swarm/pss: negihbourhood addressing simulation tests (#19278)

* swarm/pss: fixed bug in pss.process, test added

* swarm/pss: test case updated

* swarm/pss: WaitTillSnapshotRecreated() func added

* swarm/pss: snapshot test updated

* swarm/pss: WaitTillSnapshotLoaded() fixed

* swarm/pss: gofmt applied

* swarm/pss: refactoring, file renamed

* swarm/pss: input data fixed

* swarm/pss: race condition fixed

* swarm/pss: test timeout increased

* swarm/pss: eliminated the global variables

* swarm/pss: tests added

* swarm/pss: comments added

* swarm/pss: comment fixed

* swarm/pss: refactored according to review

* swarm/pss: style fix

* swarm/pss: increased timeout
This commit is contained in:
gluk256 2019-03-16 11:39:38 +04:00 committed by Viktor Trón
parent 3d067b0cea
commit 6e401792ce
4 changed files with 738 additions and 8 deletions

@ -18,12 +18,14 @@ package simulation
import (
"context"
"encoding/binary"
"encoding/hex"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/simulations"
"github.com/ethereum/go-ethereum/swarm/network"
)
@ -96,3 +98,106 @@ func (s *Simulation) kademlias() (ks map[enode.ID]*network.Kademlia) {
}
return ks
}
// WaitTillSnapshotRecreated is blocking until all the connections specified
// in the snapshot are registered in the kademlia.
// It differs from WaitTillHealthy, which waits only until all the kademlias are
// healthy (it might happen even before all the connections are established).
func (s *Simulation) WaitTillSnapshotRecreated(ctx context.Context, snap simulations.Snapshot) error {
expected := getSnapshotConnections(snap.Conns)
ticker := time.NewTicker(150 * time.Millisecond)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return ctx.Err()
case <-ticker.C:
actual := s.getActualConnections()
if isAllDeployed(expected, actual) {
return nil
}
}
}
}
func (s *Simulation) getActualConnections() (res []uint64) {
kademlias := s.kademlias()
for base, k := range kademlias {
k.EachConn(base[:], 256, func(p *network.Peer, _ int) bool {
res = append(res, getConnectionHash(base, p.ID()))
return true
})
}
// only list those connections that appear twice (both peers should recognize connection as active)
res = removeDuplicatesAndSingletons(res)
return res
}
func getSnapshotConnections(conns []simulations.Conn) (res []uint64) {
for _, c := range conns {
res = append(res, getConnectionHash(c.One, c.Other))
}
return res
}
// returns an integer connection identifier (similar to 8-byte hash)
func getConnectionHash(a, b enode.ID) uint64 {
var h [8]byte
for i := 0; i < 8; i++ {
h[i] = a[i] ^ b[i]
}
res := binary.LittleEndian.Uint64(h[:])
return res
}
// returns true if all connections in expected are listed in actual
func isAllDeployed(expected []uint64, actual []uint64) bool {
if len(expected) == 0 {
return true
}
exp := make([]uint64, len(expected))
copy(exp, expected)
for _, c := range actual {
// remove value c from exp
for i := 0; i < len(exp); i++ {
if exp[i] == c {
exp = removeListElement(exp, i)
if len(exp) == 0 {
return true
}
}
}
}
return len(exp) == 0
}
func removeListElement(arr []uint64, i int) []uint64 {
last := len(arr) - 1
arr[i] = arr[last]
arr = arr[:last]
return arr
}
func removeDuplicatesAndSingletons(arr []uint64) []uint64 {
for i := 0; i < len(arr); {
found := false
for j := i + 1; j < len(arr); j++ {
if arr[i] == arr[j] {
arr = removeListElement(arr, j) // remove duplicate
found = true
break
}
}
if found {
i++
} else {
arr = removeListElement(arr, i) // remove singleton
}
}
return arr
}

