bsc/core/tx_pool_test.go

886 lines
31 KiB
Go
Raw Normal View History

2015-07-07 03:54:22 +03:00
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
2015-07-07 03:54:22 +03:00
//
// The go-ethereum library is free software: you can redistribute it and/or modify
2015-07-07 03:54:22 +03:00
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
2015-07-07 03:54:22 +03:00
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2015-07-07 03:54:22 +03:00
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
2015-07-07 03:54:22 +03:00
package core
import (
"crypto/ecdsa"
2015-04-04 22:41:24 +03:00
"math/big"
"math/rand"
"testing"
"time"
2015-03-18 14:38:47 +02:00
"github.com/ethereum/go-ethereum/common"
2015-04-04 22:41:24 +03:00
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
2015-01-07 14:17:48 +02:00
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/event"
common: move big integer math to common/math (#3699) * common: remove CurrencyToString Move denomination values to params instead. * common: delete dead code * common: move big integer operations to common/math This commit consolidates all big integer operations into common/math and adds tests and documentation. There should be no change in semantics for BigPow, BigMin, BigMax, S256, U256, Exp and their behaviour is now locked in by tests. The BigD, BytesToBig and Bytes2Big functions don't provide additional value, all uses are replaced by new(big.Int).SetBytes(). BigToBytes is now called PaddedBigBytes, its minimum output size parameter is now specified as the number of bytes instead of bits. The single use of this function is in the EVM's MSTORE instruction. Big and String2Big are replaced by ParseBig, which is slightly stricter. It previously accepted leading zeros for hexadecimal inputs but treated decimal inputs as octal if a leading zero digit was present. ParseUint64 is used in places where String2Big was used to decode a uint64. The new functions MustParseBig and MustParseUint64 are now used in many places where parsing errors were previously ignored. * common: delete unused big integer variables * accounts/abi: replace uses of BytesToBig with use of encoding/binary * common: remove BytesToBig * common: remove Bytes2Big * common: remove BigTrue * cmd/utils: add BigFlag and use it for error-checked integer flags While here, remove environment variable processing for DirectoryFlag because we don't use it. * core: add missing error checks in genesis block parser * common: remove String2Big * cmd/evm: use utils.BigFlag * common/math: check for 256 bit overflow in ParseBig This is supposed to prevent silent overflow/truncation of values in the genesis block JSON. Without this check, a genesis block that set a balance larger than 256 bits would lead to weird behaviour in the VM. * cmd/utils: fixup import
2017-02-27 00:21:51 +03:00
"github.com/ethereum/go-ethereum/params"
)
func transaction(nonce uint64, gaslimit *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, big.NewInt(1), nil), types.HomesteadSigner{}, key)
return tx
}
func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
key, _ := crypto.GenerateKey()
newPool := NewTxPool(params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
newPool.resetState()
return newPool, key
}
2016-11-02 15:44:13 +03:00
func deriveSender(tx *types.Transaction) (common.Address, error) {
return types.Sender(types.HomesteadSigner{}, tx)
}
// This test simulates a scenario where a new block is imported during a
// state reset and tests whether the pending state is in sync with the
// block head event that initiated the resetState().
func TestStateChangeDuringPoolReset(t *testing.T) {
var (
db, _ = ethdb.NewMemDatabase()
key, _ = crypto.GenerateKey()
address = crypto.PubkeyToAddress(key.PublicKey)
mux = new(event.TypeMux)
statedb, _ = state.New(common.Hash{}, db)
trigger = false
)
// setup pool with 2 transaction in it
common: move big integer math to common/math (#3699) * common: remove CurrencyToString Move denomination values to params instead. * common: delete dead code * common: move big integer operations to common/math This commit consolidates all big integer operations into common/math and adds tests and documentation. There should be no change in semantics for BigPow, BigMin, BigMax, S256, U256, Exp and their behaviour is now locked in by tests. The BigD, BytesToBig and Bytes2Big functions don't provide additional value, all uses are replaced by new(big.Int).SetBytes(). BigToBytes is now called PaddedBigBytes, its minimum output size parameter is now specified as the number of bytes instead of bits. The single use of this function is in the EVM's MSTORE instruction. Big and String2Big are replaced by ParseBig, which is slightly stricter. It previously accepted leading zeros for hexadecimal inputs but treated decimal inputs as octal if a leading zero digit was present. ParseUint64 is used in places where String2Big was used to decode a uint64. The new functions MustParseBig and MustParseUint64 are now used in many places where parsing errors were previously ignored. * common: delete unused big integer variables * accounts/abi: replace uses of BytesToBig with use of encoding/binary * common: remove BytesToBig * common: remove Bytes2Big * common: remove BigTrue * cmd/utils: add BigFlag and use it for error-checked integer flags While here, remove environment variable processing for DirectoryFlag because we don't use it. * core: add missing error checks in genesis block parser * common: remove String2Big * cmd/evm: use utils.BigFlag * common/math: check for 256 bit overflow in ParseBig This is supposed to prevent silent overflow/truncation of values in the genesis block JSON. Without this check, a genesis block that set a balance larger than 256 bits would lead to weird behaviour in the VM. * cmd/utils: fixup import
2017-02-27 00:21:51 +03:00
statedb.SetBalance(address, new(big.Int).SetUint64(params.Ether))
tx0 := transaction(0, big.NewInt(100000), key)
tx1 := transaction(1, big.NewInt(100000), key)
// stateFunc is used multiple times to reset the pending state.
