list ...Flags) Flags {
if len(list) == 0 {
return Flags{}
}
res := list[0]
for i := 1; i < len(list); i++ {
res = res.Or(list[i])
}
return res
}
// String returns a list of the names of the flags specified in the bit mask
func (f Flags) String() string {
if f.mask == 0 {
return "[]"
}
s := "["
comma := false
for index, flag := range f.setup.flags {
if f.mask&(bitMask(1)<<uint(index)) != 0 {
if comma {
s = s + ", "
}
s = s + flag.name
comma = true
}
}
s = s + "]"
return s
}
// NewNodeStateMachine creates a new node state machine.
// If db is not nil then the node states, fields and active timeouts are persisted.
// Persistence can be enabled or disabled for each state flag and field.
func NewNodeStateMachine(db ethdb.KeyValueStore, dbKey []byte, clock mclock.Clock, setup *Setup) *NodeStateMachine {
if setup.flags == nil {
panic("No state flags defined")
}
if len(setup.flags) > 8*int(unsafe.Sizeof(bitMask(0))) {
panic("Too many node state flags")
}
ns := &NodeStateMachine{
db: db,
dbNodeKey: dbKey,
clock: clock,
setup: setup,
nodes: make(map[enode.ID]*nodeInfo),
fields: make([]*fieldInfo, len(setup.fields)),
}
stateNameMap := make(map[string]int)
for index, flag := range setup.flags {
if _, ok := stateNameMap[flag.name]; ok {
panic("Node state flag name collision")
}
stateNameMap[flag.name] = index
if flag.persistent {
ns.saveFlags |= bitMask(1) << uint(index)
}
}
fieldNameMap := make(map[string]int)
for index, field := range setup.fields {
if _, ok := fieldNameMap[field.name]; ok {
panic("Node field name collision")
}
ns.fields[index] = &fieldInfo{fieldDefinition: field}
fieldNameMap[field.name] = index
}
return ns
}
// stateMask checks whether the set of flags belongs to the same setup and returns its internal bit mask
func (ns *NodeStateMachine) stateMask(flags Flags) bitMask {
if flags.setup != ns.setup && flags.mask != 0 {
panic("Node state flags belong to a different setup")
}
return flags.mask
}
// fieldIndex checks whether the field belongs to the same setup and returns its internal index
func (ns *NodeStateMachine) fieldIndex(field Field) int {
if field.setup != ns.setup {
panic("Node field belongs to a different setup")
}
return field.index
}
// SubscribeState adds a node state subscription. The callback is called while the state
// machine mutex is not held and it is allowed to make further state updates. All immediate
// changes throughout the system are processed in the same thread/goroutine. It is the
// responsibility of the implemented state logic to avoid deadlocks caused by the callbacks,
// infinite toggling of flags or hazardous/non-deterministic state changes.
// State subscriptions should be installed before loading the node database or making the
// first state update.
func (ns *NodeStateMachine) SubscribeState(flags Flags, callback StateCallback) {
ns.lock.Lock()
defer ns.lock.Unlock()
if ns.started {
panic("state machine already started")
}
ns.stateSubs = append(ns.stateSubs, stateSub{ns.stateMask(flags), callback})
}
// SubscribeField adds a node field subscription. Same rules apply as for SubscribeState.
func (ns *NodeStateMachine) SubscribeField(field Field, callback FieldCallback) {
ns.lock.Lock()
defer ns.lock.Unlock()
if ns.started {
panic("state machine already started")
}
f := ns.fields[ns.fieldIndex(field)]
f.subs = append(f.subs, callback)
}
// newNode creates a new nodeInfo
func (ns *NodeStateMachine) newNode(n *enode.Node) *nodeInfo {
return &nodeInfo{node: n, fields: make([]interface{}, len(ns.fields))}
}
// checkStarted checks whether the state machine has already been started and panics otherwise.
func (ns *NodeStateMachine) checkStarted() {
if !ns.started {
panic("state machine not started yet")
}
}
// Start starts the state machine, enabling state and field operations and disabling
// further subscriptions.