@ -144,3 +144,166 @@ func createSimServiceMap(discovery bool) map[string]ServiceFunc {
},
}
}
// TestWaitTillSnapshotRecreated tests that we indeed have a network
// configuration specified in the snapshot file, after we wait for it.
//
// First we create a first simulation
// Run it as nodes connected in a ring
// Wait until the network is healthy
// Then we create a snapshot
// With this snapshot we create a new simulation
// Call WaitTillSnapshotRecreated() function and wait until it returns
// Iterate the nodes and check if all the connections are successfully recreated
func TestWaitTillSnapshotRecreated(t *testing.T) {
var err error
sim := New(createSimServiceMap(true))
_, err = sim.AddNodesAndConnectRing(16)
if err != nil {
t.Fatal(err)
}
ctx, cancel := context.WithTimeout(context.Background(), 60*time.Second)
defer cancel()
_, err = sim.WaitTillHealthy(ctx)
if err != nil {
t.Fatal(err)
}
originalConnections := sim.getActualConnections()
snap, err := sim.Net.Snapshot()
sim.Close()
if err != nil {
t.Fatal(err)
}
controlSim := New(createSimServiceMap(false))
defer controlSim.Close()
err = controlSim.Net.Load(snap)
if err != nil {
t.Fatal(err)
}
err = controlSim.WaitTillSnapshotRecreated(ctx, *snap)
if err != nil {
t.Fatal(err)
}
controlConnections := controlSim.getActualConnections()
for _, c := range originalConnections {
if !exist(controlConnections, c) {
t.Fatal("connection was not recreated")
}
}
}
// exist returns true if val is found in arr
func exist(arr []uint64, val uint64) bool {
for _, c := range arr {
if c == val {
return true
}
}
return false
}
func TestRemoveDuplicatesAndSingletons(t *testing.T) {
singletons := []uint64{
0x3c127c6f6cb026b0,
0x0f45190d72e71fc5,
0xb0184c02449e0bb6,
0xa85c7b84239c54d3,
0xe3b0c44298fc1c14,
0x9afbf4c8996fb924,
0x27ae41e4649b934c,
0xa495991b7852b855,
}
doubles := []uint64{
0x1b879f878de7fc7a,
0xc6791470521bdab4,
0xdd34b0ee39bbccc6,
0x4d904fbf0f31da10,
0x6403c2560432c8f8,
0x18954e33cf3ad847,
0x90db00e98dc7a8a6,
0x92886b0dfcc1809b,
}
var arr []uint64
arr = append(arr, doubles...)
arr = append(arr, singletons...)
arr = append(arr, doubles...)
arr = removeDuplicatesAndSingletons(arr)
for _, i := range singletons {
if exist(arr, i) {
t.Fatalf("singleton not removed: %d", i)
}
}
for _, i := range doubles {
if !exist(arr, i) {
t.Fatalf("wrong value removed: %d", i)
}
}
for j := 0; j < len(doubles); j++ {
v := doubles[j] + singletons[j]
if exist(arr, v) {
t.Fatalf("non-existing value found, index: %d", j)
}
}
}
func TestIsAllDeployed(t *testing.T) {
a := []uint64{
0x3c127c6f6cb026b0,
0x0f45190d72e71fc5,
0xb0184c02449e0bb6,
0xa85c7b84239c54d3,
0xe3b0c44298fc1c14,
0x9afbf4c8996fb924,
0x27ae41e4649b934c,
0xa495991b7852b855,
}
b := []uint64{
0x1b879f878de7fc7a,
0xc6791470521bdab4,
0xdd34b0ee39bbccc6,
0x4d904fbf0f31da10,
0x6403c2560432c8f8,
0x18954e33cf3ad847,
0x90db00e98dc7a8a6,
0x92886b0dfcc1809b,
}
var c []uint64
c = append(c, a...)
c = append(c, b...)
if !isAllDeployed(a, c) {
t.Fatal("isAllDeployed failed")
}
if !isAllDeployed(b, c) {
t.Fatal("isAllDeployed failed")
}
if isAllDeployed(c, a) {
t.Fatal("isAllDeployed failed: false positive")
}
if isAllDeployed(c, b) {
t.Fatal("isAllDeployed failed: false positive")
}
c = c[2:]
if isAllDeployed(a, c) {
t.Fatal("isAllDeployed failed: false positive")
}
if !isAllDeployed(b, c) {
t.Fatal("isAllDeployed failed")
}
}