// when simulate is true it will create a state that indicates
// that tx0 and tx1 are included in the chain.
stateFunc := func() (*state.StateDB, error) {
// delay "state change" by one. The tx pool fetches the
// state multiple times and by delaying it a bit we simulate
// a state change between those fetches.
stdb := statedb
if trigger {
statedb, _ = state.New(common.Hash{}, db)
// simulate that the new head block included tx0 and tx1
statedb.SetNonce(address, 2)
common: move big integer math to common/math (#3699) * common: remove CurrencyToString Move denomination values to params instead. * common: delete dead code * common: move big integer operations to common/math This commit consolidates all big integer operations into common/math and adds tests and documentation. There should be no change in semantics for BigPow, BigMin, BigMax, S256, U256, Exp and their behaviour is now locked in by tests. The BigD, BytesToBig and Bytes2Big functions don't provide additional value, all uses are replaced by new(big.Int).SetBytes(). BigToBytes is now called PaddedBigBytes, its minimum output size parameter is now specified as the number of bytes instead of bits. The single use of this function is in the EVM's MSTORE instruction. Big and String2Big are replaced by ParseBig, which is slightly stricter. It previously accepted leading zeros for hexadecimal inputs but treated decimal inputs as octal if a leading zero digit was present. ParseUint64 is used in places where String2Big was used to decode a uint64. The new functions MustParseBig and MustParseUint64 are now used in many places where parsing errors were previously ignored. * common: delete unused big integer variables * accounts/abi: replace uses of BytesToBig with use of encoding/binary * common: remove BytesToBig * common: remove Bytes2Big * common: remove BigTrue * cmd/utils: add BigFlag and use it for error-checked integer flags While here, remove environment variable processing for DirectoryFlag because we don't use it. * core: add missing error checks in genesis block parser * common: remove String2Big * cmd/evm: use utils.BigFlag * common/math: check for 256 bit overflow in ParseBig This is supposed to prevent silent overflow/truncation of values in the genesis block JSON. Without this check, a genesis block that set a balance larger than 256 bits would lead to weird behaviour in the VM. * cmd/utils: fixup import
2017-02-27 00:21:51 +03:00
statedb.SetBalance(address, new(big.Int).SetUint64(params.Ether))
trigger = false
}
return stdb, nil
}
gasLimitFunc := func() *big.Int { return big.NewInt(1000000000) }
txpool := NewTxPool(params.TestChainConfig, mux, stateFunc, gasLimitFunc)
txpool.resetState()
nonce := txpool.State().GetNonce(address)
if nonce != 0 {
t.Fatalf("Invalid nonce, want 0, got %d", nonce)
}
txpool.AddBatch(types.Transactions{tx0, tx1})
nonce = txpool.State().GetNonce(address)
if nonce != 2 {
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
}
// trigger state change in the background
trigger = true
txpool.resetState()
pendingTx, err := txpool.Pending()
if err != nil {
t.Fatalf("Could not fetch pending transactions: %v", err)
}
for addr, txs := range pendingTx {
t.Logf("%0x: %d\n", addr, len(txs))
}
nonce = txpool.State().GetNonce(address)
if nonce != 2 {
t.Fatalf("Invalid nonce, want 2, got %d", nonce)
}
}
func TestInvalidTransactions(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(100), key)
2016-11-02 15:44:13 +03:00
from, _ := deriveSender(tx)
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
if err := pool.Add(tx); err != ErrInsufficientFunds {
t.Error("expected", ErrInsufficientFunds)
}
balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(tx.Gas(), tx.GasPrice()))
currentState.AddBalance(from, balance)
if err := pool.Add(tx); err != ErrIntrinsicGas {
t.Error("expected", ErrIntrinsicGas, "got", err)
}
2015-01-02 13:18:23 +02:00
currentState.SetNonce(from, 1)
currentState.AddBalance(from, big.NewInt(0xffffffffffffff))
tx = transaction(0, big.NewInt(100000), key)
if err := pool.Add(tx); err != ErrNonce {
t.Error("expected", ErrNonce)
}
tx = transaction(1, big.NewInt(100000), key)
pool.minGasPrice = big.NewInt(1000)
if err := pool.Add(tx); err != ErrCheap {
t.Error("expected", ErrCheap, "got", err)
}
pool.SetLocal(tx)
if err := pool.Add(tx); err != nil {