func (ns *NodeStateMachine) Start() {
ns.lock.Lock()
if ns.started {
panic("state machine already started")
}
ns.started = true
if ns.db != nil {
ns.loadFromDb()
}
ns.lock.Unlock()
ns.offlineCallbacks(true)
}
// Stop stops the state machine and saves its state if a database was supplied
func (ns *NodeStateMachine) Stop() {
ns.lock.Lock()
for _, node := range ns.nodes {
fields := make([]interface{}, len(node.fields))
copy(fields, node.fields)
ns.offlineCallbackList = append(ns.offlineCallbackList, offlineCallback{node.node, node.state, fields})
}
ns.stopped = true
if ns.db != nil {
ns.saveToDb()
ns.lock.Unlock()
} else {
ns.lock.Unlock()
}
ns.offlineCallbacks(false)
}
// loadFromDb loads persisted node states from the database
func (ns *NodeStateMachine) loadFromDb() {
it := ns.db.NewIterator(ns.dbNodeKey, nil)
for it.Next() {
var id enode.ID
if len(it.Key()) != len(ns.dbNodeKey)+len(id) {
log.Error("Node state db entry with invalid length", "found", len(it.Key()), "expected", len(ns.dbNodeKey)+len(id))
continue
}
copy(id[:], it.Key()[len(ns.dbNodeKey):])
ns.decodeNode(id, it.Value())
}
}
type dummyIdentity enode.ID
func (id dummyIdentity) Verify(r *enr.Record, sig []byte) error { return nil }
func (id dummyIdentity) NodeAddr(r *enr.Record) []byte { return id[:] }
// decodeNode decodes a node database entry and adds it to the node set if successful
func (ns *NodeStateMachine) decodeNode(id enode.ID, data []byte) {
var enc nodeInfoEnc
if err := rlp.DecodeBytes(data, &enc); err != nil {
log.Error("Failed to decode node info", "id", id, "error", err)
return
}
n, _ := enode.New(dummyIdentity(id), &enc.Enr)
node := ns.newNode(n)
node.db = true
if enc.Version != ns.setup.Version {
log.Debug("Removing stored node with unknown version", "current", ns.setup.Version, "stored", enc.Version)
ns.deleteNode(id)
return
}
if len(enc.Fields) > len(ns.setup.fields) {
log.Error("Invalid node field count", "id", id, "stored", len(enc.Fields))
return
}
// Resolve persisted node fields
for i, encField := range enc.Fields {
if len(encField) == 0 {
continue
}
if decode := ns.fields[i].decode; decode != nil {
if field, err := decode(encField); err == nil {
node.fields[i] = field
} else {
log.Error("Failed to decode node field", "id", id, "field name", ns.fields[i].name, "error", err)
return
}
} else {
log.Error("Cannot decode node field", "id", id, "field name", ns.fields[i].name)
return
}
}
// It's a compatible node record, add it to set.
ns.nodes[id] = node
node.state = enc.State
fields := make([]interface{}, len(node.fields))
copy(fields, node.fields)
ns.offlineCallbackList = append(ns.offlineCallbackList, offlineCallback{node.node, node.state, fields})
log.Debug("Loaded node state", "id", id, "state", Flags{mask: enc.State, setup: ns.setup})
}
// saveNode saves the given node info to the database
func (ns *NodeStateMachine) saveNode(id enode.ID, node *nodeInfo) error {
if ns.db == nil {
return nil
}
storedState := node.state & ns.saveFlags
for _, t := range node.timeouts {
storedState &= ^t.mask
}
if storedState == 0 {
if node.db {
node.db = false
ns.deleteNode(id)
}
node.dirty = false
return nil
}
enc := nodeInfoEnc{
Enr: *node.node.Record(),
Version: ns.setup.Version,
State: storedState,
Fields: make([][]byte, len(ns.fields)),
}
log.Debug("Saved node state", "id", id, "state", Flags{mask: enc.State, setup: ns.setup})
lastIndex := -1
for i, f := range node.fields {
if f == nil {
continue
}
encode := ns.fields[i].encode
if encode == nil {
continue
}
blob, err := encode(f)
if err != nil {
return err
}
enc.Fields[i] = blob
lastIndex = i
}
enc.Fields = enc.Fields[:lastIndex+1]
data, err := rlp.EncodeToBytes(&enc)
if err != nil {
return err
}
if err := ns.db.Put(append(ns.dbNodeKey, id[:]...), data); err != nil {
return err
}
node.dirty, node.db = false, true
if ns.saveNodeHook != nil {
ns.saveNodeHook(node)
}
return nil
}
// deleteNode removes a node info from the database
func (ns *NodeStateMachine) deleteNode(id enode.ID) {
ns.db.Delete(append(ns.dbNodeKey, id[:]...))
