all: implement path-based state scheme (#25963)

* all: implement path-based state scheme

* all: edits from review

* core/rawdb, trie/triedb/pathdb: review changes

* core, light, trie, eth, tests: reimplement pbss history

* core, trie/triedb/pathdb: track block number in state history

* trie/triedb/pathdb: add history documentation

* core, trie/triedb/pathdb: address comments from Peter's review

Important changes to list:

- Cache trie nodes by path in clean cache
- Remove root->id mappings when history is truncated

* trie/triedb/pathdb: fallback to disk if unexpect node in clean cache

* core/rawdb: fix tests

* trie/triedb/pathdb: rename metrics, change clean cache key

* trie/triedb: manage the clean cache inside of disk layer

* trie/triedb/pathdb: move journal function

* trie/triedb/path: fix tests

* trie/triedb/pathdb: fix journal

* trie/triedb/pathdb: fix history

* trie/triedb/pathdb: try to fix tests on windows

* core, trie: address comments

* trie/triedb/pathdb: fix test issues

---------

Co-authored-by: Felix Lange <fjl@twurst.com>
Co-authored-by: Martin Holst Swende <martin@swende.se>
This commit is contained in:
rjl493456442 2023-08-01 20:17:32 +08:00 committed by GitHub
parent 9d744f0ca8
commit 7de748d3f6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
43 changed files with 4418 additions and 226 deletions

@ -713,7 +713,7 @@ func (bc *BlockChain) setHeadBeyondRoot(head uint64, time uint64, root common.Ha
if num+1 <= frozen {
// Truncate all relative data(header, total difficulty, body, receipt
// and canonical hash) from ancient store.
if err := bc.db.TruncateHead(num); err != nil {
if _, err := bc.db.TruncateHead(num); err != nil {
log.Crit("Failed to truncate ancient data", "number", num, "err", err)
}
// Remove the hash <-> number mapping from the active store.
@ -1136,7 +1136,7 @@ func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain [
size += int64(batch.ValueSize())
if err = batch.Write(); err != nil {
snapBlock := bc.CurrentSnapBlock().Number.Uint64()
if err := bc.db.TruncateHead(snapBlock + 1); err != nil {
if _, err := bc.db.TruncateHead(snapBlock + 1); err != nil {
log.Error("Can't truncate ancient store after failed insert", "err", err)
}
return 0, err
@ -1154,7 +1154,7 @@ func (bc *BlockChain) InsertReceiptChain(blockChain types.Blocks, receiptChain [
if !updateHead(blockChain[len(blockChain)-1]) {
// We end up here if the header chain has reorg'ed, and the blocks/receipts
// don't match the canonical chain.
if err := bc.db.TruncateHead(previousSnapBlock + 1); err != nil {
if _, err := bc.db.TruncateHead(previousSnapBlock + 1); err != nil {
log.Error("Can't truncate ancient store after failed insert", "err", err)
}
return 0, errSideChainReceipts

@ -85,7 +85,7 @@ func TestBodyStorage(t *testing.T) {
WriteBody(db, hash, 0, body)
if entry := ReadBody(db, hash, 0); entry == nil {
t.Fatalf("Stored body not found")
} else if types.DeriveSha(types.Transactions(entry.Transactions), newHasher()) != types.DeriveSha(types.Transactions(body.Transactions), newHasher()) || types.CalcUncleHash(entry.Uncles) != types.CalcUncleHash(body.Uncles) {
} else if types.DeriveSha(types.Transactions(entry.Transactions), newTestHasher()) != types.DeriveSha(types.Transactions(body.Transactions), newTestHasher()) || types.CalcUncleHash(entry.Uncles) != types.CalcUncleHash(body.Uncles) {
t.Fatalf("Retrieved body mismatch: have %v, want %v", entry, body)
}
if entry := ReadBodyRLP(db, hash, 0); entry == nil {
@ -139,7 +139,7 @@ func TestBlockStorage(t *testing.T) {
}
if entry := ReadBody(db, block.Hash(), block.NumberU64()); entry == nil {
t.Fatalf("Stored body not found")
} else if types.DeriveSha(types.Transactions(entry.Transactions), newHasher()) != types.DeriveSha(block.Transactions(), newHasher()) || types.CalcUncleHash(entry.Uncles) != types.CalcUncleHash(block.Uncles()) {
} else if types.DeriveSha(types.Transactions(entry.Transactions), newTestHasher()) != types.DeriveSha(block.Transactions(), newTestHasher()) || types.CalcUncleHash(entry.Uncles) != types.CalcUncleHash(block.Uncles()) {
t.Fatalf("Retrieved body mismatch: have %v, want %v", entry, block.Body())
}
// Delete the block and verify the execution

@ -29,7 +29,7 @@ import (
"github.com/ethereum/go-ethereum/rlp"
)
var newHasher = blocktest.NewHasher
var newTestHasher = blocktest.NewHasher
// Tests that positional lookup metadata can be stored and retrieved.
func TestLookupStorage(t *testing.T) {
@ -76,7 +76,7 @@ func TestLookupStorage(t *testing.T) {
tx3 := types.NewTransaction(3, common.BytesToAddress([]byte{0x33}), big.NewInt(333), 3333, big.NewInt(33333), []byte{0x33, 0x33, 0x33})
txs := []*types.Transaction{tx1, tx2, tx3}
block := types.NewBlock(&types.Header{Number: big.NewInt(314)}, txs, nil, nil, newHasher())
block := types.NewBlock(&types.Header{Number: big.NewInt(314)}, txs, nil, nil, newTestHasher())
// Check that no transactions entries are in a pristine database
for i, tx := range txs {

@ -17,6 +17,8 @@
package rawdb
import (
"encoding/binary"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
@ -92,3 +94,173 @@ func DeleteCode(db ethdb.KeyValueWriter, hash common.Hash) {
log.Crit("Failed to delete contract code", "err", err)
}
}
// ReadStateID retrieves the state id with the provided state root.
func ReadStateID(db ethdb.KeyValueReader, root common.Hash) *uint64 {
data, err := db.Get(stateIDKey(root))
if err != nil || len(data) == 0 {
return nil
}
number := binary.BigEndian.Uint64(data)
return &number
}
// WriteStateID writes the provided state lookup to database.
func WriteStateID(db ethdb.KeyValueWriter, root common.Hash, id uint64) {
var buff [8]byte
binary.BigEndian.PutUint64(buff[:], id)
if err := db.Put(stateIDKey(root), buff[:]); err != nil {
log.Crit("Failed to store state ID", "err", err)
}
}
// DeleteStateID deletes the specified state lookup from the database.
func DeleteStateID(db ethdb.KeyValueWriter, root common.Hash) {
if err := db.Delete(stateIDKey(root)); err != nil {
log.Crit("Failed to delete state ID", "err", err)
}
}
// ReadPersistentStateID retrieves the id of the persistent state from the database.
func ReadPersistentStateID(db ethdb.KeyValueReader) uint64 {
data, _ := db.Get(persistentStateIDKey)
if len(data) != 8 {
return 0
}
return binary.BigEndian.Uint64(data)
}
// WritePersistentStateID stores the id of the persistent state into database.
func WritePersistentStateID(db ethdb.KeyValueWriter, number uint64) {
if err := db.Put(persistentStateIDKey, encodeBlockNumber(number)); err != nil {
log.Crit("Failed to store the persistent state ID", "err", err)
}
}
// ReadTrieJournal retrieves the serialized in-memory trie nodes of layers saved at
// the last shutdown.
func ReadTrieJournal(db ethdb.KeyValueReader) []byte {
data, _ := db.Get(trieJournalKey)
return data
}
// WriteTrieJournal stores the serialized in-memory trie nodes of layers to save at
// shutdown.
func WriteTrieJournal(db ethdb.KeyValueWriter, journal []byte) {
if err := db.Put(trieJournalKey, journal); err != nil {
log.Crit("Failed to store tries journal", "err", err)
}
}
// DeleteTrieJournal deletes the serialized in-memory trie nodes of layers saved at
// the last shutdown.
func DeleteTrieJournal(db ethdb.KeyValueWriter) {
if err := db.Delete(trieJournalKey); err != nil {
log.Crit("Failed to remove tries journal", "err", err)
}
}
// ReadStateHistoryMeta retrieves the metadata corresponding to the specified
// state history. Compute the position of state history in freezer by minus
// one since the id of first state history starts from one(zero for initial
// state).
func ReadStateHistoryMeta(db ethdb.AncientReaderOp, id uint64) []byte {
blob, err := db.Ancient(stateHistoryMeta, id-1)
if err != nil {
return nil
}
return blob
}
// ReadStateHistoryMetaList retrieves a batch of meta objects with the specified
// start position and count. Compute the position of state history in freezer by
// minus one since the id of first state history starts from one(zero for initial
// state).
func ReadStateHistoryMetaList(db ethdb.AncientReaderOp, start uint64, count uint64) ([][]byte, error) {
return db.AncientRange(stateHistoryMeta, start-1, count, 0)
}
// ReadStateAccountIndex retrieves the state root corresponding to the specified
// state history. Compute the position of state history in freezer by minus one
// since the id of first state history starts from one(zero for initial state).
func ReadStateAccountIndex(db ethdb.AncientReaderOp, id uint64) []byte {
blob, err := db.Ancient(stateHistoryAccountIndex, id-1)
if err != nil {
return nil
}
return blob
}
// ReadStateStorageIndex retrieves the state root corresponding to the specified
// state history. Compute the position of state history in freezer by minus one
// since the id of first state history starts from one(zero for initial state).
func ReadStateStorageIndex(db ethdb.AncientReaderOp, id uint64) []byte {
blob, err := db.Ancient(stateHistoryStorageIndex, id-1)
if err != nil {
return nil
}
return blob
}
// ReadStateAccountHistory retrieves the state root corresponding to the specified
// state history. Compute the position of state history in freezer by minus one
// since the id of first state history starts from one(zero for initial state).
func ReadStateAccountHistory(db ethdb.AncientReaderOp, id uint64) []byte {
blob, err := db.Ancient(stateHistoryAccountData, id-1)
if err != nil {
return nil
}
return blob
}
// ReadStateStorageHistory retrieves the state root corresponding to the specified
// state history. Compute the position of state history in freezer by minus one
// since the id of first state history starts from one(zero for initial state).
func ReadStateStorageHistory(db ethdb.AncientReaderOp, id uint64) []byte {
blob, err := db.Ancient(stateHistoryStorageData, id-1)
if err != nil {
return nil
}
return blob
}
// ReadStateHistory retrieves the state history from database with provided id.
// Compute the position of state history in freezer by minus one since the id
// of first state history starts from one(zero for initial state).
func ReadStateHistory(db ethdb.AncientReaderOp, id uint64) ([]byte, []byte, []byte, []byte, []byte, error) {
meta, err := db.Ancient(stateHistoryMeta, id-1)
if err != nil {
return nil, nil, nil, nil, nil, err
}
accountIndex, err := db.Ancient(stateHistoryAccountIndex, id-1)
if err != nil {
return nil, nil, nil, nil, nil, err
}
storageIndex, err := db.Ancient(stateHistoryStorageIndex, id-1)
if err != nil {
return nil, nil, nil, nil, nil, err
}
accountData, err := db.Ancient(stateHistoryAccountData, id-1)
if err != nil {
return nil, nil, nil, nil, nil, err
}
storageData, err := db.Ancient(stateHistoryStorageData, id-1)
if err != nil {
return nil, nil, nil, nil, nil, err
}
return meta, accountIndex, storageIndex, accountData, storageData, nil
}
// WriteStateHistory writes the provided state history to database. Compute the
// position of state history in freezer by minus one since the id of first state
// history starts from one(zero for initial state).
func WriteStateHistory(db ethdb.AncientWriter, id uint64, meta []byte, accountIndex []byte, storageIndex []byte, accounts []byte, storages []byte) {
db.ModifyAncients(func(op ethdb.AncientWriteOp) error {
op.AppendRaw(stateHistoryMeta, id-1, meta)
op.AppendRaw(stateHistoryAccountIndex, id-1, accountIndex)
op.AppendRaw(stateHistoryStorageIndex, id-1, storageIndex)
op.AppendRaw(stateHistoryAccountData, id-1, accounts)
op.AppendRaw(stateHistoryStorageData, id-1, storages)
return nil
})
}

@ -46,21 +46,23 @@ const HashScheme = "hashScheme"
// on extra state diffs to survive deep reorg.
const PathScheme = "pathScheme"
// nodeHasher used to derive the hash of trie node.
type nodeHasher struct{ sha crypto.KeccakState }
// hasher is used to compute the sha256 hash of the provided data.
type hasher struct{ sha crypto.KeccakState }
var hasherPool = sync.Pool{
New: func() interface{} { return &nodeHasher{sha: sha3.NewLegacyKeccak256().(crypto.KeccakState)} },
New: func() interface{} { return &hasher{sha: sha3.NewLegacyKeccak256().(crypto.KeccakState)} },
}
func newNodeHasher() *nodeHasher { return hasherPool.Get().(*nodeHasher) }
func returnHasherToPool(h *nodeHasher) { hasherPool.Put(h) }
func newHasher() *hasher {
return hasherPool.Get().(*hasher)
}
func (h *nodeHasher) hashData(data []byte) (n common.Hash) {
h.sha.Reset()
h.sha.Write(data)
h.sha.Read(n[:])
return n
func (h *hasher) hash(data []byte) common.Hash {
return crypto.HashData(h.sha, data)
}
func (h *hasher) release() {
hasherPool.Put(h)
}
// ReadAccountTrieNode retrieves the account trie node and the associated node
@ -70,9 +72,9 @@ func ReadAccountTrieNode(db ethdb.KeyValueReader, path []byte) ([]byte, common.H
if err != nil {
return nil, common.Hash{}
}
hasher := newNodeHasher()
defer returnHasherToPool(hasher)
return data, hasher.hashData(data)
h := newHasher()
defer h.release()
return data, h.hash(data)
}
// HasAccountTrieNode checks the account trie node presence with the specified
@ -82,9 +84,9 @@ func HasAccountTrieNode(db ethdb.KeyValueReader, path []byte, hash common.Hash)
if err != nil {
return false
}
hasher := newNodeHasher()
defer returnHasherToPool(hasher)
return hasher.hashData(data) == hash
h := newHasher()
defer h.release()
return h.hash(data) == hash
}
// WriteAccountTrieNode writes the provided account trie node into database.
@ -108,9 +110,9 @@ func ReadStorageTrieNode(db ethdb.KeyValueReader, accountHash common.Hash, path
if err != nil {
return nil, common.Hash{}
}
hasher := newNodeHasher()
defer returnHasherToPool(hasher)
return data, hasher.hashData(data)
h := newHasher()
defer h.release()
return data, h.hash(data)
}
// HasStorageTrieNode checks the storage trie node presence with the provided
@ -120,9 +122,9 @@ func HasStorageTrieNode(db ethdb.KeyValueReader, accountHash common.Hash, path [
if err != nil {
return false
}
hasher := newNodeHasher()
defer returnHasherToPool(hasher)
return hasher.hashData(data) == hash
h := newHasher()
defer h.release()
return h.hash(data) == hash
}
// WriteStorageTrieNode writes the provided storage trie node into database.