t.Error("expected", nil, "got", err)
}
}
func TestTransactionQueue(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(100), key)
2016-11-02 15:44:13 +03:00
from, _ := deriveSender(tx)
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1000))
pool.resetState()
pool.enqueueTx(tx.Hash(), tx)
pool.promoteExecutables(currentState)
2015-06-04 13:47:46 +03:00
if len(pool.pending) != 1 {
t.Error("expected valid txs to be 1 is", len(pool.pending))
}
tx = transaction(1, big.NewInt(100), key)
2016-11-02 15:44:13 +03:00
from, _ = deriveSender(tx)
currentState.SetNonce(from, 2)
pool.enqueueTx(tx.Hash(), tx)
pool.promoteExecutables(currentState)
if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
t.Error("expected transaction to be in tx pool")
}
if len(pool.queue) > 0 {
t.Error("expected transaction queue to be empty. is", len(pool.queue))
}
pool, key = setupTxPool()
tx1 := transaction(0, big.NewInt(100), key)
tx2 := transaction(10, big.NewInt(100), key)
tx3 := transaction(11, big.NewInt(100), key)
2016-11-02 15:44:13 +03:00
from, _ = deriveSender(tx1)
currentState, _ = pool.currentState()
currentState.AddBalance(from, big.NewInt(1000))
pool.resetState()
pool.enqueueTx(tx1.Hash(), tx1)
pool.enqueueTx(tx2.Hash(), tx2)
pool.enqueueTx(tx3.Hash(), tx3)
pool.promoteExecutables(currentState)
2015-06-04 13:47:46 +03:00
if len(pool.pending) != 1 {
t.Error("expected tx pool to be 1, got", len(pool.pending))
}
if pool.queue[from].Len() != 2 {
t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
}
}
func TestRemoveTx(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(100), key)
2016-11-02 15:44:13 +03:00
from, _ := deriveSender(tx)
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
pool.enqueueTx(tx.Hash(), tx)
pool.promoteTx(from, tx.Hash(), tx)
if len(pool.queue) != 1 {
t.Error("expected queue to be 1, got", len(pool.queue))
}
2015-06-04 13:47:46 +03:00
if len(pool.pending) != 1 {
t.Error("expected pending to be 1, got", len(pool.pending))
}
pool.Remove(tx.Hash())
if len(pool.queue) > 0 {
t.Error("expected queue to be 0, got", len(pool.queue))
}
2015-06-04 13:47:46 +03:00
if len(pool.pending) > 0 {
t.Error("expected pending to be 0, got", len(pool.pending))
}
}
func TestNegativeValue(t *testing.T) {
pool, key := setupTxPool()
tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), big.NewInt(100), big.NewInt(1), nil), types.HomesteadSigner{}, key)
2016-11-02 15:44:13 +03:00
from, _ := deriveSender(tx)
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1))
if err := pool.Add(tx); err != ErrNegativeValue {
t.Error("expected", ErrNegativeValue, "got", err)
}
}
func TestTransactionChainFork(t *testing.T) {
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
currentState, _ := pool.currentState()
currentState.AddBalance(addr, big.NewInt(100000000000000))
pool.resetState()
}
resetState()
tx := transaction(0, big.NewInt(100000), key)
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
pool.RemoveBatch([]*types.Transaction{tx})
// reset the pool's internal state
resetState()
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
}
func TestTransactionDoubleNonce(t *testing.T) {
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
resetState := func() {
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool.currentState = func() (*state.StateDB, error) { return statedb, nil }
currentState, _ := pool.currentState()
currentState.AddBalance(addr, big.NewInt(100000000000000))
pool.resetState()
}
resetState()
2016-11-02 15:44:13 +03:00
signer := types.HomesteadSigner{}
tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(100000), big.NewInt(1), nil), signer, key)
tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(2), nil), signer, key)
tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), big.NewInt(1000000), big.NewInt(1), nil), signer, key)
// Add the first two transaction, ensure higher priced stays only
if err := pool.add(tx1); err != nil {
t.Error("didn't expect error", err)
}
if err := pool.add(tx2); err != nil {
t.Error("didn't expect error", err)
}
state, _ := pool.currentState()
pool.promoteExecutables(state)
if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
}
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
}
// Add the thid transaction and ensure it's not saved (smaller price)
if err := pool.add(tx3); err != nil {