465
swarm/pss/prox_test.go Normal file

@ -0,0 +1,465 @@
package pss
import (
"context"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io/ioutil"
"os"
"strconv"
"strings"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/node"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/p2p/simulations"
"github.com/ethereum/go-ethereum/p2p/simulations/adapters"
"github.com/ethereum/go-ethereum/rpc"
"github.com/ethereum/go-ethereum/swarm/network"
"github.com/ethereum/go-ethereum/swarm/network/simulation"
"github.com/ethereum/go-ethereum/swarm/pot"
"github.com/ethereum/go-ethereum/swarm/state"
)
// needed to make the enode id of the receiving node available to the handler for triggers
type handlerContextFunc func(*testData, *adapters.NodeConfig) *handler
// struct to notify reception of messages to simulation driver
// TODO To make code cleaner:
// - consider a separate pss unwrap to message event in sim framework (this will make eventual message propagation analysis with pss easier/possible in the future)
// - consider also test api calls to inspect handling results of messages
type handlerNotification struct {
id enode.ID
serial uint64
}
type testData struct {
mu sync.Mutex
sim *simulation.Simulation
handlerDone bool // set to true on termination of the simulation run
requiredMessages int
allowedMessages int
messageCount int
kademlias map[enode.ID]*network.Kademlia
nodeAddrs map[enode.ID][]byte // make predictable overlay addresses from the generated random enode ids
recipients map[int][]enode.ID // for logging output only
allowed map[int][]enode.ID // allowed recipients
expectedMsgs map[enode.ID][]uint64 // message serials we expect respective nodes to receive
allowedMsgs map[enode.ID][]uint64 // message serials we expect respective nodes to receive
senders map[int]enode.ID // originating nodes of the messages (intention is to choose as far as possible from the receiving neighborhood)
handlerC chan handlerNotification // passes message from pss message handler to simulation driver
doneC chan struct{} // terminates the handler channel listener
errC chan error // error to pass to main sim thread
msgC chan handlerNotification // message receipt notification to main sim thread
msgs [][]byte // recipient addresses of messages
}
var (
pof = pot.DefaultPof(256) // generate messages and index them
topic = BytesToTopic([]byte{0xf3, 0x9e, 0x06, 0x82})
)
func (d *testData) getMsgCount() int {
d.mu.Lock()
defer d.mu.Unlock()
return d.messageCount
}
func (d *testData) incrementMsgCount() int {
d.mu.Lock()
defer d.mu.Unlock()
d.messageCount++
return d.messageCount
}
func (d *testData) isDone() bool {
d.mu.Lock()
defer d.mu.Unlock()
return d.handlerDone
}
func (d *testData) setDone() {
d.mu.Lock()
defer d.mu.Unlock()
d.handlerDone = true
}
func getCmdParams(t *testing.T) (int, int) {
args := strings.Split(t.Name(), "/")
msgCount, err := strconv.ParseInt(args[2], 10, 16)
if err != nil {
t.Fatal(err)
}
nodeCount, err := strconv.ParseInt(args[1], 10, 16)
if err != nil {
t.Fatal(err)
}
return int(msgCount), int(nodeCount)
}
func readSnapshot(t *testing.T, nodeCount int) simulations.Snapshot {
f, err := os.Open(fmt.Sprintf("testdata/snapshot_%d.json", nodeCount))
if err != nil {
t.Fatal(err)
}
defer f.Close()
jsonbyte, err := ioutil.ReadAll(f)
if err != nil {
t.Fatal(err)
}
var snap simulations.Snapshot
err = json.Unmarshal(jsonbyte, &snap)
if err != nil {
t.Fatal(err)
}
return snap
}
func newTestData() *testData {
return &testData{
kademlias: make(map[enode.ID]*network.Kademlia),
nodeAddrs: make(map[enode.ID][]byte),
recipients: make(map[int][]enode.ID),
allowed: make(map[int][]enode.ID),
expectedMsgs: make(map[enode.ID][]uint64),
allowedMsgs: make(map[enode.ID][]uint64),
senders: make(map[int]enode.ID),
handlerC: make(chan handlerNotification),
doneC: make(chan struct{}),
errC: make(chan error),
msgC: make(chan handlerNotification),
}
}
func (d *testData) init(msgCount int) {
log.Debug("TestProxNetwork start")
for _, nodeId := range d.sim.NodeIDs() {
d.nodeAddrs[nodeId] = nodeIDToAddr(nodeId)
}
for i := 0; i < int(msgCount); i++ {
msgAddr := pot.RandomAddress() // we choose message addresses randomly
d.msgs = append(d.msgs, msgAddr.Bytes())
smallestPo := 256
var targets []enode.ID
var closestPO int
// loop through all nodes and find the required and allowed recipients of each message
// (for more information, please see the comment to the main test function)
for _, nod := range d.sim.Net.GetNodes() {
po, _ := pof(d.msgs[i], d.nodeAddrs[nod.ID()], 0)
depth := d.kademlias[nod.ID()].NeighbourhoodDepth()
// only nodes with closest IDs (wrt the msg address) will be required recipients
if po > closestPO {
closestPO = po
targets = nil
targets = append(targets, nod.ID())
} else if po == closestPO {
targets = append(targets, nod.ID())
}
if po >= depth {
d.allowedMessages++