@ -16,6 +16,8 @@
package rawdb
import "path/filepath"
// The list of table names of chain freezer.
const (
// ChainFreezerHeaderTable indicates the name of the freezer header table.
@ -44,10 +46,36 @@ var chainFreezerNoSnappy = map[string]bool{
ChainFreezerDifficultyTable: true,
}
const (
// stateHistoryTableSize defines the maximum size of freezer data files.
stateHistoryTableSize = 2 * 1000 * 1000 * 1000
// stateHistoryAccountIndex indicates the name of the freezer state history table.
stateHistoryMeta = "history.meta"
stateHistoryAccountIndex = "account.index"
stateHistoryStorageIndex = "storage.index"
stateHistoryAccountData = "account.data"
stateHistoryStorageData = "storage.data"
)
var stateHistoryFreezerNoSnappy = map[string]bool{
stateHistoryMeta: true,
stateHistoryAccountIndex: false,
stateHistoryStorageIndex: false,
stateHistoryAccountData: false,
stateHistoryStorageData: false,
}
// The list of identifiers of ancient stores.
var (
chainFreezerName = "chain" // the folder name of chain segment ancient store.
stateFreezerName = "state" // the folder name of reverse diff ancient store.
)
// freezers the collections of all builtin freezers.
var freezers = []string{chainFreezerName}
var freezers = []string{chainFreezerName, stateFreezerName}
// NewStateHistoryFreezer initializes the freezer for state history.
func NewStateHistoryFreezer(ancientDir string, readOnly bool) (*ResettableFreezer, error) {
return NewResettableFreezer(filepath.Join(ancientDir, stateFreezerName), "eth/db/state", readOnly, stateHistoryTableSize, stateHistoryFreezerNoSnappy)
}

@ -34,7 +34,7 @@ func TestChainIterator(t *testing.T) {
var block *types.Block
var txs []*types.Transaction
to := common.BytesToAddress([]byte{0x11})
block = types.NewBlock(&types.Header{Number: big.NewInt(int64(0))}, nil, nil, nil, newHasher()) // Empty genesis block
block = types.NewBlock(&types.Header{Number: big.NewInt(int64(0))}, nil, nil, nil, newTestHasher()) // Empty genesis block
WriteBlock(chainDb, block)
WriteCanonicalHash(chainDb, block.Hash(), block.NumberU64())
for i := uint64(1); i <= 10; i++ {
@ -60,7 +60,7 @@ func TestChainIterator(t *testing.T) {
})
}
txs = append(txs, tx)
block = types.NewBlock(&types.Header{Number: big.NewInt(int64(i))}, []*types.Transaction{tx}, nil, nil, newHasher())
block = types.NewBlock(&types.Header{Number: big.NewInt(int64(i))}, []*types.Transaction{tx}, nil, nil, newTestHasher())
WriteBlock(chainDb, block)
WriteCanonicalHash(chainDb, block.Hash(), block.NumberU64())
}
@ -113,7 +113,7 @@ func TestIndexTransactions(t *testing.T) {
to := common.BytesToAddress([]byte{0x11})
// Write empty genesis block
block = types.NewBlock(&types.Header{Number: big.NewInt(int64(0))}, nil, nil, nil, newHasher())
block = types.NewBlock(&types.Header{Number: big.NewInt(int64(0))}, nil, nil, nil, newTestHasher())
WriteBlock(chainDb, block)
WriteCanonicalHash(chainDb, block.Hash(), block.NumberU64())
@ -140,7 +140,7 @@ func TestIndexTransactions(t *testing.T) {
})
}
txs = append(txs, tx)
block = types.NewBlock(&types.Header{Number: big.NewInt(int64(i))}, []*types.Transaction{tx}, nil, nil, newHasher())
block = types.NewBlock(&types.Header{Number: big.NewInt(int64(i))}, []*types.Transaction{tx}, nil, nil, newTestHasher())
WriteBlock(chainDb, block)
WriteCanonicalHash(chainDb, block.Hash(), block.NumberU64())
}

@ -123,13 +123,13 @@ func (db *nofreezedb) ModifyAncients(func(ethdb.AncientWriteOp) error) (int64, e
}
// TruncateHead returns an error as we don't have a backing chain freezer.
func (db *nofreezedb) TruncateHead(items uint64) error {
return errNotSupported
func (db *nofreezedb) TruncateHead(items uint64) (uint64, error) {
return 0, errNotSupported
}
// TruncateTail returns an error as we don't have a backing chain freezer.
func (db *nofreezedb) TruncateTail(items uint64) error {
return errNotSupported
func (db *nofreezedb) TruncateTail(items uint64) (uint64, error) {
return 0, errNotSupported
}
// Sync returns an error as we don't have a backing chain freezer.

@ -275,43 +275,46 @@ func (f *Freezer) ModifyAncients(fn func(ethdb.AncientWriteOp) error) (writeSize
}
// TruncateHead discards any recent data above the provided threshold number.
func (f *Freezer) TruncateHead(items uint64) error {
// It returns the previous head number.
func (f *Freezer) TruncateHead(items uint64) (uint64, error) {
if f.readonly {
return errReadOnly
return 0, errReadOnly
}
f.writeLock.Lock()
defer f.writeLock.Unlock()
if f.frozen.Load() <= items {
return nil
oitems := f.frozen.Load()
if oitems <= items {
return oitems, nil
}
for _, table := range f.tables {
if err := table.truncateHead(items); err != nil {
return err
return 0, err
}
}
f.frozen.Store(items)
return nil
return oitems, nil
}
// TruncateTail discards any recent data below the provided threshold number.
func (f *Freezer) TruncateTail(tail uint64) error {
func (f *Freezer) TruncateTail(tail uint64) (uint64, error) {
if f.readonly {
return errReadOnly
return 0, errReadOnly
}
f.writeLock.Lock()
defer f.writeLock.Unlock()
if f.tail.Load() >= tail {
return nil
old := f.tail.Load()
if old >= tail {
return old, nil
}
for _, table := range f.tables {
if err := table.truncateTail(tail); err != nil {
return err
return 0, err
}
}
f.tail.Store(tail)
return nil
return old, nil
}
// Sync flushes all data tables to disk.

@ -170,7 +170,8 @@ func (f *ResettableFreezer) ModifyAncients(fn func(ethdb.AncientWriteOp) error)
}
// TruncateHead discards any recent data above the provided threshold number.
func (f *ResettableFreezer) TruncateHead(items uint64) error {
// It returns the previous head number.
func (f *ResettableFreezer) TruncateHead(items uint64) (uint64, error) {
f.lock.RLock()
defer f.lock.RUnlock()
@ -178,7 +179,8 @@ func (f *ResettableFreezer) TruncateHead(items uint64) error {
}
// TruncateTail discards any recent data below the provided threshold number.
func (f *ResettableFreezer) TruncateTail(tail uint64) error {
// It returns the previous value
func (f *ResettableFreezer) TruncateTail(tail uint64) (uint64, error) {
f.lock.RLock()
defer f.lock.RUnlock()

@ -192,7 +192,7 @@ func TestFreezerConcurrentModifyTruncate(t *testing.T) {
for i := 0; i < 10; i++ {
// First reset and write 100 items.
if err := f.TruncateHead(0); err != nil {
if _, err := f.TruncateHead(0); err != nil {
t.Fatal("truncate failed:", err)
}
_, err := f.ModifyAncients(func(op ethdb.AncientWriteOp) error {
@ -227,7 +227,7 @@ func TestFreezerConcurrentModifyTruncate(t *testing.T) {
wg.Done()
}()
go func() {
truncateErr = f.TruncateHead(10)
_, truncateErr = f.TruncateHead(10)
wg.Done()
}()
go func() {

@ -43,6 +43,9 @@ var (
// headFinalizedBlockKey tracks the latest known finalized block hash.
headFinalizedBlockKey = []byte("LastFinalized")
// persistentStateIDKey tracks the id of latest stored state(for path-based only).
persistentStateIDKey = []byte("LastStateID")
// lastPivotKey tracks the last pivot block used by fast sync (to reenable on sethead).
lastPivotKey = []byte("LastPivot")
@ -70,6 +73,9 @@ var (
// skeletonSyncStatusKey tracks the skeleton sync status across restarts.
skeletonSyncStatusKey = []byte("SkeletonSyncStatus")
// trieJournalKey tracks the in-memory trie node layers across restarts.
trieJournalKey = []byte("TrieJournal")
// txIndexTailKey tracks the oldest block whose transactions have been indexed.
txIndexTailKey = []byte("TransactionIndexTail")
@ -104,6 +110,7 @@ var (
// Path-based storage scheme of merkle patricia trie.
trieNodeAccountPrefix = []byte("A") // trieNodeAccountPrefix + hexPath -> trie node
trieNodeStoragePrefix = []byte("O") // trieNodeStoragePrefix + accountHash + hexPath -> trie node
stateIDPrefix = []byte("L") // stateIDPrefix + state root -> state id
PreimagePrefix = []byte("secure-key-") // PreimagePrefix + hash -> preimage
configPrefix = []byte("ethereum-config-") // config prefix for the db
@ -240,6 +247,11 @@ func genesisStateSpecKey(hash common.Hash) []byte {
return append(genesisPrefix, hash.Bytes()...)
}
// stateIDKey = stateIDPrefix + root (32 bytes)
func stateIDKey(root common.Hash) []byte {
return append(stateIDPrefix, root.Bytes()...)
}
// accountTrieNodeKey = trieNodeAccountPrefix + nodePath.
func accountTrieNodeKey(path []byte) []byte {
return append(trieNodeAccountPrefix, path...)

@ -97,13 +97,13 @@ func (t *table) ReadAncients(fn func(reader ethdb.AncientReaderOp) error) (err e
// TruncateHead is a noop passthrough that just forwards the request to the underlying
// database.
func (t *table) TruncateHead(items uint64) error {
func (t *table) TruncateHead(items uint64) (uint64, error) {
return t.db.TruncateHead(items)
}
// TruncateTail is a noop passthrough that just forwards the request to the underlying
// database.
func (t *table) TruncateTail(items uint64) error {
func (t *table) TruncateTail(items uint64) (uint64, error) {
return t.db.TruncateTail(items)
}

@ -1054,8 +1054,8 @@ func (s *StateDB) deleteStorage(addr common.Address, addrHash common.Hash, root
if it.Hash() == (common.Hash{}) {
continue
}
nodeSize += common.StorageSize(len(it.Path()) + len(it.NodeBlob()))
set.AddNode(it.Path(), trienode.NewWithPrev(common.Hash{}, nil, it.NodeBlob()))
nodeSize += common.StorageSize(len(it.Path()))
set.AddNode(it.Path(), trienode.NewDeleted())
}
if err := it.Error(); err != nil {
return false, nil, nil, err
@ -1274,12 +1274,7 @@ func (s *StateDB) Commit(block uint64, deleteEmptyObjects bool) (common.Hash, er
}
if root != origin {
start := time.Now()
set := &triestate.Set{
Accounts: s.accountsOrigin,
Storages: s.storagesOrigin,
Incomplete: incomplete,
}
if err := s.db.TrieDB().Update(root, origin, block, nodes, set); err != nil {
if err := s.db.TrieDB().Update(root, origin, block, nodes, triestate.New(s.accountsOrigin, s.storagesOrigin, incomplete)); err != nil {
return common.Hash{}, err
}
s.originalRoot = root

@ -19,6 +19,7 @@ package types
import (
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
)
var (
@ -40,3 +41,13 @@ var (
// EmptyWithdrawalsHash is the known hash of the empty withdrawal set.
EmptyWithdrawalsHash = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
)
// TrieRootHash returns the hash itself if it's non-empty or the predefined
// emptyHash one instead.
func TrieRootHash(hash common.Hash) common.Hash {
if hash == (common.Hash{}) {
log.Error("Zero trie root hash!")
return EmptyRootHash
}
return hash
}

@ -114,14 +114,14 @@ type AncientWriter interface {
// TruncateHead discards all but the first n ancient data from the ancient store.
// After the truncation, the latest item can be accessed it item_n-1(start from 0).
TruncateHead(n uint64) error
TruncateHead(n uint64) (uint64, error)
// TruncateTail discards the first n ancient data from the ancient store. The already
// deleted items are ignored. After the truncation, the earliest item can be accessed
// is item_n(start from 0). The deleted items may not be removed from the ancient store
// immediately, but only when the accumulated deleted data reach the threshold then
// will be removed all together.
TruncateTail(n uint64) error
TruncateTail(n uint64) (uint64, error)
// Sync flushes all in-memory ancient store data to disk.
Sync() error

@ -98,11 +98,11 @@ func (db *Database) ModifyAncients(f func(ethdb.AncientWriteOp) error) (int64, e
panic("not supported")
}
func (db *Database) TruncateHead(n uint64) error {
func (db *Database) TruncateHead(n uint64) (uint64, error) {
panic("not supported")
}
func (db *Database) TruncateTail(n uint64) error {
func (db *Database) TruncateTail(n uint64) (uint64, error) {
panic("not supported")
}

@ -131,22 +131,15 @@ func (c *committer) store(path []byte, n node) node {
// The node is embedded in its parent, in other words, this node
// will not be stored in the database independently, mark it as
// deleted only if the node was existent in database before.
prev, ok := c.tracer.accessList[string(path)]
_, ok := c.tracer.accessList[string(path)]
if ok {
c.nodes.AddNode(path, trienode.NewWithPrev(common.Hash{}, nil, prev))
c.nodes.AddNode(path, trienode.NewDeleted())
}
return n
}
// Collect the dirty node to nodeset for return.
var (
nhash = common.BytesToHash(hash)
node = trienode.NewWithPrev(
nhash,
nodeToBytes(n),
c.tracer.accessList[string(path)],
)
)
c.nodes.AddNode(path, node)
nhash := common.BytesToHash(hash)
c.nodes.AddNode(path, trienode.New(nhash, nodeToBytes(n)))
// Collect the corresponding leaf node if it's required. We don't check
// full node since it's impossible to store value in fullNode. The key