t.Error("didn't expect error", err)
}
pool.promoteExecutables(state)
if pool.pending[addr].Len() != 1 {
t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
}
if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
}
// Ensure the total transaction count is correct
if len(pool.all) != 1 {
t.Error("expected 1 total transactions, got", len(pool.all))
}
}
func TestMissingNonce(t *testing.T) {
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
currentState, _ := pool.currentState()
currentState.AddBalance(addr, big.NewInt(100000000000000))
tx := transaction(1, big.NewInt(100000), key)
if err := pool.add(tx); err != nil {
t.Error("didn't expect error", err)
}
if len(pool.pending) != 0 {
t.Error("expected 0 pending transactions, got", len(pool.pending))
}
if pool.queue[addr].Len() != 1 {
t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
}
if len(pool.all) != 1 {
t.Error("expected 1 total transactions, got", len(pool.all))
}
}
func TestNonceRecovery(t *testing.T) {
const n = 10
pool, key := setupTxPool()
addr := crypto.PubkeyToAddress(key.PublicKey)
currentState, _ := pool.currentState()
currentState.SetNonce(addr, n)
currentState.AddBalance(addr, big.NewInt(100000000000000))
pool.resetState()
tx := transaction(n, big.NewInt(100000), key)
if err := pool.Add(tx); err != nil {
t.Error(err)
}
// simulate some weird re-order of transactions and missing nonce(s)
currentState.SetNonce(addr, n-1)
pool.resetState()
if fn := pool.pendingState.GetNonce(addr); fn != n+1 {
t.Errorf("expected nonce to be %d, got %d", n+1, fn)
}
}
func TestRemovedTxEvent(t *testing.T) {
pool, key := setupTxPool()
tx := transaction(0, big.NewInt(1000000), key)
2016-11-02 15:44:13 +03:00
from, _ := deriveSender(tx)
currentState, _ := pool.currentState()
currentState.AddBalance(from, big.NewInt(1000000000000))
pool.resetState()
pool.eventMux.Post(RemovedTransactionEvent{types.Transactions{tx}})
pool.eventMux.Post(ChainHeadEvent{nil})
if pool.pending[from].Len() != 1 {
t.Error("expected 1 pending tx, got", pool.pending[from].Len())
}
if len(pool.all) != 1 {
t.Error("expected 1 total transactions, got", len(pool.all))
}
}
// Tests that if an account runs out of funds, any pending and queued transactions
// are dropped.
func TestTransactionDropping(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
2016-11-02 15:44:13 +03:00
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000))
// Add some pending and some queued transactions
var (
tx0 = transaction(0, big.NewInt(100), key)
tx1 = transaction(1, big.NewInt(200), key)
tx10 = transaction(10, big.NewInt(100), key)
tx11 = transaction(11, big.NewInt(200), key)
)
pool.promoteTx(account, tx0.Hash(), tx0)
pool.promoteTx(account, tx1.Hash(), tx1)
pool.enqueueTx(tx10.Hash(), tx10)
pool.enqueueTx(tx11.Hash(), tx11)
// Check that pre and post validations leave the pool as is
if pool.pending[account].Len() != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
}
if pool.queue[account].Len() != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
}
if len(pool.all) != 4 {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
}
pool.resetState()
if pool.pending[account].Len() != 2 {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 2)
}
if pool.queue[account].Len() != 2 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 2)
}
if len(pool.all) != 4 {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 4)
}
// Reduce the balance of the account, and check that invalidated transactions are dropped
state.AddBalance(account, big.NewInt(-750))
pool.resetState()
if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
t.Errorf("funded pending transaction missing: %v", tx0)
}
if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
t.Errorf("out-of-fund pending transaction present: %v", tx1)
}
if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
t.Errorf("funded queued transaction missing: %v", tx10)
}
if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
t.Errorf("out-of-fund queued transaction present: %v", tx11)
}
if len(pool.all) != 2 {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), 2)
}
}
// Tests that if a transaction is dropped from the current pending pool (e.g. out
// of fund), all consecutive (still valid, but not executable) transactions are
2016-03-15 20:08:18 +02:00
// postponed back into the future queue to prevent broadcasting them.