}
// saveToDb saves the persistent flags and fields of all nodes that have been changed
func (ns *NodeStateMachine) saveToDb() {
for id, node := range ns.nodes {
if node.dirty {
err := ns.saveNode(id, node)
if err != nil {
log.Error("Failed to save node", "id", id, "error", err)
}
}
}
}
// updateEnode updates the enode entry belonging to the given node if it already exists
func (ns *NodeStateMachine) updateEnode(n *enode.Node) (enode.ID, *nodeInfo) {
id := n.ID()
node := ns.nodes[id]
if node != nil && n.Seq() > node.node.Seq() {
node.node = n
}
return id, node
}
// Persist saves the persistent state and fields of the given node immediately
func (ns *NodeStateMachine) Persist(n *enode.Node) error {
ns.lock.Lock()
defer ns.lock.Unlock()
ns.checkStarted()
if id, node := ns.updateEnode(n); node != nil && node.dirty {
err := ns.saveNode(id, node)
if err != nil {
log.Error("Failed to save node", "id", id, "error", err)
}
return err
}
return nil
}
// SetState updates the given node state flags and processes all resulting callbacks.
// It only returns after all subsequent immediate changes (including those changed by the
// callbacks) have been processed. If a flag with a timeout is set again, the operation
// removes or replaces the existing timeout.
func (ns *NodeStateMachine) SetState(n *enode.Node, setFlags, resetFlags Flags, timeout time.Duration) {
ns.lock.Lock()
ns.checkStarted()
if ns.stopped {
ns.lock.Unlock()
return
}
set, reset := ns.stateMask(setFlags), ns.stateMask(resetFlags)
id, node := ns.updateEnode(n)
if node == nil {
if set == 0 {
ns.lock.Unlock()
return
}
node = ns.newNode(n)
ns.nodes[id] = node
}
oldState := node.state
newState := (node.state & (^reset)) | set
changed := oldState ^ newState
node.state = newState
// Remove the timeout callbacks for all reset and set flags,
// even they are not existent(it's noop).
ns.removeTimeouts(node, set|reset)
// Register the timeout callback if the new state is not empty
// and timeout itself is required.
if timeout != 0 && newState != 0 {
ns.addTimeout(n, set, timeout)
}
if newState == oldState {
ns.lock.Unlock()
return
}
if newState == 0 {
delete(ns.nodes, id)
if node.db {
ns.deleteNode(id)
}
} else {
if changed&ns.saveFlags != 0 {
node.dirty = true
}
}
ns.lock.Unlock()
// call state update subscription callbacks without holding the mutex
for _, sub := range ns.stateSubs {
if changed&sub.mask != 0 {
sub.callback(n, Flags{mask: oldState & sub.mask, setup: ns.setup}, Flags{mask: newState & sub.mask, setup: ns.setup})
}
}
if newState == 0 {
// call field subscriptions for discarded fields
for i, v := range node.fields {
if v != nil {
f := ns.fields[i]
if len(f.subs) > 0 {
for _, cb := range f.subs {
cb(n, Flags{setup: ns.setup}, v, nil)
}
}
}
}
}
}
// offlineCallbacks calls state update callbacks at startup or shutdown
func (ns *NodeStateMachine) offlineCallbacks(start bool) {
for _, cb := range ns.offlineCallbackList {
for _, sub := range ns.stateSubs {
offState := offlineState & sub.mask
onState := cb.state & sub.mask
if offState != onState {
if start {
sub.callback(cb.node, Flags{mask: offState, setup: ns.setup}, Flags{mask: onState, setup: ns.setup})
} else {
sub.callback(cb.node, Flags{mask: onState, setup: ns.setup}, Flags{mask: offState, setup: ns.setup})
}
}
}
for i, f := range cb.fields {
if f != nil && ns.fields[i].subs != nil {
for _, fsub := range ns.fields[i].subs {
if start {
fsub(cb.node, Flags{mask: offlineState, setup: ns.setup}, nil, f)
} else {
fsub(cb.node, Flags{mask: offlineState, setup: ns.setup}, f, nil)
}
}
}
}
}
ns.offlineCallbackList = nil
}
// AddTimeout adds a node state timeout associated to the given state flag(s).
// After the specified time interval, the relevant states will be reset.
func (ns *NodeStateMachine) AddTimeout(n *enode.Node, flags Flags, timeout time.Duration) {
ns.lock.Lock()
defer ns.lock.Unlock()
ns.checkStarted()
if ns.stopped {
return
}
ns.addTimeout(n, ns.stateMask(flags), timeout)
}
// addTimeout adds a node state timeout associated to the given state flag(s).
func (ns *NodeStateMachine) addTimeout(n *enode.Node, mask bitMask, timeout time.Duration) {
_, node := ns.updateEnode(n)
if node == nil {
return
}
mask &= node.state
if mask == 0 {
return
}
ns.removeTimeouts(node, mask)
t := &nodeStateTimeout{mask: mask}
t.timer = ns.clock.AfterFunc(timeout, func() {
ns.SetState(n, Flags{}, Flags{mask: t.mask, setup: ns.setup}, 0)
})
node.timeouts = append(node.timeouts, t)
if mask&ns.saveFlags != 0 {
node.dirty = true
}
}
// removeTimeout removes node state timeouts associated to the given state flag(s).