@ -19,10 +19,10 @@ package trie
import (
"errors"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/trie/triedb/hashdb"
"github.com/ethereum/go-ethereum/trie/triedb/pathdb"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/triestate"
)
@ -31,6 +31,7 @@ import (
type Config struct {
Cache int // Memory allowance (MB) to use for caching trie nodes in memory
Preimages bool // Flag whether the preimage of trie key is recorded
PathDB *pathdb.Config // Configs for experimental path-based scheme, not used yet.
// Testing hooks
OnCommit func(states *triestate.Set) // Hook invoked when commit is performed
@ -53,7 +54,10 @@ type backend interface {
// Update performs a state transition by committing dirty nodes contained
// in the given set in order to update state from the specified parent to
// the specified root.
Update(root common.Hash, parent common.Hash, nodes *trienode.MergedNodeSet) error
//
// The passed in maps(nodes, states) will be retained to avoid copying
// everything. Therefore, these maps must not be changed afterwards.
Update(root common.Hash, parent common.Hash, block uint64, nodes *trienode.MergedNodeSet, states *triestate.Set) error
// Commit writes all relevant trie nodes belonging to the specified state
// to disk. Report specifies whether logs will be displayed in info level.
@ -69,7 +73,6 @@ type backend interface {
type Database struct {
config *Config // Configuration for trie database
diskdb ethdb.Database // Persistent database to store the snapshot
cleans *fastcache.Cache // Megabytes permitted using for read caches
preimages *preimageStore // The store for caching preimages
backend backend // The backend for managing trie nodes
}
@ -77,10 +80,6 @@ type Database struct {
// prepare initializes the database with provided configs, but the
// database backend is still left as nil.
func prepare(diskdb ethdb.Database, config *Config) *Database {
var cleans *fastcache.Cache
if config != nil && config.Cache > 0 {
cleans = fastcache.New(config.Cache * 1024 * 1024)
}
var preimages *preimageStore
if config != nil && config.Preimages {
preimages = newPreimageStore(diskdb)
@ -88,7 +87,6 @@ func prepare(diskdb ethdb.Database, config *Config) *Database {
return &Database{
config: config,
diskdb: diskdb,
cleans: cleans,
preimages: preimages,
}
}
@ -103,21 +101,34 @@ func NewDatabase(diskdb ethdb.Database) *Database {
// The path-based scheme is not activated yet, always initialized with legacy
// hash-based scheme by default.
func NewDatabaseWithConfig(diskdb ethdb.Database, config *Config) *Database {
var cleans int
if config != nil && config.Cache != 0 {
cleans = config.Cache * 1024 * 1024
}
db := prepare(diskdb, config)
db.backend = hashdb.New(diskdb, db.cleans, mptResolver{})
db.backend = hashdb.New(diskdb, cleans, mptResolver{})
return db
}
// Reader returns a reader for accessing all trie nodes with provided state root.
// An error will be returned if the requested state is not available.
func (db *Database) Reader(blockRoot common.Hash) (Reader, error) {
return db.backend.(*hashdb.Database).Reader(blockRoot)
switch b := db.backend.(type) {
case *hashdb.Database:
return b.Reader(blockRoot)
case *pathdb.Database:
return b.Reader(blockRoot)
}
return nil, errors.New("unknown backend")
}
// Update performs a state transition by committing dirty nodes contained in the
// given set in order to update state from the specified parent to the specified
// root. The held pre-images accumulated up to this point will be flushed in case
// the size exceeds the threshold.
//
// The passed in maps(nodes, states) will be retained to avoid copying everything.
// Therefore, these maps must not be changed afterwards.
func (db *Database) Update(root common.Hash, parent common.Hash, block uint64, nodes *trienode.MergedNodeSet, states *triestate.Set) error {
if db.config != nil && db.config.OnCommit != nil {
db.config.OnCommit(states)
@ -125,7 +136,7 @@ func (db *Database) Update(root common.Hash, parent common.Hash, block uint64, n
if db.preimages != nil {
db.preimages.commit(false)
}
return db.backend.Update(root, parent, nodes)
return db.backend.Update(root, parent, block, nodes, states)
}
// Commit iterates over all the children of a particular node, writes them out

@ -20,16 +20,16 @@ import (
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/trie/triedb/hashdb"
"github.com/ethereum/go-ethereum/trie/triedb/pathdb"
)
// newTestDatabase initializes the trie database with specified scheme.
func newTestDatabase(diskdb ethdb.Database, scheme string) *Database {
db := prepare(diskdb, nil)
if scheme == rawdb.HashScheme {
db.backend = hashdb.New(diskdb, db.cleans, mptResolver{})
db.backend = hashdb.New(diskdb, 0, mptResolver{})
} else {
db.backend = pathdb.New(diskdb, &pathdb.Config{}) // disable clean/dirty cache
}
//} else {
// db.backend = snap.New(diskdb, db.cleans, nil)
//}
return db
}

@ -130,7 +130,7 @@ type iterationElement struct {
// Tests that the node iterator indeed walks over the entire database contents.
func TestNodeIteratorCoverage(t *testing.T) {
testNodeIteratorCoverage(t, rawdb.HashScheme)
//testNodeIteratorCoverage(t, rawdb.PathScheme)
testNodeIteratorCoverage(t, rawdb.PathScheme)
}
func testNodeIteratorCoverage(t *testing.T, scheme string) {
@ -355,8 +355,8 @@ func TestIteratorNoDups(t *testing.T) {
func TestIteratorContinueAfterError(t *testing.T) {
testIteratorContinueAfterError(t, false, rawdb.HashScheme)
testIteratorContinueAfterError(t, true, rawdb.HashScheme)
// testIteratorContinueAfterError(t, false, rawdb.PathScheme)
// testIteratorContinueAfterError(t, true, rawdb.PathScheme)
testIteratorContinueAfterError(t, false, rawdb.PathScheme)
testIteratorContinueAfterError(t, true, rawdb.PathScheme)
}
func testIteratorContinueAfterError(t *testing.T, memonly bool, scheme string) {
@ -461,8 +461,8 @@ func testIteratorContinueAfterError(t *testing.T, memonly bool, scheme string) {
func TestIteratorContinueAfterSeekError(t *testing.T) {
testIteratorContinueAfterSeekError(t, false, rawdb.HashScheme)
testIteratorContinueAfterSeekError(t, true, rawdb.HashScheme)
// testIteratorContinueAfterSeekError(t, false, rawdb.PathScheme)
// testIteratorContinueAfterSeekError(t, true, rawdb.PathScheme)
testIteratorContinueAfterSeekError(t, false, rawdb.PathScheme)
testIteratorContinueAfterSeekError(t, true, rawdb.PathScheme)
}
func testIteratorContinueAfterSeekError(t *testing.T, memonly bool, scheme string) {
@ -534,7 +534,7 @@ func checkIteratorNoDups(t *testing.T, it NodeIterator, seen map[string]bool) in
func TestIteratorNodeBlob(t *testing.T) {
testIteratorNodeBlob(t, rawdb.HashScheme)
//testIteratorNodeBlob(t, rawdb.PathScheme)
testIteratorNodeBlob(t, rawdb.PathScheme)
}
type loggingDb struct {

@ -111,16 +111,16 @@ type trieElement struct {
func TestEmptySync(t *testing.T) {
dbA := NewDatabase(rawdb.NewMemoryDatabase())
dbB := NewDatabase(rawdb.NewMemoryDatabase())
//dbC := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme)
//dbD := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme)
dbC := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme)
dbD := newTestDatabase(rawdb.NewMemoryDatabase(), rawdb.PathScheme)
emptyA := NewEmpty(dbA)
emptyB, _ := New(TrieID(types.EmptyRootHash), dbB)
//emptyC := NewEmpty(dbC)
//emptyD, _ := New(TrieID(types.EmptyRootHash), dbD)
emptyC := NewEmpty(dbC)
emptyD, _ := New(TrieID(types.EmptyRootHash), dbD)
for i, trie := range []*Trie{emptyA, emptyB /*emptyC, emptyD*/} {
sync := NewSync(trie.Hash(), memorydb.New(), nil, []*Database{dbA, dbB /*dbC, dbD*/}[i].Scheme())
for i, trie := range []*Trie{emptyA, emptyB, emptyC, emptyD} {
sync := NewSync(trie.Hash(), memorydb.New(), nil, []*Database{dbA, dbB, dbC, dbD}[i].Scheme())
if paths, nodes, codes := sync.Missing(1); len(paths) != 0 || len(nodes) != 0 || len(codes) != 0 {
t.Errorf("test %d: content requested for empty trie: %v, %v, %v", i, paths, nodes, codes)
}
@ -134,10 +134,10 @@ func TestIterativeSync(t *testing.T) {
testIterativeSync(t, 100, false, rawdb.HashScheme)
testIterativeSync(t, 1, true, rawdb.HashScheme)
testIterativeSync(t, 100, true, rawdb.HashScheme)
// testIterativeSync(t, 1, false, rawdb.PathScheme)
// testIterativeSync(t, 100, false, rawdb.PathScheme)
// testIterativeSync(t, 1, true, rawdb.PathScheme)
// testIterativeSync(t, 100, true, rawdb.PathScheme)
testIterativeSync(t, 1, false, rawdb.PathScheme)
testIterativeSync(t, 100, false, rawdb.PathScheme)
testIterativeSync(t, 1, true, rawdb.PathScheme)
testIterativeSync(t, 100, true, rawdb.PathScheme)
}
func testIterativeSync(t *testing.T, count int, bypath bool, scheme string) {
@ -212,7 +212,7 @@ func testIterativeSync(t *testing.T, count int, bypath bool, scheme string) {
// partial results are returned, and the others sent only later.
func TestIterativeDelayedSync(t *testing.T) {
testIterativeDelayedSync(t, rawdb.HashScheme)
//testIterativeDelayedSync(t, rawdb.PathScheme)
testIterativeDelayedSync(t, rawdb.PathScheme)
}
func testIterativeDelayedSync(t *testing.T, scheme string) {
@ -280,8 +280,8 @@ func testIterativeDelayedSync(t *testing.T, scheme string) {
func TestIterativeRandomSyncIndividual(t *testing.T) {
testIterativeRandomSync(t, 1, rawdb.HashScheme)
testIterativeRandomSync(t, 100, rawdb.HashScheme)
// testIterativeRandomSync(t, 1, rawdb.PathScheme)
// testIterativeRandomSync(t, 100, rawdb.PathScheme)
testIterativeRandomSync(t, 1, rawdb.PathScheme)
testIterativeRandomSync(t, 100, rawdb.PathScheme)
}
func testIterativeRandomSync(t *testing.T, count int, scheme string) {
@ -348,7 +348,7 @@ func testIterativeRandomSync(t *testing.T, count int, scheme string) {
// partial results are returned (Even those randomly), others sent only later.
func TestIterativeRandomDelayedSync(t *testing.T) {
testIterativeRandomDelayedSync(t, rawdb.HashScheme)
// testIterativeRandomDelayedSync(t, rawdb.PathScheme)
testIterativeRandomDelayedSync(t, rawdb.PathScheme)
}
func testIterativeRandomDelayedSync(t *testing.T, scheme string) {
@ -420,7 +420,7 @@ func testIterativeRandomDelayedSync(t *testing.T, scheme string) {
// have such references.
func TestDuplicateAvoidanceSync(t *testing.T) {
testDuplicateAvoidanceSync(t, rawdb.HashScheme)
// testDuplicateAvoidanceSync(t, rawdb.PathScheme)
testDuplicateAvoidanceSync(t, rawdb.PathScheme)
}
func testDuplicateAvoidanceSync(t *testing.T, scheme string) {
@ -491,12 +491,10 @@ func testDuplicateAvoidanceSync(t *testing.T, scheme string) {
// the database.
func TestIncompleteSyncHash(t *testing.T) {
testIncompleteSync(t, rawdb.HashScheme)
// testIncompleteSync(t, rawdb.PathScheme)
testIncompleteSync(t, rawdb.PathScheme)
}
func testIncompleteSync(t *testing.T, scheme string) {
t.Parallel()
// Create a random trie to copy
_, srcDb, srcTrie, _ := makeTestTrie(scheme)
@ -582,7 +580,7 @@ func testIncompleteSync(t *testing.T, scheme string) {
// depth.
func TestSyncOrdering(t *testing.T) {
testSyncOrdering(t, rawdb.HashScheme)
// testSyncOrdering(t, rawdb.PathScheme)
testSyncOrdering(t, rawdb.PathScheme)
}
func testSyncOrdering(t *testing.T, scheme string) {
@ -716,7 +714,7 @@ func syncWith(t *testing.T, root common.Hash, db ethdb.Database, srcDb *Database
// states synced in the last cycle.
func TestSyncMovingTarget(t *testing.T) {
testSyncMovingTarget(t, rawdb.HashScheme)
// testSyncMovingTarget(t, rawdb.PathScheme)
testSyncMovingTarget(t, rawdb.PathScheme)
}
func testSyncMovingTarget(t *testing.T, scheme string) {

61
trie/testutil/utils.go Normal file

@ -0,0 +1,61 @@
// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package testutil
import (
crand "crypto/rand"
"encoding/binary"
mrand "math/rand"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/trie/trienode"
)
// Prng is a pseudo random number generator seeded by strong randomness.
// The randomness is printed on startup in order to make failures reproducible.
var prng = initRand()
func initRand() *mrand.Rand {
var seed [8]byte
crand.Read(seed[:])
rnd := mrand.New(mrand.NewSource(int64(binary.LittleEndian.Uint64(seed[:]))))
return rnd
}
// RandBytes generates a random byte slice with specified length.
func RandBytes(n int) []byte {
r := make([]byte, n)
prng.Read(r)
return r
}
// RandomHash generates a random blob of data and returns it as a hash.
func RandomHash() common.Hash {
return common.BytesToHash(RandBytes(common.HashLength))
}
// RandomAddress generates a random blob of data and returns it as an address.
func RandomAddress() common.Address {
return common.BytesToAddress(RandBytes(common.AddressLength))
}
// RandomNode generates a random node.
func RandomNode() *trienode.Node {
val := RandBytes(100)
return trienode.New(crypto.Keccak256Hash(val), val)
}

@ -18,7 +18,6 @@ package trie
import (
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/trie/trienode"
)
// tracer tracks the changes of trie nodes. During the trie operations,
@ -114,16 +113,18 @@ func (t *tracer) copy() *tracer {
}
}
// markDeletions puts all tracked deletions into the provided nodeset.
func (t *tracer) markDeletions(set *trienode.NodeSet) {
// deletedNodes returns a list of node paths which are deleted from the trie.
func (t *tracer) deletedNodes() []string {
var paths []string
for path := range t.deletes {
// It's possible a few deleted nodes were embedded
// in their parent before, the deletions can be no
// effect by deleting nothing, filter them out.
prev, ok := t.accessList[path]
_, ok := t.accessList[path]
if !ok {
continue
}
set.AddNode([]byte(path), trienode.NewWithPrev(common.Hash{}, nil, prev))
paths = append(paths, path)
}
return paths
}