d.allowed[i] = append(d.allowed[i], nod.ID())
d.allowedMsgs[nod.ID()] = append(d.allowedMsgs[nod.ID()], uint64(i))
}
// a node with the smallest PO (wrt msg) will be the sender,
// in order to increase the distance the msg must travel
if po < smallestPo {
smallestPo = po
d.senders[i] = nod.ID()
}
}
d.requiredMessages += len(targets)
for _, id := range targets {
d.recipients[i] = append(d.recipients[i], id)
d.expectedMsgs[id] = append(d.expectedMsgs[id], uint64(i))
}
log.Debug("nn for msg", "targets", len(d.recipients[i]), "msgidx", i, "msg", common.Bytes2Hex(msgAddr[:8]), "sender", d.senders[i], "senderpo", smallestPo)
}
log.Debug("msgs to receive", "count", d.requiredMessages)
}
// Here we test specific functionality of the pss, setting the prox property of
// the handler. The tests generate a number of messages with random addresses.
// Then, for each message it calculates which nodes have the msg address
// within its nearest neighborhood depth, and stores those nodes as possible
// recipients. Those nodes that are the closest to the message address (nodes
// belonging to the deepest PO wrt the msg address) are stored as required
// recipients. The difference between allowed and required recipients results
// from the fact that the nearest neighbours are not necessarily reciprocal.
// Upon sending the messages, the test verifies that the respective message is
// passed to the message handlers of these required recipients. The test fails
// if a message is handled by recipient which is not listed among the allowed
// recipients of this particular message. It also fails after timeout, if not
// all the required recipients have received their respective messages.
//
// For example, if proximity order of certain msg address is 4, and node X
// has PO=5 wrt the message address, and nodes Y and Z have PO=6, then:
// nodes Y and Z will be considered required recipients of the msg,
// whereas nodes X, Y and Z will be allowed recipients.
func TestProxNetwork(t *testing.T) {
t.Run("16/16", testProxNetwork)
}
// params in run name: nodes/msgs
func TestProxNetworkLong(t *testing.T) {
if !*longrunning {
t.Skip("run with --longrunning flag to run extensive network tests")
}
t.Run("8/100", testProxNetwork)
t.Run("16/100", testProxNetwork)
t.Run("32/100", testProxNetwork)
t.Run("64/100", testProxNetwork)
t.Run("128/100", testProxNetwork)
}
func testProxNetwork(t *testing.T) {
tstdata := newTestData()
msgCount, nodeCount := getCmdParams(t)
handlerContextFuncs := make(map[Topic]handlerContextFunc)
handlerContextFuncs[topic] = nodeMsgHandler
services := newProxServices(tstdata, true, handlerContextFuncs, tstdata.kademlias)
tstdata.sim = simulation.New(services)
defer tstdata.sim.Close()
err := tstdata.sim.UploadSnapshot(fmt.Sprintf("testdata/snapshot_%d.json", nodeCount))
if err != nil {
t.Fatal(err)
}
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
defer cancel()
snap := readSnapshot(t, nodeCount)
err = tstdata.sim.WaitTillSnapshotRecreated(ctx, snap)
if err != nil {
t.Fatalf("failed to recreate snapshot: %s", err)
}
tstdata.init(msgCount) // initialize the test data
wrapper := func(c context.Context, _ *simulation.Simulation) error {
return testRoutine(tstdata, c)
}
result := tstdata.sim.Run(ctx, wrapper) // call the main test function
if result.Error != nil {
// context deadline exceeded
// however, it might just mean that not all possible messages are received
// now we must check if all required messages are received
cnt := tstdata.getMsgCount()
log.Debug("TestProxNetwork finnished", "rcv", cnt)
if cnt < tstdata.requiredMessages {
t.Fatal(result.Error)
}
}
t.Logf("completed %d", result.Duration)
}
func (tstdata *testData) sendAllMsgs() {
for i, msg := range tstdata.msgs {
log.Debug("sending msg", "idx", i, "from", tstdata.senders[i])
nodeClient, err := tstdata.sim.Net.GetNode(tstdata.senders[i]).Client()
if err != nil {
tstdata.errC <- err
}
var uvarByte [8]byte
binary.PutUvarint(uvarByte[:], uint64(i))
nodeClient.Call(nil, "pss_sendRaw", hexutil.Encode(msg), hexutil.Encode(topic[:]), hexutil.Encode(uvarByte[:]))
}
log.Debug("all messages sent")
}
// testRoutine is the main test function, called by Simulation.Run()
func testRoutine(tstdata *testData, ctx context.Context) error {
go handlerChannelListener(tstdata, ctx)
go tstdata.sendAllMsgs()
received := 0
// collect incoming messages and terminate with corresponding status when message handler listener ends
for {
select {
case err := <-tstdata.errC:
return err
case hn := <-tstdata.msgC:
received++
log.Debug("msg received", "msgs_received", received, "total_expected", tstdata.requiredMessages, "id", hn.id, "serial", hn.serial)
if received == tstdata.allowedMessages {
close(tstdata.doneC)
return nil
}
}
}
return nil
}
func handlerChannelListener(tstdata *testData, ctx context.Context) {
for {
select {