// If a timeout was associated to multiple flags which are not all included in the
// specified remove mask then only the included flags are de-associated and the timer
// stays active.
func (ns *NodeStateMachine) removeTimeouts(node *nodeInfo, mask bitMask) {
for i := 0; i < len(node.timeouts); i++ {
t := node.timeouts[i]
match := t.mask & mask
if match == 0 {
continue
}
t.mask -= match
if t.mask != 0 {
continue
}
t.timer.Stop()
node.timeouts[i] = node.timeouts[len(node.timeouts)-1]
node.timeouts = node.timeouts[:len(node.timeouts)-1]
i--
if match&ns.saveFlags != 0 {
node.dirty = true
}
}
}
// GetField retrieves the given field of the given node
func (ns *NodeStateMachine) GetField(n *enode.Node, field Field) interface{} {
ns.lock.Lock()
defer ns.lock.Unlock()
ns.checkStarted()
if ns.stopped {
return nil
}
if _, node := ns.updateEnode(n); node != nil {
return node.fields[ns.fieldIndex(field)]
}
return nil
}
// SetField sets the given field of the given node
func (ns *NodeStateMachine) SetField(n *enode.Node, field Field, value interface{}) error {
ns.lock.Lock()
ns.checkStarted()
if ns.stopped {
ns.lock.Unlock()
return nil
}
_, node := ns.updateEnode(n)
if node == nil {
ns.lock.Unlock()
return nil
}
fieldIndex := ns.fieldIndex(field)
f := ns.fields[fieldIndex]
if value != nil && reflect.TypeOf(value) != f.ftype {
log.Error("Invalid field type", "type", reflect.TypeOf(value), "required", f.ftype)
ns.lock.Unlock()
return errors.New("invalid field type")
}
oldValue := node.fields[fieldIndex]
if value == oldValue {
ns.lock.Unlock()
return nil
}
node.fields[fieldIndex] = value
if f.encode != nil {
node.dirty = true
}
state := node.state
ns.lock.Unlock()
if len(f.subs) > 0 {
for _, cb := range f.subs {
cb(n, Flags{mask: state, setup: ns.setup}, oldValue, value)
}
}
return nil
}
// ForEach calls the callback for each node having all of the required and none of the
// disabled flags set
func (ns *NodeStateMachine) ForEach(requireFlags, disableFlags Flags, cb func(n *enode.Node, state Flags)) {
ns.lock.Lock()
ns.checkStarted()
type callback struct {
node *enode.Node
state bitMask
}
require, disable := ns.stateMask(requireFlags), ns.stateMask(disableFlags)
var callbacks []callback
for _, node := range ns.nodes {
if node.state&require == require && node.state&disable == 0 {
callbacks = append(callbacks, callback{node.node, node.state & (require | disable)})
}
}
ns.lock.Unlock()
for _, c := range callbacks {
cb(c.node, Flags{mask: c.state, setup: ns.setup})
}
}
// GetNode returns the enode currently associated with the given ID
func (ns *NodeStateMachine) GetNode(id enode.ID) *enode.Node {
ns.lock.Lock()
defer ns.lock.Unlock()
ns.checkStarted()
if node := ns.nodes[id]; node != nil {
return node.node
}
return nil
}
// AddLogMetrics adds logging and/or metrics for nodes entering, exiting and currently
// being in a given set specified by required and disabled state flags
func (ns *NodeStateMachine) AddLogMetrics(requireFlags, disableFlags Flags, name string, inMeter, outMeter metrics.Meter, gauge metrics.Gauge) {
var count int64
ns.SubscribeState(requireFlags.Or(disableFlags), func(n *enode.Node, oldState, newState Flags) {
oldMatch := oldState.HasAll(requireFlags) && oldState.HasNone(disableFlags)
newMatch := newState.HasAll(requireFlags) && newState.HasNone(disableFlags)
if newMatch == oldMatch {
return
}
if newMatch {
count++
if name != "" {
log.Debug("Node entered", "set", name, "id", n.ID(), "count", count)
}
if inMeter != nil {
inMeter.Mark(1)
}
} else {
count--
if name != "" {
log.Debug("Node left", "set", name, "id", n.ID(), "count", count)
}
if outMeter != nil {
outMeter.Mark(1)
}
}
if gauge != nil {
gauge.Update(count)
}
})
}