@ -612,14 +612,20 @@ func (t *Trie) Commit(collectLeaf bool) (common.Hash, *trienode.NodeSet, error)
defer func() {
t.committed = true
}()
nodes := trienode.NewNodeSet(t.owner)
t.tracer.markDeletions(nodes)
// Trie is empty and can be classified into two types of situations:
// - The trie was empty and no update happens
// - The trie was non-empty and all nodes are dropped
// (a) The trie was empty and no update happens => return nil
// (b) The trie was non-empty and all nodes are dropped => return
// the node set includes all deleted nodes
if t.root == nil {
return types.EmptyRootHash, nodes, nil
paths := t.tracer.deletedNodes()
if len(paths) == 0 {
return types.EmptyRootHash, nil, nil // case (a)
}
nodes := trienode.NewNodeSet(t.owner)
for _, path := range paths {
nodes.AddNode([]byte(path), trienode.NewDeleted())
}
return types.EmptyRootHash, nodes, nil // case (b)
}
// Derive the hash for all dirty nodes first. We hold the assumption
// in the following procedure that all nodes are hashed.
@ -633,6 +639,10 @@ func (t *Trie) Commit(collectLeaf bool) (common.Hash, *trienode.NodeSet, error)
t.root = hashedNode
return rootHash, nil, nil
}
nodes := trienode.NewNodeSet(t.owner)
for _, path := range t.tracer.deletedNodes() {
nodes.AddNode([]byte(path), trienode.NewDeleted())
}
t.root = newCommitter(nodes, t.tracer, collectLeaf).Commit(t.root)
return rootHash, nodes, nil
}

@ -24,9 +24,14 @@ import (
// Reader wraps the Node method of a backing trie store.
type Reader interface {
// Node retrieves the RLP-encoded trie node blob with the provided trie
// identifier, node path and the corresponding node hash. No error will
// be returned if the node is not found.
// Node retrieves the trie node blob with the provided trie identifier, node path and
// the corresponding node hash. No error will be returned if the node is not found.
//
// When looking up nodes in the account trie, 'owner' is the zero hash. For contract
// storage trie nodes, 'owner' is the hash of the account address that containing the
// storage.
//
// TODO(rjl493456442): remove the 'hash' parameter, it's redundant in PBSS.
Node(owner common.Hash, path []byte, hash common.Hash) ([]byte, error)
}

@ -76,9 +76,9 @@ func TestMissingRoot(t *testing.T) {
func TestMissingNode(t *testing.T) {
testMissingNode(t, false, rawdb.HashScheme)
//testMissingNode(t, false, rawdb.PathScheme)
testMissingNode(t, false, rawdb.PathScheme)
testMissingNode(t, true, rawdb.HashScheme)
//testMissingNode(t, true, rawdb.PathScheme)
testMissingNode(t, true, rawdb.PathScheme)
}
func testMissingNode(t *testing.T, memonly bool, scheme string) {
@ -422,44 +422,44 @@ func verifyAccessList(old *Trie, new *Trie, set *trienode.NodeSet) error {
if !ok || n.IsDeleted() {
return errors.New("expect new node")
}
if len(n.Prev) > 0 {
return errors.New("unexpected origin value")
}
//if len(n.Prev) > 0 {
// return errors.New("unexpected origin value")
//}
}
// Check deletion set
for path, blob := range deletes {
for path := range deletes {
n, ok := set.Nodes[path]
if !ok || !n.IsDeleted() {
return errors.New("expect deleted node")
}
if len(n.Prev) == 0 {
return errors.New("expect origin value")
}
if !bytes.Equal(n.Prev, blob) {
return errors.New("invalid origin value")
}
//if len(n.Prev) == 0 {
// return errors.New("expect origin value")
//}
//if !bytes.Equal(n.Prev, blob) {
// return errors.New("invalid origin value")
//}
}
// Check update set
for path, blob := range updates {
for path := range updates {
n, ok := set.Nodes[path]
if !ok || n.IsDeleted() {
return errors.New("expect updated node")
}
if len(n.Prev) == 0 {
return errors.New("expect origin value")
}
if !bytes.Equal(n.Prev, blob) {
return errors.New("invalid origin value")
}
//if len(n.Prev) == 0 {
// return errors.New("expect origin value")
//}
//if !bytes.Equal(n.Prev, blob) {
// return errors.New("invalid origin value")
//}
}
return nil
}
func runRandTest(rt randTest) bool {
var scheme = rawdb.HashScheme
//if rand.Intn(2) == 0 {
// scheme = rawdb.PathScheme
//}
if rand.Intn(2) == 0 {
scheme = rawdb.PathScheme
}
var (
origin = types.EmptyRootHash
triedb = newTestDatabase(rawdb.NewMemoryDatabase(), scheme)

@ -32,30 +32,31 @@ import (
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/triestate"
)
var (
memcacheCleanHitMeter = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil)
memcacheCleanMissMeter = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil)
memcacheCleanReadMeter = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil)
memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil)
memcacheCleanHitMeter = metrics.NewRegisteredMeter("hashdb/memcache/clean/hit", nil)
memcacheCleanMissMeter = metrics.NewRegisteredMeter("hashdb/memcache/clean/miss", nil)
memcacheCleanReadMeter = metrics.NewRegisteredMeter("hashdb/memcache/clean/read", nil)
memcacheCleanWriteMeter = metrics.NewRegisteredMeter("hashdb/memcache/clean/write", nil)
memcacheDirtyHitMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/hit", nil)
memcacheDirtyMissMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/miss", nil)
memcacheDirtyReadMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/read", nil)
memcacheDirtyWriteMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/write", nil)
memcacheDirtyHitMeter = metrics.NewRegisteredMeter("hashdb/memcache/dirty/hit", nil)
memcacheDirtyMissMeter = metrics.NewRegisteredMeter("hashdb/memcache/dirty/miss", nil)
memcacheDirtyReadMeter = metrics.NewRegisteredMeter("hashdb/memcache/dirty/read", nil)
memcacheDirtyWriteMeter = metrics.NewRegisteredMeter("hashdb/memcache/dirty/write", nil)
memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil)
memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil)
memcacheFlushSizeMeter = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil)
memcacheFlushTimeTimer = metrics.NewRegisteredResettingTimer("hashdb/memcache/flush/time", nil)
memcacheFlushNodesMeter = metrics.NewRegisteredMeter("hashdb/memcache/flush/nodes", nil)
memcacheFlushBytesMeter = metrics.NewRegisteredMeter("hashdb/memcache/flush/bytes", nil)
memcacheGCTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil)
memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil)
memcacheGCSizeMeter = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil)
memcacheGCTimeTimer = metrics.NewRegisteredResettingTimer("hashdb/memcache/gc/time", nil)
memcacheGCNodesMeter = metrics.NewRegisteredMeter("hashdb/memcache/gc/nodes", nil)
memcacheGCBytesMeter = metrics.NewRegisteredMeter("hashdb/memcache/gc/bytes", nil)
memcacheCommitTimeTimer = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil)
memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil)
memcacheCommitSizeMeter = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil)
memcacheCommitTimeTimer = metrics.NewRegisteredResettingTimer("hashdb/memcache/commit/time", nil)
memcacheCommitNodesMeter = metrics.NewRegisteredMeter("hashdb/memcache/commit/nodes", nil)
memcacheCommitBytesMeter = metrics.NewRegisteredMeter("hashdb/memcache/commit/bytes", nil)
)
// ChildResolver defines the required method to decode the provided
@ -121,7 +122,13 @@ func (n *cachedNode) forChildren(resolver ChildResolver, onChild func(hash commo
}
// New initializes the hash-based node database.
func New(diskdb ethdb.Database, cleans *fastcache.Cache, resolver ChildResolver) *Database {
func New(diskdb ethdb.Database, size int, resolver ChildResolver) *Database {
// Initialize the clean cache if the specified cache allowance
// is non-zero. Note, the size is in bytes.
var cleans *fastcache.Cache
if size > 0 {
cleans = fastcache.New(size)
}
return &Database{
diskdb: diskdb,
resolver: resolver,
@ -269,7 +276,7 @@ func (db *Database) Dereference(root common.Hash) {
db.gctime += time.Since(start)
memcacheGCTimeTimer.Update(time.Since(start))
memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize))
memcacheGCBytesMeter.Mark(int64(storage - db.dirtiesSize))
memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties)))
log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
@ -390,7 +397,7 @@ func (db *Database) Cap(limit common.StorageSize) error {
db.flushtime += time.Since(start)
memcacheFlushTimeTimer.Update(time.Since(start))
memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize))
memcacheFlushBytesMeter.Mark(int64(storage - db.dirtiesSize))
memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties)))
log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
@ -436,7 +443,7 @@ func (db *Database) Commit(node common.Hash, report bool) error {
// Reset the storage counters and bumped metrics
memcacheCommitTimeTimer.Update(time.Since(start))
memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize))
memcacheCommitBytesMeter.Mark(int64(storage - db.dirtiesSize))
memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties)))
logger := log.Info
@ -549,7 +556,7 @@ func (db *Database) Initialized(genesisRoot common.Hash) bool {
// Update inserts the dirty nodes in provided nodeset into database and link the
// account trie with multiple storage tries if necessary.
func (db *Database) Update(root common.Hash, parent common.Hash, nodes *trienode.MergedNodeSet) error {
func (db *Database) Update(root common.Hash, parent common.Hash, block uint64, nodes *trienode.MergedNodeSet, states *triestate.Set) error {
// Ensure the parent state is present and signal a warning if not.
if parent != types.EmptyRootHash {
if blob, _ := db.Node(parent); len(blob) == 0 {

