bsc/common/mclock/alarm.go

107 lines
2.9 KiB
Go
Raw Normal View History

// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package mclock
import (
"time"
)
// Alarm sends timed notifications on a channel. This is very similar to a regular timer,
// but is easier to use in code that needs to re-schedule the same timer over and over.
//
// When scheduling an Alarm, the channel returned by C() will receive a value no later
// than the scheduled time. An Alarm can be reused after it has fired and can also be
// canceled by calling Stop.
type Alarm struct {
ch chan struct{}
clock Clock
timer Timer
deadline AbsTime
}
// NewAlarm creates an Alarm.
func NewAlarm(clock Clock) *Alarm {
if clock == nil {
panic("nil clock")
}
return &Alarm{
ch: make(chan struct{}, 1),
clock: clock,
}
}
// C returns the alarm notification channel. This channel remains identical for
// the entire lifetime of the alarm, and is never closed.
func (e *Alarm) C() <-chan struct{} {
return e.ch
}
// Stop cancels the alarm and drains the channel.
// This method is not safe for concurrent use.
func (e *Alarm) Stop() {
// Clear timer.
if e.timer != nil {
e.timer.Stop()
}
e.deadline = 0
// Drain the channel.
select {
case <-e.ch:
default:
}
}
// Schedule sets the alarm to fire no later than the given time. If the alarm was already
// scheduled but has not fired yet, it may fire earlier than the newly-scheduled time.
func (e *Alarm) Schedule(time AbsTime) {
now := e.clock.Now()
e.schedule(now, time)
}
func (e *Alarm) schedule(now, newDeadline AbsTime) {
if e.timer != nil {
if e.deadline > now && e.deadline <= newDeadline {
// Here, the current timer can be reused because it is already scheduled to
// occur earlier than the new deadline.
//
// The e.deadline > now part of the condition is important. If the old
// deadline lies in the past, we assume the timer has already fired and needs
// to be rescheduled.
return
}
e.timer.Stop()
}
// Set the timer.
d := time.Duration(0)
if newDeadline < now {
newDeadline = now
} else {
d = newDeadline.Sub(now)
}
e.timer = e.clock.AfterFunc(d, e.send)
e.deadline = newDeadline
}
func (e *Alarm) send() {
select {
case e.ch <- struct{}{}:
default:
}
}