func TestTransactionPostponing(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
2016-11-02 15:44:13 +03:00
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000))
// Add a batch consecutive pending transactions for validation
txns := []*types.Transaction{}
for i := 0; i < 100; i++ {
var tx *types.Transaction
if i%2 == 0 {
tx = transaction(uint64(i), big.NewInt(100), key)
} else {
tx = transaction(uint64(i), big.NewInt(500), key)
}
pool.promoteTx(account, tx.Hash(), tx)
txns = append(txns, tx)
}
// Check that pre and post validations leave the pool as is
if pool.pending[account].Len() != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
}
if len(pool.queue) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
}
if len(pool.all) != len(txns) {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
}
pool.resetState()
if pool.pending[account].Len() != len(txns) {
t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), len(txns))
}
if len(pool.queue) != 0 {
t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 0)
}
if len(pool.all) != len(txns) {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns))
}
// Reduce the balance of the account, and check that transactions are reorganised
state.AddBalance(account, big.NewInt(-750))
pool.resetState()
if _, ok := pool.pending[account].txs.items[txns[0].Nonce()]; !ok {
t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txns[0])
}
if _, ok := pool.queue[account].txs.items[txns[0].Nonce()]; ok {
t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txns[0])
}
for i, tx := range txns[1:] {
if i%2 == 1 {
if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[account].txs.items[tx.Nonce()]; !ok {
t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
}
} else {
if _, ok := pool.pending[account].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
}
if _, ok := pool.queue[account].txs.items[tx.Nonce()]; ok {
t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
}
}
}
if len(pool.all) != len(txns)/2 {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), len(txns)/2)
}
}
// Tests that if the transaction count belonging to a single account goes above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueAccountLimiting(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
2016-11-02 15:44:13 +03:00
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
pool.resetState()
// Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(1); i <= maxQueuedPerAccount+5; i++ {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if len(pool.pending) != 0 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
}
if i <= maxQueuedPerAccount {
if pool.queue[account].Len() != int(i) {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
}
} else {
if pool.queue[account].Len() != int(maxQueuedPerAccount) {
t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), maxQueuedPerAccount)
}
}
}
if len(pool.all) != int(maxQueuedPerAccount) {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount)
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some threshold, the higher transactions are dropped to prevent DOS attacks.
func TestTransactionQueueGlobalLimiting(t *testing.T) {
// Reduce the queue limits to shorten test time
defer func(old uint64) { maxQueuedInTotal = old }(maxQueuedInTotal)
maxQueuedInTotal = maxQueuedPerAccount * 3
// Create the pool to test the limit enforcement with
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool := NewTxPool(params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
pool.resetState()
// Create a number of test accounts and fund them
state, _ := pool.currentState()
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := make(types.Transactions, 0, 3*maxQueuedInTotal)
for len(txs) < cap(txs) {
key := keys[rand.Intn(len(keys))]
addr := crypto.PubkeyToAddress(key.PublicKey)
txs = append(txs, transaction(nonces[addr]+1, big.NewInt(100000), key))
nonces[addr]++
}
// Import the batch and verify that limits have been enforced
pool.AddBatch(txs)
queued := 0
for addr, list := range pool.queue {
if list.Len() > int(maxQueuedPerAccount) {
t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), maxQueuedPerAccount)
}
queued += list.Len()
}
if queued > int(maxQueuedInTotal) {
t.Fatalf("total transactions overflow allowance: %d > %d", queued, maxQueuedInTotal)
}
}
// Tests that if an account remains idle for a prolonged amount of time, any
// non-executable transactions queued up are dropped to prevent wasting resources
// on shuffling them around.