@ -0,0 +1,392 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pathdb
import (
"errors"
"fmt"
"io"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/triestate"
)
// maxDiffLayers is the maximum diff layers allowed in the layer tree.
const maxDiffLayers = 128
// layer is the interface implemented by all state layers which includes some
// public methods and some additional methods for internal usage.
type layer interface {
// Node retrieves the trie node with the node info. An error will be returned
// if the read operation exits abnormally. For example, if the layer is already
// stale, or the associated state is regarded as corrupted. Notably, no error
// will be returned if the requested node is not found in database.
Node(owner common.Hash, path []byte, hash common.Hash) ([]byte, error)
// rootHash returns the root hash for which this layer was made.
rootHash() common.Hash
// stateID returns the associated state id of layer.
stateID() uint64
// parentLayer returns the subsequent layer of it, or nil if the disk was reached.
parentLayer() layer
// update creates a new layer on top of the existing layer diff tree with
// the provided dirty trie nodes along with the state change set.
//
// Note, the maps are retained by the method to avoid copying everything.
update(root common.Hash, id uint64, block uint64, nodes map[common.Hash]map[string]*trienode.Node, states *triestate.Set) *diffLayer
// journal commits an entire diff hierarchy to disk into a single journal entry.
// This is meant to be used during shutdown to persist the layer without
// flattening everything down (bad for reorgs).
journal(w io.Writer) error
}
// Config contains the settings for database.
type Config struct {
StateLimit uint64 // Number of recent blocks to maintain state history for
CleanSize int // Maximum memory allowance (in bytes) for caching clean nodes
DirtySize int // Maximum memory allowance (in bytes) for caching dirty nodes
ReadOnly bool // Flag whether the database is opened in read only mode.
}
var (
// defaultCleanSize is the default memory allowance of clean cache.
defaultCleanSize = 16 * 1024 * 1024
// defaultBufferSize is the default memory allowance of node buffer
// that aggregates the writes from above until it's flushed into the
// disk. Do not increase the buffer size arbitrarily, otherwise the
// system pause time will increase when the database writes happen.
defaultBufferSize = 128 * 1024 * 1024
)
// Defaults contains default settings for Ethereum mainnet.
var Defaults = &Config{
StateLimit: params.FullImmutabilityThreshold,
CleanSize: defaultCleanSize,
DirtySize: defaultBufferSize,
}
// Database is a multiple-layered structure for maintaining in-memory trie nodes.
// It consists of one persistent base layer backed by a key-value store, on top
// of which arbitrarily many in-memory diff layers are stacked. The memory diffs
// can form a tree with branching, but the disk layer is singleton and common to
// all. If a reorg goes deeper than the disk layer, a batch of reverse diffs can
// be applied to rollback. The deepest reorg that can be handled depends on the
// amount of state histories tracked in the disk.
//
// At most one readable and writable database can be opened at the same time in
// the whole system which ensures that only one database writer can operate disk
// state. Unexpected open operations can cause the system to panic.
type Database struct {
// readOnly is the flag whether the mutation is allowed to be applied.
// It will be set automatically when the database is journaled during
// the shutdown to reject all following unexpected mutations.
readOnly bool // Indicator if database is opened in read only mode
bufferSize int // Memory allowance (in bytes) for caching dirty nodes
config *Config // Configuration for database
diskdb ethdb.Database // Persistent storage for matured trie nodes
tree *layerTree // The group for all known layers
freezer *rawdb.ResettableFreezer // Freezer for storing trie histories, nil possible in tests
lock sync.RWMutex // Lock to prevent mutations from happening at the same time
}
// New attempts to load an already existing layer from a persistent key-value
// store (with a number of memory layers from a journal). If the journal is not
// matched with the base persistent layer, all the recorded diff layers are discarded.
func New(diskdb ethdb.Database, config *Config) *Database {
if config == nil {
config = Defaults
}
db := &Database{
readOnly: config.ReadOnly,
bufferSize: config.DirtySize,
config: config,
diskdb: diskdb,
}
// Construct the layer tree by resolving the in-disk singleton state
// and in-memory layer journal.
db.tree = newLayerTree(db.loadLayers())
// Open the freezer for state history if the passed database contains an
// ancient store. Otherwise, all the relevant functionalities are disabled.
//
// Because the freezer can only be opened once at the same time, this
// mechanism also ensures that at most one **non-readOnly** database
// is opened at the same time to prevent accidental mutation.
if ancient, err := diskdb.AncientDatadir(); err == nil && ancient != "" && !db.readOnly {
freezer, err := rawdb.NewStateHistoryFreezer(ancient, false)
if err != nil {
log.Crit("Failed to open state history freezer", "err", err)
}
db.freezer = freezer
// Truncate the extra state histories above in freezer in case
// it's not aligned with the disk layer.
pruned, err := truncateFromHead(db.diskdb, freezer, db.tree.bottom().stateID())
if err != nil {
log.Crit("Failed to truncate extra state histories", "err", err)
}
if pruned != 0 {
log.Warn("Truncated extra state histories", "number", pruned)
}
}
log.Warn("Path-based state scheme is an experimental feature")
return db
}
// Reader retrieves a layer belonging to the given state root.
func (db *Database) Reader(root common.Hash) (layer, error) {
l := db.tree.get(root)
if l == nil {
return nil, fmt.Errorf("state %#x is not available", root)
}
return l, nil
}
// Update adds a new layer into the tree, if that can be linked to an existing
// old parent. It is disallowed to insert a disk layer (the origin of all). Apart
// from that this function will flatten the extra diff layers at bottom into disk
// to only keep 128 diff layers in memory by default.
//
// The passed in maps(nodes, states) will be retained to avoid copying everything.
// Therefore, these maps must not be changed afterwards.
func (db *Database) Update(root common.Hash, parentRoot common.Hash, block uint64, nodes *trienode.MergedNodeSet, states *triestate.Set) error {
// Hold the lock to prevent concurrent mutations.
db.lock.Lock()
defer db.lock.Unlock()
// Short circuit if the database is in read only mode.
if db.readOnly {
return errSnapshotReadOnly
}
if err := db.tree.add(root, parentRoot, block, nodes, states); err != nil {
return err
}
// Keep 128 diff layers in the memory, persistent layer is 129th.
// - head layer is paired with HEAD state
// - head-1 layer is paired with HEAD-1 state
// - head-127 layer(bottom-most diff layer) is paired with HEAD-127 state
// - head-128 layer(disk layer) is paired with HEAD-128 state
return db.tree.cap(root, maxDiffLayers)
}
// Commit traverses downwards the layer tree from a specified layer with the
// provided state root and all the layers below are flattened downwards. It
// can be used alone and mostly for test purposes.
func (db *Database) Commit(root common.Hash, report bool) error {
// Hold the lock to prevent concurrent mutations.
db.lock.Lock()
defer db.lock.Unlock()
// Short circuit if the database is in read only mode.
if db.readOnly {
return errSnapshotReadOnly
}
return db.tree.cap(root, 0)
}
// Reset rebuilds the database with the specified state as the base.
//
// - if target state is empty, clear the stored state and all layers on top
// - if target state is non-empty, ensure the stored state matches with it
// and clear all other layers on top.
func (db *Database) Reset(root common.Hash) error {
db.lock.Lock()
defer db.lock.Unlock()
// Short circuit if the database is in read only mode.
if db.readOnly {
return errSnapshotReadOnly
}
batch := db.diskdb.NewBatch()
root = types.TrieRootHash(root)
if root == types.EmptyRootHash {
// Empty state is requested as the target, nuke out
// the root node and leave all others as dangling.
rawdb.DeleteAccountTrieNode(batch, nil)
} else {
// Ensure the requested state is existent before any
// action is applied.
_, hash := rawdb.ReadAccountTrieNode(db.diskdb, nil)
if hash != root {
return fmt.Errorf("state is mismatched, local: %x, target: %x", hash, root)
}
}
// Mark the disk layer as stale before applying any mutation.
db.tree.bottom().markStale()
// Drop the stale state journal in persistent database and
// reset the persistent state id back to zero.
rawdb.DeleteTrieJournal(batch)
rawdb.WritePersistentStateID(batch, 0)
if err := batch.Write(); err != nil {
return err
}
// Clean up all state histories in freezer. Theoretically
// all root->id mappings should be removed as well. Since
// mappings can be huge and might take a while to clear
// them, just leave them in disk and wait for overwriting.
if db.freezer != nil {
if err := db.freezer.Reset(); err != nil {
return err
}
}
// Re-construct a new disk layer backed by persistent state
// with **empty clean cache and node buffer**.
dl := newDiskLayer(root, 0, db, nil, newNodeBuffer(db.bufferSize, nil, 0))
db.tree.reset(dl)
log.Info("Rebuilt trie database", "root", root)
return nil
}
// Recover rollbacks the database to a specified historical point.
// The state is supported as the rollback destination only if it's
// canonical state and the corresponding trie histories are existent.
func (db *Database) Recover(root common.Hash, loader triestate.TrieLoader) error {
db.lock.Lock()
defer db.lock.Unlock()
// Short circuit if rollback operation is not supported.
if db.readOnly || db.freezer == nil {
return errors.New("state rollback is non-supported")
}
// Short circuit if the target state is not recoverable.
root = types.TrieRootHash(root)
if !db.Recoverable(root) {
return errStateUnrecoverable
}
// Apply the state histories upon the disk layer in order.
var (
start = time.Now()
dl = db.tree.bottom()
)
for dl.rootHash() != root {
h, err := readHistory(db.freezer, dl.stateID())
if err != nil {
return err
}
dl, err = dl.revert(h, loader)
if err != nil {
return err
}
// reset layer with newly created disk layer. It must be
// done after each revert operation, otherwise the new
// disk layer won't be accessible from outside.
db.tree.reset(dl)
}
rawdb.DeleteTrieJournal(db.diskdb)
_, err := truncateFromHead(db.diskdb, db.freezer, dl.stateID())
if err != nil {
return err
}
log.Debug("Recovered state", "root", root, "elapsed", common.PrettyDuration(time.Since(start)))
return nil
}
// Recoverable returns the indicator if the specified state is recoverable.
func (db *Database) Recoverable(root common.Hash) bool {
// Ensure the requested state is a known state.
root = types.TrieRootHash(root)
id := rawdb.ReadStateID(db.diskdb, root)
if id == nil {
return false
}
// Recoverable state must below the disk layer. The recoverable
// state only refers the state that is currently not available,
// but can be restored by applying state history.
dl := db.tree.bottom()
if *id >= dl.stateID() {
return false
}
// Ensure the requested state is a canonical state and all state
// histories in range [id+1, disklayer.ID] are present and complete.
parent := root
return checkHistories(db.freezer, *id+1, dl.stateID()-*id, func(m *meta) error {
if m.parent != parent {
return errors.New("unexpected state history")
}
if len(m.incomplete) > 0 {
return errors.New("incomplete state history")
}
parent = m.root
return nil
}) == nil
}
// Close closes the trie database and the held freezer.
func (db *Database) Close() error {
db.lock.Lock()
defer db.lock.Unlock()
db.readOnly = true
if db.freezer == nil {
return nil
}
return db.freezer.Close()
}
// Size returns the current storage size of the memory cache in front of the
// persistent database layer.
func (db *Database) Size() (size common.StorageSize) {
db.tree.forEach(func(layer layer) {
if diff, ok := layer.(*diffLayer); ok {
size += common.StorageSize(diff.memory)
}
if disk, ok := layer.(*diskLayer); ok {
size += disk.size()
}
})
return size
}
// Initialized returns an indicator if the state data is already
// initialized in path-based scheme.
func (db *Database) Initialized(genesisRoot common.Hash) bool {
var inited bool
db.tree.forEach(func(layer layer) {
if layer.rootHash() != types.EmptyRootHash {
inited = true
}
})
return inited
}
// SetBufferSize sets the node buffer size to the provided value(in bytes).
func (db *Database) SetBufferSize(size int) error {
db.lock.Lock()
defer db.lock.Unlock()
db.bufferSize = size
return db.tree.bottom().setBufferSize(db.bufferSize)
}
// Scheme returns the node scheme used in the database.
func (db *Database) Scheme() string {
return rawdb.PathScheme
}