case <-tstdata.doneC: // graceful exit
tstdata.setDone()
tstdata.errC <- nil
return
case <-ctx.Done(): // timeout or cancel
tstdata.setDone()
tstdata.errC <- ctx.Err()
return
// incoming message from pss message handler
case handlerNotification := <-tstdata.handlerC:
// check if recipient has already received all its messages and notify to fail the test if so
aMsgs := tstdata.allowedMsgs[handlerNotification.id]
if len(aMsgs) == 0 {
tstdata.setDone()
tstdata.errC <- fmt.Errorf("too many messages received by recipient %x", handlerNotification.id)
return
}
// check if message serial is in expected messages for this recipient and notify to fail the test if not
idx := -1
for i, msg := range aMsgs {
if handlerNotification.serial == msg {
idx = i
break
}
}
if idx == -1 {
tstdata.setDone()
tstdata.errC <- fmt.Errorf("message %d received by wrong recipient %v", handlerNotification.serial, handlerNotification.id)
return
}
// message is ok, so remove that message serial from the recipient expectation array and notify the main sim thread
aMsgs[idx] = aMsgs[len(aMsgs)-1]
aMsgs = aMsgs[:len(aMsgs)-1]
tstdata.msgC <- handlerNotification
}
}
}
func nodeMsgHandler(tstdata *testData, config *adapters.NodeConfig) *handler {
return &handler{
f: func(msg []byte, p *p2p.Peer, asymmetric bool, keyid string) error {
cnt := tstdata.incrementMsgCount()
log.Debug("nodeMsgHandler rcv", "cnt", cnt)
// using simple serial in message body, makes it easy to keep track of who's getting what
serial, c := binary.Uvarint(msg)
if c <= 0 {
log.Crit(fmt.Sprintf("corrupt message received by %x (uvarint parse returned %d)", config.ID, c))
}
if tstdata.isDone() {
return errors.New("handlers aborted") // terminate if simulation is over
}
// pass message context to the listener in the simulation
tstdata.handlerC <- handlerNotification{
id: config.ID,
serial: serial,
}
return nil
},
caps: &handlerCaps{
raw: true, // we use raw messages for simplicity
prox: true,
},
}
}
// an adaptation of the same services setup as in pss_test.go
// replaces pss_test.go when those tests are rewritten to the new swarm/network/simulation package
func newProxServices(tstdata *testData, allowRaw bool, handlerContextFuncs map[Topic]handlerContextFunc, kademlias map[enode.ID]*network.Kademlia) map[string]simulation.ServiceFunc {
stateStore := state.NewInmemoryStore()
kademlia := func(id enode.ID) *network.Kademlia {
if k, ok := kademlias[id]; ok {
return k
}
params := network.NewKadParams()
params.MaxBinSize = 3
params.MinBinSize = 1
params.MaxRetries = 1000
params.RetryExponent = 2
params.RetryInterval = 1000000
kademlias[id] = network.NewKademlia(id[:], params)
return kademlias[id]
}
return map[string]simulation.ServiceFunc{
"bzz": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
// normally translation of enode id to swarm address is concealed by the network package
// however, we need to keep track of it in the test driver as well.
// if the translation in the network package changes, that can cause these tests to unpredictably fail
// therefore we keep a local copy of the translation here
addr := network.NewAddr(ctx.Config.Node())
addr.OAddr = nodeIDToAddr(ctx.Config.Node().ID())
hp := network.NewHiveParams()
hp.Discovery = false
config := &network.BzzConfig{
OverlayAddr: addr.Over(),
UnderlayAddr: addr.Under(),
HiveParams: hp,
}
return network.NewBzz(config, kademlia(ctx.Config.ID), stateStore, nil, nil), nil, nil
},
"pss": func(ctx *adapters.ServiceContext, b *sync.Map) (node.Service, func(), error) {
// execadapter does not exec init()
initTest()
// create keys in whisper and set up the pss object
ctxlocal, cancel := context.WithTimeout(context.Background(), time.Second*3)
defer cancel()
keys, err := wapi.NewKeyPair(ctxlocal)
privkey, err := w.GetPrivateKey(keys)
pssp := NewPssParams().WithPrivateKey(privkey)
pssp.AllowRaw = allowRaw
pskad := kademlia(ctx.Config.ID)
ps, err := NewPss(pskad, pssp)
if err != nil {
return nil, nil, err
}
b.Store(simulation.BucketKeyKademlia, pskad)
// register the handlers we've been passed
var deregisters []func()
for tpc, hndlrFunc := range handlerContextFuncs {
deregisters = append(deregisters, ps.Register(&tpc, hndlrFunc(tstdata, ctx.Config)))
}
// if handshake mode is set, add the controller
// TODO: This should be hooked to the handshake test file
if useHandshake {
SetHandshakeController(ps, NewHandshakeParams())
}
// we expose some api calls for cheating
ps.addAPI(rpc.API{
Namespace: "psstest",
Version: "0.3",
Service: NewAPITest(ps),
Public: false,
})
// return Pss and cleanups
return ps, func() {
// run the handler deregister functions in reverse order
for i := len(deregisters); i > 0; i-- {
deregisters[i-1]()
}
}, nil
},
}
}
// makes sure we create the addresses the same way in driver and service setup
func nodeIDToAddr(id enode.ID) []byte {
return id.Bytes()
}