func TestTransactionQueueTimeLimiting(t *testing.T) {
// Reduce the queue limits to shorten test time
defer func(old time.Duration) { maxQueuedLifetime = old }(maxQueuedLifetime)
defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
maxQueuedLifetime = time.Second
evictionInterval = time.Second
// Create a test account and fund it
pool, key := setupTxPool()
2016-11-02 15:44:13 +03:00
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
// Queue up a batch of transactions
for i := uint64(1); i <= maxQueuedPerAccount; i++ {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
}
// Wait until at least two expiration cycles hit and make sure the transactions are gone
time.Sleep(2 * evictionInterval)
if len(pool.queue) > 0 {
t.Fatalf("old transactions remained after eviction")
}
}
// Tests that even if the transaction count belonging to a single account goes
// above some threshold, as long as the transactions are executable, they are
// accepted.
func TestTransactionPendingLimiting(t *testing.T) {
// Create a test account and fund it
pool, key := setupTxPool()
2016-11-02 15:44:13 +03:00
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
pool.resetState()
// Keep queuing up transactions and make sure all above a limit are dropped
for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
if err := pool.Add(transaction(i, big.NewInt(100000), key)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
if pool.pending[account].Len() != int(i)+1 {
t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
}
if len(pool.queue) != 0 {
t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
}
}
if len(pool.all) != int(maxQueuedPerAccount+5) {
t.Errorf("total transaction mismatch: have %d, want %d", len(pool.all), maxQueuedPerAccount+5)
}
}
// Tests that the transaction limits are enforced the same way irrelevant whether
// the transactions are added one by one or in batches.
func TestTransactionQueueLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 1) }
func TestTransactionPendingLimitingEquivalency(t *testing.T) { testTransactionLimitingEquivalency(t, 0) }
func testTransactionLimitingEquivalency(t *testing.T, origin uint64) {
// Add a batch of transactions to a pool one by one
pool1, key1 := setupTxPool()
2016-11-02 15:44:13 +03:00
account1, _ := deriveSender(transaction(0, big.NewInt(0), key1))
state1, _ := pool1.currentState()
state1.AddBalance(account1, big.NewInt(1000000))
for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
if err := pool1.Add(transaction(origin+i, big.NewInt(100000), key1)); err != nil {
t.Fatalf("tx %d: failed to add transaction: %v", i, err)
}
}
// Add a batch of transactions to a pool in one big batch
pool2, key2 := setupTxPool()
2016-11-02 15:44:13 +03:00
account2, _ := deriveSender(transaction(0, big.NewInt(0), key2))
state2, _ := pool2.currentState()
state2.AddBalance(account2, big.NewInt(1000000))
txns := []*types.Transaction{}
for i := uint64(0); i < maxQueuedPerAccount+5; i++ {
txns = append(txns, transaction(origin+i, big.NewInt(100000), key2))
}
pool2.AddBatch(txns)
// Ensure the batch optimization honors the same pool mechanics
if len(pool1.pending) != len(pool2.pending) {
t.Errorf("pending transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.pending), len(pool2.pending))
}
if len(pool1.queue) != len(pool2.queue) {
t.Errorf("queued transaction count mismatch: one-by-one algo: %d, batch algo: %d", len(pool1.queue), len(pool2.queue))
}
if len(pool1.all) != len(pool2.all) {
t.Errorf("total transaction count mismatch: one-by-one algo %d, batch algo %d", len(pool1.all), len(pool2.all))
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some hard threshold, the higher transactions are dropped to prevent DOS
// attacks.
func TestTransactionPendingGlobalLimiting(t *testing.T) {
// Reduce the queue limits to shorten test time
defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal)
maxPendingTotal = minPendingPerAccount * 10
// Create the pool to test the limit enforcement with
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool := NewTxPool(params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
pool.resetState()
// Create a number of test accounts and fund them
state, _ := pool.currentState()
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := types.Transactions{}
for _, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
for j := 0; j < int(maxPendingTotal)/len(keys)*2; j++ {
txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
nonces[addr]++
}
}
// Import the batch and verify that limits have been enforced
pool.AddBatch(txs)
pending := 0
for _, list := range pool.pending {
pending += list.Len()
}
if pending > int(maxPendingTotal) {
t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, maxPendingTotal)
}
}
// Tests that if the transaction count belonging to multiple accounts go above
// some hard threshold, if they are under the minimum guaranteed slot count then
// the transactions are still kept.