@ -0,0 +1,573 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pathdb
import (
"bytes"
"errors"
"fmt"
"math/big"
"math/rand"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie/testutil"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/triestate"
)
func updateTrie(addrHash common.Hash, root common.Hash, dirties, cleans map[common.Hash][]byte) (common.Hash, *trienode.NodeSet) {
h, err := newTestHasher(addrHash, root, cleans)
if err != nil {
panic(fmt.Errorf("failed to create hasher, err: %w", err))
}
for key, val := range dirties {
if len(val) == 0 {
h.Delete(key.Bytes())
} else {
h.Update(key.Bytes(), val)
}
}
return h.Commit(false)
}
func generateAccount(storageRoot common.Hash) types.StateAccount {
return types.StateAccount{
Nonce: uint64(rand.Intn(100)),
Balance: big.NewInt(rand.Int63()),
CodeHash: testutil.RandBytes(32),
Root: storageRoot,
}
}
const (
createAccountOp int = iota
modifyAccountOp
deleteAccountOp
opLen
)
type genctx struct {
accounts map[common.Hash][]byte
storages map[common.Hash]map[common.Hash][]byte
accountOrigin map[common.Address][]byte
storageOrigin map[common.Address]map[common.Hash][]byte
nodes *trienode.MergedNodeSet
}
func newCtx() *genctx {
return &genctx{
accounts: make(map[common.Hash][]byte),
storages: make(map[common.Hash]map[common.Hash][]byte),
accountOrigin: make(map[common.Address][]byte),
storageOrigin: make(map[common.Address]map[common.Hash][]byte),
nodes: trienode.NewMergedNodeSet(),
}
}
type tester struct {
db *Database
roots []common.Hash
preimages map[common.Hash]common.Address
accounts map[common.Hash][]byte
storages map[common.Hash]map[common.Hash][]byte
// state snapshots
snapAccounts map[common.Hash]map[common.Hash][]byte
snapStorages map[common.Hash]map[common.Hash]map[common.Hash][]byte
}
func newTester(t *testing.T) *tester {
var (
disk, _ = rawdb.NewDatabaseWithFreezer(rawdb.NewMemoryDatabase(), t.TempDir(), "", false)
db = New(disk, &Config{CleanSize: 256 * 1024, DirtySize: 256 * 1024})
obj = &tester{
db: db,
preimages: make(map[common.Hash]common.Address),
accounts: make(map[common.Hash][]byte),
storages: make(map[common.Hash]map[common.Hash][]byte),
snapAccounts: make(map[common.Hash]map[common.Hash][]byte),
snapStorages: make(map[common.Hash]map[common.Hash]map[common.Hash][]byte),
}
)
for i := 0; i < 2*128; i++ {
var parent = types.EmptyRootHash
if len(obj.roots) != 0 {
parent = obj.roots[len(obj.roots)-1]
}
root, nodes, states := obj.generate(parent)
if err := db.Update(root, parent, uint64(i), nodes, states); err != nil {
panic(fmt.Errorf("failed to update state changes, err: %w", err))
}
obj.roots = append(obj.roots, root)
}
return obj
}
func (t *tester) release() {
t.db.Close()
t.db.diskdb.Close()
}
func (t *tester) randAccount() (common.Address, []byte) {
for addrHash, account := range t.accounts {
return t.preimages[addrHash], account
}
return common.Address{}, nil
}
func (t *tester) generateStorage(ctx *genctx, addr common.Address) common.Hash {
var (
addrHash = crypto.Keccak256Hash(addr.Bytes())
storage = make(map[common.Hash][]byte)
origin = make(map[common.Hash][]byte)
)
for i := 0; i < 10; i++ {
v, _ := rlp.EncodeToBytes(common.TrimLeftZeroes(testutil.RandBytes(32)))
hash := testutil.RandomHash()
storage[hash] = v
origin[hash] = nil
}
root, set := updateTrie(addrHash, types.EmptyRootHash, storage, nil)
ctx.storages[addrHash] = storage
ctx.storageOrigin[addr] = origin
ctx.nodes.Merge(set)
return root
}
func (t *tester) mutateStorage(ctx *genctx, addr common.Address, root common.Hash) common.Hash {
var (
addrHash = crypto.Keccak256Hash(addr.Bytes())
storage = make(map[common.Hash][]byte)
origin = make(map[common.Hash][]byte)
)
for hash, val := range t.storages[addrHash] {
origin[hash] = val
storage[hash] = nil
if len(origin) == 3 {
break
}
}
for i := 0; i < 3; i++ {
v, _ := rlp.EncodeToBytes(common.TrimLeftZeroes(testutil.RandBytes(32)))
hash := testutil.RandomHash()
storage[hash] = v
origin[hash] = nil
}
root, set := updateTrie(crypto.Keccak256Hash(addr.Bytes()), root, storage, t.storages[addrHash])
ctx.storages[addrHash] = storage
ctx.storageOrigin[addr] = origin
ctx.nodes.Merge(set)
return root
}
func (t *tester) clearStorage(ctx *genctx, addr common.Address, root common.Hash) common.Hash {
var (
addrHash = crypto.Keccak256Hash(addr.Bytes())
storage = make(map[common.Hash][]byte)
origin = make(map[common.Hash][]byte)
)
for hash, val := range t.storages[addrHash] {
origin[hash] = val
storage[hash] = nil
}
root, set := updateTrie(addrHash, root, storage, t.storages[addrHash])
if root != types.EmptyRootHash {
panic("failed to clear storage trie")
}
ctx.storages[addrHash] = storage
ctx.storageOrigin[addr] = origin
ctx.nodes.Merge(set)
return root
}
func (t *tester) generate(parent common.Hash) (common.Hash, *trienode.MergedNodeSet, *triestate.Set) {
var (
ctx = newCtx()
dirties = make(map[common.Hash]struct{})
)
for i := 0; i < 20; i++ {
switch rand.Intn(opLen) {
case createAccountOp:
// account creation
addr := testutil.RandomAddress()
addrHash := crypto.Keccak256Hash(addr.Bytes())
if _, ok := t.accounts[addrHash]; ok {
continue
}
if _, ok := dirties[addrHash]; ok {
continue
}
dirties[addrHash] = struct{}{}
root := t.generateStorage(ctx, addr)
ctx.accounts[addrHash] = types.SlimAccountRLP(generateAccount(root))
ctx.accountOrigin[addr] = nil
t.preimages[addrHash] = addr
case modifyAccountOp:
// account mutation
addr, account := t.randAccount()
if addr == (common.Address{}) {
continue
}
addrHash := crypto.Keccak256Hash(addr.Bytes())
if _, ok := dirties[addrHash]; ok {
continue
}
dirties[addrHash] = struct{}{}
acct, _ := types.FullAccount(account)
stRoot := t.mutateStorage(ctx, addr, acct.Root)
newAccount := types.SlimAccountRLP(generateAccount(stRoot))
ctx.accounts[addrHash] = newAccount
ctx.accountOrigin[addr] = account
case deleteAccountOp:
// account deletion
addr, account := t.randAccount()
if addr == (common.Address{}) {
continue
}
addrHash := crypto.Keccak256Hash(addr.Bytes())
if _, ok := dirties[addrHash]; ok {
continue
}
dirties[addrHash] = struct{}{}
acct, _ := types.FullAccount(account)
if acct.Root != types.EmptyRootHash {
t.clearStorage(ctx, addr, acct.Root)
}
ctx.accounts[addrHash] = nil
ctx.accountOrigin[addr] = account
}
}
root, set := updateTrie(common.Hash{}, parent, ctx.accounts, t.accounts)
ctx.nodes.Merge(set)
// Save state snapshot before commit
t.snapAccounts[parent] = copyAccounts(t.accounts)
t.snapStorages[parent] = copyStorages(t.storages)
// Commit all changes to live state set
for addrHash, account := range ctx.accounts {
if len(account) == 0 {
delete(t.accounts, addrHash)
} else {
t.accounts[addrHash] = account
}
}
for addrHash, slots := range ctx.storages {
if _, ok := t.storages[addrHash]; !ok {
t.storages[addrHash] = make(map[common.Hash][]byte)
}
for sHash, slot := range slots {
if len(slot) == 0 {
delete(t.storages[addrHash], sHash)
} else {
t.storages[addrHash][sHash] = slot
}
}
}
return root, ctx.nodes, triestate.New(ctx.accountOrigin, ctx.storageOrigin, nil)
}
// lastRoot returns the latest root hash, or empty if nothing is cached.
func (t *tester) lastHash() common.Hash {
if len(t.roots) == 0 {
return common.Hash{}
}
return t.roots[len(t.roots)-1]
}
func (t *tester) verifyState(root common.Hash) error {
reader, err := t.db.Reader(root)
if err != nil {
return err
}
_, err = reader.Node(common.Hash{}, nil, root)
if err != nil {
return errors.New("root node is not available")
}
for addrHash, account := range t.snapAccounts[root] {
blob, err := reader.Node(common.Hash{}, addrHash.Bytes(), crypto.Keccak256Hash(account))
if err != nil || !bytes.Equal(blob, account) {
return fmt.Errorf("account is mismatched: %w", err)
}
}
for addrHash, slots := range t.snapStorages[root] {
for hash, slot := range slots {
blob, err := reader.Node(addrHash, hash.Bytes(), crypto.Keccak256Hash(slot))
if err != nil || !bytes.Equal(blob, slot) {
return fmt.Errorf("slot is mismatched: %w", err)
}
}
}
return nil
}
func (t *tester) verifyHistory() error {
bottom := t.bottomIndex()
for i, root := range t.roots {
// The state history related to the state above disk layer should not exist.
if i > bottom {
_, err := readHistory(t.db.freezer, uint64(i+1))
if err == nil {
return errors.New("unexpected state history")
}
continue
}
// The state history related to the state below or equal to the disk layer
// should exist.
obj, err := readHistory(t.db.freezer, uint64(i+1))
if err != nil {
return err
}
parent := types.EmptyRootHash
if i != 0 {
parent = t.roots[i-1]
}
if obj.meta.parent != parent {
return fmt.Errorf("unexpected parent, want: %x, got: %x", parent, obj.meta.parent)
}
if obj.meta.root != root {
return fmt.Errorf("unexpected root, want: %x, got: %x", root, obj.meta.root)
}
}
return nil
}
// bottomIndex returns the index of current disk layer.
func (t *tester) bottomIndex() int {
bottom := t.db.tree.bottom()
for i := 0; i < len(t.roots); i++ {
if t.roots[i] == bottom.rootHash() {
return i
}
}
return -1
}
func TestDatabaseRollback(t *testing.T) {
// Verify state histories
tester := newTester(t)
defer tester.release()
if err := tester.verifyHistory(); err != nil {
t.Fatalf("Invalid state history, err: %v", err)
}
// Revert database from top to bottom
for i := tester.bottomIndex(); i >= 0; i-- {
root := tester.roots[i]
parent := types.EmptyRootHash
if i > 0 {
parent = tester.roots[i-1]
}
loader := newHashLoader(tester.snapAccounts[root], tester.snapStorages[root])
if err := tester.db.Recover(parent, loader); err != nil {
t.Fatalf("Failed to revert db, err: %v", err)
}
tester.verifyState(parent)
}
if tester.db.tree.len() != 1 {
t.Fatal("Only disk layer is expected")
}
}
func TestDatabaseRecoverable(t *testing.T) {
var (
tester = newTester(t)
index = tester.bottomIndex()
)
defer tester.release()
var cases = []struct {
root common.Hash
expect bool
}{
// Unknown state should be unrecoverable
{common.Hash{0x1}, false},
// Initial state should be recoverable
{types.EmptyRootHash, true},
// Initial state should be recoverable
{common.Hash{}, true},
// Layers below current disk layer are recoverable
{tester.roots[index-1], true},
// Disklayer itself is not recoverable, since it's
// available for accessing.
{tester.roots[index], false},
// Layers above current disk layer are not recoverable
// since they are available for accessing.
{tester.roots[index+1], false},
}
for i, c := range cases {
result := tester.db.Recoverable(c.root)
if result != c.expect {
t.Fatalf("case: %d, unexpected result, want %t, got %t", i, c.expect, result)
}
}
}
func TestReset(t *testing.T) {
var (
tester = newTester(t)
index = tester.bottomIndex()
)
defer tester.release()
// Reset database to unknown target, should reject it
if err := tester.db.Reset(testutil.RandomHash()); err == nil {
t.Fatal("Failed to reject invalid reset")
}
// Reset database to state persisted in the disk
if err := tester.db.Reset(types.EmptyRootHash); err != nil {
t.Fatalf("Failed to reset database %v", err)
}
// Ensure journal is deleted from disk
if blob := rawdb.ReadTrieJournal(tester.db.diskdb); len(blob) != 0 {
t.Fatal("Failed to clean journal")
}
// Ensure all trie histories are removed
for i := 0; i <= index; i++ {
_, err := readHistory(tester.db.freezer, uint64(i+1))
if err == nil {
t.Fatalf("Failed to clean state history, index %d", i+1)
}
}
// Verify layer tree structure, single disk layer is expected
if tester.db.tree.len() != 1 {
t.Fatalf("Extra layer kept %d", tester.db.tree.len())
}
if tester.db.tree.bottom().rootHash() != types.EmptyRootHash {
t.Fatalf("Root hash is not matched exp %x got %x", types.EmptyRootHash, tester.db.tree.bottom().rootHash())
}
}
func TestCommit(t *testing.T) {
tester := newTester(t)
defer tester.release()
if err := tester.db.Commit(tester.lastHash(), false); err != nil {
t.Fatalf("Failed to cap database, err: %v", err)
}
// Verify layer tree structure, single disk layer is expected
if tester.db.tree.len() != 1 {
t.Fatal("Layer tree structure is invalid")
}
if tester.db.tree.bottom().rootHash() != tester.lastHash() {
t.Fatal("Layer tree structure is invalid")
}
// Verify states
if err := tester.verifyState(tester.lastHash()); err != nil {
t.Fatalf("State is invalid, err: %v", err)
}
// Verify state histories
if err := tester.verifyHistory(); err != nil {
t.Fatalf("State history is invalid, err: %v", err)
}
}
func TestJournal(t *testing.T) {
tester := newTester(t)
defer tester.release()
if err := tester.db.Journal(tester.lastHash()); err != nil {
t.Errorf("Failed to journal, err: %v", err)
}
tester.db.Close()
tester.db = New(tester.db.diskdb, nil)
// Verify states including disk layer and all diff on top.
for i := 0; i < len(tester.roots); i++ {
if i >= tester.bottomIndex() {
if err := tester.verifyState(tester.roots[i]); err != nil {
t.Fatalf("Invalid state, err: %v", err)
}
continue
}
if err := tester.verifyState(tester.roots[i]); err == nil {
t.Fatal("Unexpected state")
}
}
}
func TestCorruptedJournal(t *testing.T) {
tester := newTester(t)
defer tester.release()
if err := tester.db.Journal(tester.lastHash()); err != nil {
t.Errorf("Failed to journal, err: %v", err)
}
tester.db.Close()
_, root := rawdb.ReadAccountTrieNode(tester.db.diskdb, nil)
// Mutate the journal in disk, it should be regarded as invalid
blob := rawdb.ReadTrieJournal(tester.db.diskdb)
blob[0] = 1
rawdb.WriteTrieJournal(tester.db.diskdb, blob)
// Verify states, all not-yet-written states should be discarded
tester.db = New(tester.db.diskdb, nil)
for i := 0; i < len(tester.roots); i++ {
if tester.roots[i] == root {
if err := tester.verifyState(root); err != nil {
t.Fatalf("Disk state is corrupted, err: %v", err)
}
continue
}
if err := tester.verifyState(tester.roots[i]); err == nil {
t.Fatal("Unexpected state")
}
}
}
// copyAccounts returns a deep-copied account set of the provided one.
func copyAccounts(set map[common.Hash][]byte) map[common.Hash][]byte {
copied := make(map[common.Hash][]byte, len(set))
for key, val := range set {
copied[key] = common.CopyBytes(val)
}
return copied
}
// copyStorages returns a deep-copied storage set of the provided one.
func copyStorages(set map[common.Hash]map[common.Hash][]byte) map[common.Hash]map[common.Hash][]byte {
copied := make(map[common.Hash]map[common.Hash][]byte, len(set))
for addrHash, subset := range set {
copied[addrHash] = make(map[common.Hash][]byte, len(subset))
for key, val := range subset {
copied[addrHash][key] = common.CopyBytes(val)
}
}
return copied
}

@ -0,0 +1,174 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pathdb
import (
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/triestate"
)
// diffLayer represents a collection of modifications made to the in-memory tries
// along with associated state changes after running a block on top.
//
// The goal of a diff layer is to act as a journal, tracking recent modifications
// made to the state, that have not yet graduated into a semi-immutable state.
type diffLayer struct {
// Immutables
root common.Hash // Root hash to which this layer diff belongs to
id uint64 // Corresponding state id
block uint64 // Associated block number
nodes map[common.Hash]map[string]*trienode.Node // Cached trie nodes indexed by owner and path
states *triestate.Set // Associated state change set for building history
memory uint64 // Approximate guess as to how much memory we use
parent layer // Parent layer modified by this one, never nil, **can be changed**
lock sync.RWMutex // Lock used to protect parent
}
// newDiffLayer creates a new diff layer on top of an existing layer.
func newDiffLayer(parent layer, root common.Hash, id uint64, block uint64, nodes map[common.Hash]map[string]*trienode.Node, states *triestate.Set) *diffLayer {
var (
size int64
count int
)
dl := &diffLayer{
root: root,
id: id,
block: block,
nodes: nodes,
states: states,
parent: parent,
}
for _, subset := range nodes {
for path, n := range subset {
dl.memory += uint64(n.Size() + len(path))
size += int64(len(n.Blob) + len(path))
}
count += len(subset)
}
if states != nil {
dl.memory += uint64(states.Size())
}
dirtyWriteMeter.Mark(size)
diffLayerNodesMeter.Mark(int64(count))
diffLayerBytesMeter.Mark(int64(dl.memory))
log.Debug("Created new diff layer", "id", id, "block", block, "nodes", count, "size", common.StorageSize(dl.memory))
return dl
}
// rootHash implements the layer interface, returning the root hash of
// corresponding state.
func (dl *diffLayer) rootHash() common.Hash {
return dl.root
}
// stateID implements the layer interface, returning the state id of the layer.
func (dl *diffLayer) stateID() uint64 {
return dl.id
}
// parentLayer implements the layer interface, returning the subsequent
// layer of the diff layer.
func (dl *diffLayer) parentLayer() layer {
dl.lock.RLock()
defer dl.lock.RUnlock()
return dl.parent
}
// node retrieves the node with provided node information. It's the internal
// version of Node function with additional accessed layer tracked. No error
// will be returned if node is not found.
func (dl *diffLayer) node(owner common.Hash, path []byte, hash common.Hash, depth int) ([]byte, error) {
// Hold the lock, ensure the parent won't be changed during the
// state accessing.
dl.lock.RLock()
defer dl.lock.RUnlock()
// If the trie node is known locally, return it
subset, ok := dl.nodes[owner]
if ok {
n, ok := subset[string(path)]
if ok {
// If the trie node is not hash matched, or marked as removed,
// bubble up an error here. It shouldn't happen at all.
if n.Hash != hash {
dirtyFalseMeter.Mark(1)
log.Error("Unexpected trie node in diff layer", "owner", owner, "path", path, "expect", hash, "got", n.Hash)
return nil, newUnexpectedNodeError("diff", hash, n.Hash, owner, path)
}
dirtyHitMeter.Mark(1)
dirtyNodeHitDepthHist.Update(int64(depth))
dirtyReadMeter.Mark(int64(len(n.Blob)))
return n.Blob, nil
}
}
// Trie node unknown to this layer, resolve from parent
if diff, ok := dl.parent.(*diffLayer); ok {
return diff.node(owner, path, hash, depth+1)
}
// Failed to resolve through diff layers, fallback to disk layer
return dl.parent.Node(owner, path, hash)
}
// Node implements the layer interface, retrieving the trie node blob with the
// provided node information. No error will be returned if the node is not found.
func (dl *diffLayer) Node(owner common.Hash, path []byte, hash common.Hash) ([]byte, error) {
return dl.node(owner, path, hash, 0)
}
// update implements the layer interface, creating a new layer on top of the
// existing layer tree with the specified data items.
func (dl *diffLayer) update(root common.Hash, id uint64, block uint64, nodes map[common.Hash]map[string]*trienode.Node, states *triestate.Set) *diffLayer {
return newDiffLayer(dl, root, id, block, nodes, states)
}
// persist flushes the diff layer and all its parent layers to disk layer.
func (dl *diffLayer) persist(force bool) (layer, error) {
if parent, ok := dl.parentLayer().(*diffLayer); ok {
// Hold the lock to prevent any read operation until the new
// parent is linked correctly.
dl.lock.Lock()
// The merging of diff layers starts at the bottom-most layer,
// therefore we recurse down here, flattening on the way up
// (diffToDisk).
result, err := parent.persist(force)
if err != nil {
dl.lock.Unlock()
return nil, err
}
dl.parent = result
dl.lock.Unlock()
}
return diffToDisk(dl, force)
}
// diffToDisk merges a bottom-most diff into the persistent disk layer underneath
// it. The method will panic if called onto a non-bottom-most diff layer.
func diffToDisk(layer *diffLayer, force bool) (layer, error) {
disk, ok := layer.parentLayer().(*diskLayer)
if !ok {
panic(fmt.Sprintf("unknown layer type: %T", layer.parentLayer()))
}
return disk.commit(layer, force)
}