@ -415,11 +415,11 @@ func (p *Pss) handlePssMsg(ctx context.Context, msg interface{}) error {
}
isRecipient := p.isSelfPossibleRecipient(pssmsg, isProx)
if !isRecipient {
log.Trace("pss was for someone else :'( ... forwarding", "pss", common.ToHex(p.BaseAddr()), "prox", isProx)
log.Trace("pss msg forwarding ===>", "pss", common.ToHex(p.BaseAddr()), "prox", isProx)
return p.enqueue(pssmsg)
}
log.Trace("pss for us, yay! ... let's process!", "pss", common.ToHex(p.BaseAddr()), "prox", isProx, "raw", isRaw, "topic", label(pssmsg.Payload.Topic[:]))
log.Trace("pss msg processing <===", "pss", common.ToHex(p.BaseAddr()), "prox", isProx, "raw", isRaw, "topic", label(pssmsg.Payload.Topic[:]))
if err := p.process(pssmsg, isRaw, isProx); err != nil {
qerr := p.enqueue(pssmsg)
if qerr != nil {
@ -463,14 +463,11 @@ func (p *Pss) process(pssmsg *PssMsg, raw bool, prox bool) error {
payload = recvmsg.Payload
}
if len(pssmsg.To) < addressLength {
if err := p.enqueue(pssmsg); err != nil {
return err
}
if len(pssmsg.To) < addressLength || prox {
err = p.enqueue(pssmsg)
}
p.executeHandlers(psstopic, payload, from, raw, prox, asymmetric, keyid)
return nil
return err
}
// copy all registered handlers for respective topic in order to avoid data race or deadlock