func TestTransactionPendingMinimumAllowance(t *testing.T) {
// Reduce the queue limits to shorten test time
defer func(old uint64) { maxPendingTotal = old }(maxPendingTotal)
maxPendingTotal = 0
// Create the pool to test the limit enforcement with
db, _ := ethdb.NewMemDatabase()
statedb, _ := state.New(common.Hash{}, db)
pool := NewTxPool(params.TestChainConfig, new(event.TypeMux), func() (*state.StateDB, error) { return statedb, nil }, func() *big.Int { return big.NewInt(1000000) })
pool.resetState()
// Create a number of test accounts and fund them
state, _ := pool.currentState()
keys := make([]*ecdsa.PrivateKey, 5)
for i := 0; i < len(keys); i++ {
keys[i], _ = crypto.GenerateKey()
state.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
}
// Generate and queue a batch of transactions
nonces := make(map[common.Address]uint64)
txs := types.Transactions{}
for _, key := range keys {
addr := crypto.PubkeyToAddress(key.PublicKey)
for j := 0; j < int(minPendingPerAccount)*2; j++ {
txs = append(txs, transaction(nonces[addr], big.NewInt(100000), key))
nonces[addr]++
}
}
// Import the batch and verify that limits have been enforced
pool.AddBatch(txs)
for addr, list := range pool.pending {
if list.Len() != int(minPendingPerAccount) {
t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), minPendingPerAccount)
}
}
}
// Benchmarks the speed of validating the contents of the pending queue of the
// transaction pool.
func BenchmarkPendingDemotion100(b *testing.B) { benchmarkPendingDemotion(b, 100) }
func BenchmarkPendingDemotion1000(b *testing.B) { benchmarkPendingDemotion(b, 1000) }
func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }
func benchmarkPendingDemotion(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool()
2016-11-02 15:44:13 +03:00
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
for i := 0; i < size; i++ {
tx := transaction(uint64(i), big.NewInt(100000), key)
pool.promoteTx(account, tx.Hash(), tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.demoteUnexecutables(state)
}
}
// Benchmarks the speed of scheduling the contents of the future queue of the
// transaction pool.
func BenchmarkFuturePromotion100(b *testing.B) { benchmarkFuturePromotion(b, 100) }
func BenchmarkFuturePromotion1000(b *testing.B) { benchmarkFuturePromotion(b, 1000) }
func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }
func benchmarkFuturePromotion(b *testing.B, size int) {
// Add a batch of transactions to a pool one by one
pool, key := setupTxPool()
2016-11-02 15:44:13 +03:00
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
for i := 0; i < size; i++ {
tx := transaction(uint64(1+i), big.NewInt(100000), key)
pool.enqueueTx(tx.Hash(), tx)
}
// Benchmark the speed of pool validation
b.ResetTimer()
for i := 0; i < b.N; i++ {
pool.promoteExecutables(state)
}
}
// Benchmarks the speed of iterative transaction insertion.
func BenchmarkPoolInsert(b *testing.B) {
// Generate a batch of transactions to enqueue into the pool
pool, key := setupTxPool()
2016-11-02 15:44:13 +03:00
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
txs := make(types.Transactions, b.N)
for i := 0; i < b.N; i++ {
txs[i] = transaction(uint64(i), big.NewInt(100000), key)
}
// Benchmark importing the transactions into the queue
b.ResetTimer()
for _, tx := range txs {
pool.Add(tx)
}
}
// Benchmarks the speed of batched transaction insertion.
func BenchmarkPoolBatchInsert100(b *testing.B) { benchmarkPoolBatchInsert(b, 100) }
func BenchmarkPoolBatchInsert1000(b *testing.B) { benchmarkPoolBatchInsert(b, 1000) }
func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000) }
func benchmarkPoolBatchInsert(b *testing.B, size int) {
// Generate a batch of transactions to enqueue into the pool
pool, key := setupTxPool()
2016-11-02 15:44:13 +03:00
account, _ := deriveSender(transaction(0, big.NewInt(0), key))
state, _ := pool.currentState()
state.AddBalance(account, big.NewInt(1000000))
batches := make([]types.Transactions, b.N)
for i := 0; i < b.N; i++ {
batches[i] = make(types.Transactions, size)
for j := 0; j < size; j++ {
batches[i][j] = transaction(uint64(size*i+j), big.NewInt(100000), key)
}
}
// Benchmark importing the transactions into the queue
b.ResetTimer()
for _, batch := range batches {
pool.AddBatch(batch)
}
}