@ -0,0 +1,170 @@
// Copyright 2019 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pathdb
import (
"bytes"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/trie/testutil"
"github.com/ethereum/go-ethereum/trie/trienode"
)
func emptyLayer() *diskLayer {
return &diskLayer{
db: New(rawdb.NewMemoryDatabase(), nil),
buffer: newNodeBuffer(defaultBufferSize, nil, 0),
}
}
// goos: darwin
// goarch: arm64
// pkg: github.com/ethereum/go-ethereum/trie
// BenchmarkSearch128Layers
// BenchmarkSearch128Layers-8 243826 4755 ns/op
func BenchmarkSearch128Layers(b *testing.B) { benchmarkSearch(b, 0, 128) }
// goos: darwin
// goarch: arm64
// pkg: github.com/ethereum/go-ethereum/trie
// BenchmarkSearch512Layers
// BenchmarkSearch512Layers-8 49686 24256 ns/op
func BenchmarkSearch512Layers(b *testing.B) { benchmarkSearch(b, 0, 512) }
// goos: darwin
// goarch: arm64
// pkg: github.com/ethereum/go-ethereum/trie
// BenchmarkSearch1Layer
// BenchmarkSearch1Layer-8 14062725 88.40 ns/op
func BenchmarkSearch1Layer(b *testing.B) { benchmarkSearch(b, 127, 128) }
func benchmarkSearch(b *testing.B, depth int, total int) {
var (
npath []byte
nhash common.Hash
nblob []byte
)
// First, we set up 128 diff layers, with 3K items each
fill := func(parent layer, index int) *diffLayer {
nodes := make(map[common.Hash]map[string]*trienode.Node)
nodes[common.Hash{}] = make(map[string]*trienode.Node)
for i := 0; i < 3000; i++ {
var (
path = testutil.RandBytes(32)
node = testutil.RandomNode()
)
nodes[common.Hash{}][string(path)] = trienode.New(node.Hash, node.Blob)
if npath == nil && depth == index {
npath = common.CopyBytes(path)
nblob = common.CopyBytes(node.Blob)
nhash = node.Hash
}
}
return newDiffLayer(parent, common.Hash{}, 0, 0, nodes, nil)
}
var layer layer
layer = emptyLayer()
for i := 0; i < total; i++ {
layer = fill(layer, i)
}
b.ResetTimer()
var (
have []byte
err error
)
for i := 0; i < b.N; i++ {
have, err = layer.Node(common.Hash{}, npath, nhash)
if err != nil {
b.Fatal(err)
}
}
if !bytes.Equal(have, nblob) {
b.Fatalf("have %x want %x", have, nblob)
}
}
// goos: darwin
// goarch: arm64
// pkg: github.com/ethereum/go-ethereum/trie
// BenchmarkPersist
// BenchmarkPersist-8 10 111252975 ns/op
func BenchmarkPersist(b *testing.B) {
// First, we set up 128 diff layers, with 3K items each
fill := func(parent layer) *diffLayer {
nodes := make(map[common.Hash]map[string]*trienode.Node)
nodes[common.Hash{}] = make(map[string]*trienode.Node)
for i := 0; i < 3000; i++ {
var (
path = testutil.RandBytes(32)
node = testutil.RandomNode()
)
nodes[common.Hash{}][string(path)] = trienode.New(node.Hash, node.Blob)
}
return newDiffLayer(parent, common.Hash{}, 0, 0, nodes, nil)
}
for i := 0; i < b.N; i++ {
b.StopTimer()
var layer layer
layer = emptyLayer()
for i := 1; i < 128; i++ {
layer = fill(layer)
}
b.StartTimer()
dl, ok := layer.(*diffLayer)
if !ok {
break
}
dl.persist(false)
}
}
// BenchmarkJournal benchmarks the performance for journaling the layers.
//
// BenchmarkJournal
// BenchmarkJournal-8 10 110969279 ns/op
func BenchmarkJournal(b *testing.B) {
b.SkipNow()
// First, we set up 128 diff layers, with 3K items each
fill := func(parent layer) *diffLayer {
nodes := make(map[common.Hash]map[string]*trienode.Node)
nodes[common.Hash{}] = make(map[string]*trienode.Node)
for i := 0; i < 3000; i++ {
var (
path = testutil.RandBytes(32)
node = testutil.RandomNode()
)
nodes[common.Hash{}][string(path)] = trienode.New(node.Hash, node.Blob)
}
// TODO(rjl493456442) a non-nil state set is expected.
return newDiffLayer(parent, common.Hash{}, 0, 0, nodes, nil)
}
var layer layer
layer = emptyLayer()
for i := 0; i < 128; i++ {
layer = fill(layer)
}
b.ResetTimer()
for i := 0; i < b.N; i++ {
layer.journal(new(bytes.Buffer))
}
}

@ -0,0 +1,296 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pathdb
import (
"errors"
"fmt"
"sync"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/triestate"
"golang.org/x/crypto/sha3"
)
// diskLayer is a low level persistent layer built on top of a key-value store.
type diskLayer struct {
root common.Hash // Immutable, root hash to which this layer was made for
id uint64 // Immutable, corresponding state id
db *Database // Path-based trie database
cleans *fastcache.Cache // GC friendly memory cache of clean node RLPs
buffer *nodebuffer // Node buffer to aggregate writes
stale bool // Signals that the layer became stale (state progressed)
lock sync.RWMutex // Lock used to protect stale flag
}
// newDiskLayer creates a new disk layer based on the passing arguments.
func newDiskLayer(root common.Hash, id uint64, db *Database, cleans *fastcache.Cache, buffer *nodebuffer) *diskLayer {
// Initialize a clean cache if the memory allowance is not zero
// or reuse the provided cache if it is not nil (inherited from
// the original disk layer).
if cleans == nil && db.config.CleanSize != 0 {
cleans = fastcache.New(db.config.CleanSize)
}
return &diskLayer{
root: root,
id: id,
db: db,
cleans: cleans,
buffer: buffer,
}
}
// root implements the layer interface, returning root hash of corresponding state.
func (dl *diskLayer) rootHash() common.Hash {
return dl.root
}
// stateID implements the layer interface, returning the state id of disk layer.
func (dl *diskLayer) stateID() uint64 {
return dl.id
}
// parent implements the layer interface, returning nil as there's no layer
// below the disk.
func (dl *diskLayer) parentLayer() layer {
return nil
}
// isStale return whether this layer has become stale (was flattened across) or if
// it's still live.
func (dl *diskLayer) isStale() bool {
dl.lock.RLock()
defer dl.lock.RUnlock()
return dl.stale
}
// markStale sets the stale flag as true.
func (dl *diskLayer) markStale() {
dl.lock.Lock()
defer dl.lock.Unlock()
if dl.stale {
panic("triedb disk layer is stale") // we've committed into the same base from two children, boom
}
dl.stale = true
}
// Node implements the layer interface, retrieving the trie node with the
// provided node info. No error will be returned if the node is not found.
func (dl *diskLayer) Node(owner common.Hash, path []byte, hash common.Hash) ([]byte, error) {
dl.lock.RLock()
defer dl.lock.RUnlock()
if dl.stale {
return nil, errSnapshotStale
}
// Try to retrieve the trie node from the not-yet-written
// node buffer first. Note the buffer is lock free since
// it's impossible to mutate the buffer before tagging the
// layer as stale.
n, err := dl.buffer.node(owner, path, hash)
if err != nil {
return nil, err
}
if n != nil {
dirtyHitMeter.Mark(1)
dirtyReadMeter.Mark(int64(len(n.Blob)))
return n.Blob, nil
}
dirtyMissMeter.Mark(1)
// Try to retrieve the trie node from the clean memory cache
key := cacheKey(owner, path)
if dl.cleans != nil {
if blob := dl.cleans.Get(nil, key); len(blob) > 0 {
h := newHasher()
defer h.release()
got := h.hash(blob)
if got == hash {
cleanHitMeter.Mark(1)
cleanReadMeter.Mark(int64(len(blob)))
return blob, nil
}
cleanFalseMeter.Mark(1)
log.Error("Unexpected trie node in clean cache", "owner", owner, "path", path, "expect", hash, "got", got)
}
cleanMissMeter.Mark(1)
}
// Try to retrieve the trie node from the disk.
var (
nBlob []byte
nHash common.Hash
)
if owner == (common.Hash{}) {
nBlob, nHash = rawdb.ReadAccountTrieNode(dl.db.diskdb, path)
} else {
nBlob, nHash = rawdb.ReadStorageTrieNode(dl.db.diskdb, owner, path)
}
if nHash != hash {
diskFalseMeter.Mark(1)
log.Error("Unexpected trie node in disk", "owner", owner, "path", path, "expect", hash, "got", nHash)
return nil, newUnexpectedNodeError("disk", hash, nHash, owner, path)
}
if dl.cleans != nil && len(nBlob) > 0 {
dl.cleans.Set(key, nBlob)
cleanWriteMeter.Mark(int64(len(nBlob)))
}
return nBlob, nil
}
// update implements the layer interface, returning a new diff layer on top
// with the given state set.
func (dl *diskLayer) update(root common.Hash, id uint64, block uint64, nodes map[common.Hash]map[string]*trienode.Node, states *triestate.Set) *diffLayer {
return newDiffLayer(dl, root, id, block, nodes, states)
}
// commit merges the given bottom-most diff layer into the node buffer
// and returns a newly constructed disk layer. Note the current disk
// layer must be tagged as stale first to prevent re-access.
func (dl *diskLayer) commit(bottom *diffLayer, force bool) (*diskLayer, error) {
dl.lock.Lock()
defer dl.lock.Unlock()
// Construct and store the state history first. If crash happens
// after storing the state history but without flushing the
// corresponding states(journal), the stored state history will
// be truncated in the next restart.
if dl.db.freezer != nil {
err := writeHistory(dl.db.diskdb, dl.db.freezer, bottom, dl.db.config.StateLimit)
if err != nil {
return nil, err
}
}
// Mark the diskLayer as stale before applying any mutations on top.
dl.stale = true
// Store the root->id lookup afterwards. All stored lookups are
// identified by the **unique** state root. It's impossible that
// in the same chain blocks are not adjacent but have the same
// root.
if dl.id == 0 {
rawdb.WriteStateID(dl.db.diskdb, dl.root, 0)
}
rawdb.WriteStateID(dl.db.diskdb, bottom.rootHash(), bottom.stateID())
// Construct a new disk layer by merging the nodes from the provided
// diff layer, and flush the content in disk layer if there are too
// many nodes cached. The clean cache is inherited from the original
// disk layer for reusing.
ndl := newDiskLayer(bottom.root, bottom.stateID(), dl.db, dl.cleans, dl.buffer.commit(bottom.nodes))
err := ndl.buffer.flush(ndl.db.diskdb, ndl.cleans, ndl.id, force)
if err != nil {
return nil, err
}
return ndl, nil
}
// revert applies the given state history and return a reverted disk layer.
func (dl *diskLayer) revert(h *history, loader triestate.TrieLoader) (*diskLayer, error) {
if h.meta.root != dl.rootHash() {
return nil, errUnexpectedHistory
}
// Reject if the provided state history is incomplete. It's due to
// a large construct SELF-DESTRUCT which can't be handled because
// of memory limitation.
if len(h.meta.incomplete) > 0 {
return nil, errors.New("incomplete state history")
}
if dl.id == 0 {
return nil, fmt.Errorf("%w: zero state id", errStateUnrecoverable)
}
// Apply the reverse state changes upon the current state. This must
// be done before holding the lock in order to access state in "this"
// layer.
nodes, err := triestate.Apply(h.meta.parent, h.meta.root, h.accounts, h.storages, loader)
if err != nil {
return nil, err
}
// Mark the diskLayer as stale before applying any mutations on top.
dl.lock.Lock()
defer dl.lock.Unlock()
dl.stale = true
// State change may be applied to node buffer, or the persistent
// state, depends on if node buffer is empty or not. If the node
// buffer is not empty, it means that the state transition that
// needs to be reverted is not yet flushed and cached in node
// buffer, otherwise, manipulate persistent state directly.
if !dl.buffer.empty() {
err := dl.buffer.revert(dl.db.diskdb, nodes)
if err != nil {
return nil, err
}
} else {
batch := dl.db.diskdb.NewBatch()
writeNodes(batch, nodes, dl.cleans)
rawdb.WritePersistentStateID(batch, dl.id-1)
if err := batch.Write(); err != nil {
log.Crit("Failed to write states", "err", err)
}
}
return newDiskLayer(h.meta.parent, dl.id-1, dl.db, dl.cleans, dl.buffer), nil
}
// setBufferSize sets the node buffer size to the provided value.
func (dl *diskLayer) setBufferSize(size int) error {
dl.lock.RLock()
defer dl.lock.RUnlock()
if dl.stale {
return errSnapshotStale
}
return dl.buffer.setSize(size, dl.db.diskdb, dl.cleans, dl.id)
}
// size returns the approximate size of cached nodes in the disk layer.
func (dl *diskLayer) size() common.StorageSize {
dl.lock.RLock()
defer dl.lock.RUnlock()
if dl.stale {
return 0
}
return common.StorageSize(dl.buffer.size)
}
// hasher is used to compute the sha256 hash of the provided data.
type hasher struct{ sha crypto.KeccakState }
var hasherPool = sync.Pool{
New: func() interface{} { return &hasher{sha: sha3.NewLegacyKeccak256().(crypto.KeccakState)} },
}
func newHasher() *hasher {
return hasherPool.Get().(*hasher)
}
func (h *hasher) hash(data []byte) common.Hash {
return crypto.HashData(h.sha, data)
}
func (h *hasher) release() {
hasherPool.Put(h)
}

@ -0,0 +1,51 @@
// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>
package pathdb
import (
"errors"
"fmt"
"github.com/ethereum/go-ethereum/common"
)
var (
// errSnapshotReadOnly is returned if the database is opened in read only mode
// and mutation is requested.
errSnapshotReadOnly = errors.New("read only")
// errSnapshotStale is returned from data accessors if the underlying layer
// layer had been invalidated due to the chain progressing forward far enough
// to not maintain the layer's original state.
errSnapshotStale = errors.New("layer stale")
// errUnexpectedHistory is returned if an unmatched state history is applied
// to the database for state rollback.
errUnexpectedHistory = errors.New("unexpected state history")
// errStateUnrecoverable is returned if state is required to be reverted to
// a destination without associated state history available.
errStateUnrecoverable = errors.New("state is unrecoverable")
// errUnexpectedNode is returned if the requested node with specified path is
// not hash matched with expectation.
errUnexpectedNode = errors.New("unexpected node")
)
func newUnexpectedNodeError(loc string, expHash common.Hash, gotHash common.Hash, owner common.Hash, path []byte) error {
return fmt.Errorf("%w, loc: %s, node: (%x %v), %x!=%x", errUnexpectedNode, loc, owner, path, expHash, gotHash)
}

@ -0,0 +1,641 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>
package pathdb
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/trie/triestate"
"golang.org/x/exp/slices"
)
// State history records the state changes involved in executing a block. The
// state can be reverted to the previous version by applying the associated
// history object (state reverse diff). State history objects are kept to
// guarantee that the system can perform state rollbacks in case of deep reorg.
//
// Each state transition will generate a state history object. Note that not
// every block has a corresponding state history object. If a block performs
// no state changes whatsoever, no state is created for it. Each state history
// will have a sequentially increasing number acting as its unique identifier.
//
// The state history is written to disk (ancient store) when the corresponding
// diff layer is merged into the disk layer. At the same time, system can prune
// the oldest histories according to config.
//
// Disk State
// ^
// |
// +------------+ +---------+ +---------+ +---------+
// | Init State |---->| State 1 |---->| ... |---->| State n |
// +------------+ +---------+ +---------+ +---------+
//
// +-----------+ +------+ +-----------+
// | History 1 |----> | ... |---->| History n |
// +-----------+ +------+ +-----------+
//
// # Rollback
//
// If the system wants to roll back to a previous state n, it needs to ensure
// all history objects from n+1 up to the current disk layer are existent. The
// history objects are applied to the state in reverse order, starting from the
// current disk layer.
const (
accountIndexSize = common.AddressLength + 13 // The length of encoded account index
slotIndexSize = common.HashLength + 5 // The length of encoded slot index
historyMetaSize = 9 + 2*common.HashLength // The length of fixed size part of meta object
stateHistoryVersion = uint8(0) // initial version of state history structure.
)
// Each state history entry is consisted of five elements:
//
// # metadata
// This object contains a few meta fields, such as the associated state root,
// block number, version tag and so on. This object may contain an extra
// accountHash list which means the storage changes belong to these accounts
// are not complete due to large contract destruction. The incomplete history
// can not be used for rollback and serving archive state request.
//
// # account index
// This object contains some index information of account. For example, offset
// and length indicate the location of the data belonging to the account. Besides,
// storageOffset and storageSlots indicate the storage modification location
// belonging to the account.
//
// The size of each account index is *fixed*, and all indexes are sorted
// lexicographically. Thus binary search can be performed to quickly locate a
// specific account.
//
// # account data
// Account data is a concatenated byte stream composed of all account data.
// The account data can be solved by the offset and length info indicated
// by corresponding account index.
//
// fixed size
// ^ ^
// / \
// +-----------------+-----------------+----------------+-----------------+
// | Account index 1 | Account index 2 | ... | Account index N |
// +-----------------+-----------------+----------------+-----------------+
// |
// | length
// offset |----------------+
// v v
// +----------------+----------------+----------------+----------------+
// | Account data 1 | Account data 2 | ... | Account data N |
// +----------------+----------------+----------------+----------------+
//
// # storage index
// This object is similar with account index. It's also fixed size and contains
// the location info of storage slot data.
//
// # storage data
// Storage data is a concatenated byte stream composed of all storage slot data.
// The storage slot data can be solved by the location info indicated by
// corresponding account index and storage slot index.
//
// fixed size
// ^ ^
// / \
// +-----------------+-----------------+----------------+-----------------+
// | Account index 1 | Account index 2 | ... | Account index N |
// +-----------------+-----------------+----------------+-----------------+
// |
// | storage slots
// storage offset |-----------------------------------------------------+
// v v
// +-----------------+-----------------+-----------------+
// | storage index 1 | storage index 2 | storage index 3 |
// +-----------------+-----------------+-----------------+
// | length
// offset |-------------+
// v v
// +-------------+
// | slot data 1 |
// +-------------+
// accountIndex describes the metadata belonging to an account.
type accountIndex struct {
address common.Address // The address of account
length uint8 // The length of account data, size limited by 255
offset uint32 // The offset of item in account data table
storageOffset uint32 // The offset of storage index in storage index table
storageSlots uint32 // The number of mutated storage slots belonging to the account
}
// encode packs account index into byte stream.
func (i *accountIndex) encode() []byte {
var buf [accountIndexSize]byte
copy(buf[:], i.address.Bytes())
buf[common.AddressLength] = i.length
binary.BigEndian.PutUint32(buf[common.AddressLength+1:], i.offset)
binary.BigEndian.PutUint32(buf[common.AddressLength+5:], i.storageOffset)
binary.BigEndian.PutUint32(buf[common.AddressLength+9:], i.storageSlots)
return buf[:]
}
// decode unpacks account index from byte stream.
func (i *accountIndex) decode(blob []byte) {
i.address = common.BytesToAddress(blob[:common.AddressLength])
i.length = blob[common.AddressLength]
i.offset = binary.BigEndian.Uint32(blob[common.AddressLength+1:])
i.storageOffset = binary.BigEndian.Uint32(blob[common.AddressLength+5:])
i.storageSlots = binary.BigEndian.Uint32(blob[common.AddressLength+9:])
}
// slotIndex describes the metadata belonging to a storage slot.
type slotIndex struct {
hash common.Hash // The hash of slot key
length uint8 // The length of storage slot, up to 32 bytes defined in protocol
offset uint32 // The offset of item in storage slot data table
}
// encode packs slot index into byte stream.
func (i *slotIndex) encode() []byte {
var buf [slotIndexSize]byte
copy(buf[:common.HashLength], i.hash.Bytes())
buf[common.HashLength] = i.length
binary.BigEndian.PutUint32(buf[common.HashLength+1:], i.offset)
return buf[:]
}
// decode unpack slot index from the byte stream.
func (i *slotIndex) decode(blob []byte) {
i.hash = common.BytesToHash(blob[:common.HashLength])
i.length = blob[common.HashLength]
i.offset = binary.BigEndian.Uint32(blob[common.HashLength+1:])
}
// meta describes the meta data of state history object.
type meta struct {
version uint8 // version tag of history object
parent common.Hash // prev-state root before the state transition
root common.Hash // post-state root after the state transition
block uint64 // associated block number
incomplete []common.Address // list of address whose storage set is incomplete
}
// encode packs the meta object into byte stream.
func (m *meta) encode() []byte {
buf := make([]byte, historyMetaSize+len(m.incomplete)*common.AddressLength)
buf[0] = m.version
copy(buf[1:1+common.HashLength], m.parent.Bytes())
copy(buf[1+common.HashLength:1+2*common.HashLength], m.root.Bytes())
binary.BigEndian.PutUint64(buf[1+2*common.HashLength:historyMetaSize], m.block)
for i, h := range m.incomplete {
copy(buf[i*common.AddressLength+historyMetaSize:], h.Bytes())
}
return buf[:]
}
// decode unpacks the meta object from byte stream.
func (m *meta) decode(blob []byte) error {
if len(blob) < 1 {
return fmt.Errorf("no version tag")
}
switch blob[0] {
case stateHistoryVersion:
if len(blob) < historyMetaSize {
return fmt.Errorf("invalid state history meta, len: %d", len(blob))
}
if (len(blob)-historyMetaSize)%common.AddressLength != 0 {
return fmt.Errorf("corrupted state history meta, len: %d", len(blob))
}
m.version = blob[0]
m.parent = common.BytesToHash(blob[1 : 1+common.HashLength])
m.root = common.BytesToHash(blob[1+common.HashLength : 1+2*common.HashLength])
m.block = binary.BigEndian.Uint64(blob[1+2*common.HashLength : historyMetaSize])
for pos := historyMetaSize; pos < len(blob); {
m.incomplete = append(m.incomplete, common.BytesToAddress(blob[pos:pos+common.AddressLength]))
pos += common.AddressLength
}
return nil
default:
return fmt.Errorf("unknown version %d", blob[0])
}
}
// history represents a set of state changes belong to a block along with
// the metadata including the state roots involved in the state transition.
// State history objects in disk are linked with each other by a unique id
// (8-bytes integer), the oldest state history object can be pruned on demand
// in order to control the storage size.
type history struct {
meta *meta // Meta data of history
accounts map[common.Address][]byte // Account data keyed by its address hash
accountList []common.Address // Sorted account hash list
storages map[common.Address]map[common.Hash][]byte // Storage data keyed by its address hash and slot hash
storageList map[common.Address][]common.Hash // Sorted slot hash list
}
// newHistory constructs the state history object with provided state change set.
func newHistory(root common.Hash, parent common.Hash, block uint64, states *triestate.Set) *history {
var (
accountList []common.Address
storageList = make(map[common.Address][]common.Hash)
incomplete []common.Address
)
for addr := range states.Accounts {
accountList = append(accountList, addr)
}
slices.SortFunc(accountList, func(a, b common.Address) bool { return a.Less(b) })
for addr, slots := range states.Storages {
slist := make([]common.Hash, 0, len(slots))
for slotHash := range slots {
slist = append(slist, slotHash)
}
slices.SortFunc(slist, func(a, b common.Hash) bool { return a.Less(b) })
storageList[addr] = slist
}
for addr := range states.Incomplete {
incomplete = append(incomplete, addr)
}
slices.SortFunc(incomplete, func(a, b common.Address) bool { return a.Less(b) })
return &history{
meta: &meta{
version: stateHistoryVersion,
parent: parent,
root: root,
block: block,
incomplete: incomplete,
},
accounts: states.Accounts,
accountList: accountList,
storages: states.Storages,
storageList: storageList,
}
}
// encode serializes the state history and returns four byte streams represent
// concatenated account/storage data, account/storage indexes respectively.
func (h *history) encode() ([]byte, []byte, []byte, []byte) {
var (
slotNumber uint32 // the number of processed slots
accountData []byte // the buffer for concatenated account data
storageData []byte // the buffer for concatenated storage data
accountIndexes []byte // the buffer for concatenated account index
storageIndexes []byte // the buffer for concatenated storage index
)
for _, addr := range h.accountList {
accIndex := accountIndex{
address: addr,
length: uint8(len(h.accounts[addr])),
offset: uint32(len(accountData)),
}
slots, exist := h.storages[addr]
if exist {
// Encode storage slots in order
for _, slotHash := range h.storageList[addr] {
sIndex := slotIndex{
hash: slotHash,
length: uint8(len(slots[slotHash])),
offset: uint32(len(storageData)),
}
storageData = append(storageData, slots[slotHash]...)
storageIndexes = append(storageIndexes, sIndex.encode()...)
}
// Fill up the storage meta in account index
accIndex.storageOffset = slotNumber
accIndex.storageSlots = uint32(len(slots))
slotNumber += uint32(len(slots))
}
accountData = append(accountData, h.accounts[addr]...)
accountIndexes = append(accountIndexes, accIndex.encode()...)
}
return accountData, storageData, accountIndexes, storageIndexes
}
// decoder wraps the byte streams for decoding with extra meta fields.
type decoder struct {
accountData []byte // the buffer for concatenated account data
storageData []byte // the buffer for concatenated storage data
accountIndexes []byte // the buffer for concatenated account index
storageIndexes []byte // the buffer for concatenated storage index
lastAccount *common.Address // the address of last resolved account
lastAccountRead uint32 // the read-cursor position of account data
lastSlotIndexRead uint32 // the read-cursor position of storage slot index
lastSlotDataRead uint32 // the read-cursor position of storage slot data
}
// verify validates the provided byte streams for decoding state history. A few
// checks will be performed to quickly detect data corruption. The byte stream
// is regarded as corrupted if:
//
// - account indexes buffer is empty(empty state set is invalid)
// - account indexes/storage indexer buffer is not aligned
//
// note, these situations are allowed:
//
// - empty account data: all accounts were not present
// - empty storage set: no slots are modified
func (r *decoder) verify() error {
if len(r.accountIndexes)%accountIndexSize != 0 || len(r.accountIndexes) == 0 {
return fmt.Errorf("invalid account index, len: %d", len(r.accountIndexes))
}
if len(r.storageIndexes)%slotIndexSize != 0 {
return fmt.Errorf("invalid storage index, len: %d", len(r.storageIndexes))
}
return nil
}
// readAccount parses the account from the byte stream with specified position.
func (r *decoder) readAccount(pos int) (accountIndex, []byte, error) {
// Decode account index from the index byte stream.
var index accountIndex
if (pos+1)*accountIndexSize > len(r.accountIndexes) {
return accountIndex{}, nil, errors.New("account data buffer is corrupted")
}
index.decode(r.accountIndexes[pos*accountIndexSize : (pos+1)*accountIndexSize])
// Perform validation before parsing account data, ensure
// - account is sorted in order in byte stream
// - account data is strictly encoded with no gap inside
// - account data is not out-of-slice
if r.lastAccount != nil { // zero address is possible
if bytes.Compare(r.lastAccount.Bytes(), index.address.Bytes()) >= 0 {
return accountIndex{}, nil, errors.New("account is not in order")
}
}
if index.offset != r.lastAccountRead {
return accountIndex{}, nil, errors.New("account data buffer is gaped")
}
last := index.offset + uint32(index.length)
if uint32(len(r.accountData)) < last {
return accountIndex{}, nil, errors.New("account data buffer is corrupted")
}
data := r.accountData[index.offset:last]
r.lastAccount = &index.address
r.lastAccountRead = last
return index, data, nil
}
// readStorage parses the storage slots from the byte stream with specified account.
func (r *decoder) readStorage(accIndex accountIndex) ([]common.Hash, map[common.Hash][]byte, error) {
var (
last common.Hash
list []common.Hash
storage = make(map[common.Hash][]byte)
)
for j := 0; j < int(accIndex.storageSlots); j++ {
var (
index slotIndex
start = (accIndex.storageOffset + uint32(j)) * uint32(slotIndexSize)
end = (accIndex.storageOffset + uint32(j+1)) * uint32(slotIndexSize)
)
// Perform validation before parsing storage slot data, ensure
// - slot index is not out-of-slice
// - slot data is not out-of-slice
// - slot is sorted in order in byte stream
// - slot indexes is strictly encoded with no gap inside
// - slot data is strictly encoded with no gap inside
if start != r.lastSlotIndexRead {
return nil, nil, errors.New("storage index buffer is gapped")
}
if uint32(len(r.storageIndexes)) < end {
return nil, nil, errors.New("storage index buffer is corrupted")
}
index.decode(r.storageIndexes[start:end])
if bytes.Compare(last.Bytes(), index.hash.Bytes()) >= 0 {
return nil, nil, errors.New("storage slot is not in order")
}
if index.offset != r.lastSlotDataRead {
return nil, nil, errors.New("storage data buffer is gapped")
}
sEnd := index.offset + uint32(index.length)
if uint32(len(r.storageData)) < sEnd {
return nil, nil, errors.New("storage data buffer is corrupted")
}
storage[index.hash] = r.storageData[r.lastSlotDataRead:sEnd]
list = append(list, index.hash)
last = index.hash
r.lastSlotIndexRead = end
r.lastSlotDataRead = sEnd
}
return list, storage, nil
}
// decode deserializes the account and storage data from the provided byte stream.
func (h *history) decode(accountData, storageData, accountIndexes, storageIndexes []byte) error {
var (
accounts = make(map[common.Address][]byte)
storages = make(map[common.Address]map[common.Hash][]byte)
accountList []common.Address
storageList = make(map[common.Address][]common.Hash)
r = &decoder{
accountData: accountData,
storageData: storageData,
accountIndexes: accountIndexes,
storageIndexes: storageIndexes,
}
)
if err := r.verify(); err != nil {
return err
}
for i := 0; i < len(accountIndexes)/accountIndexSize; i++ {
// Resolve account first
accIndex, accData, err := r.readAccount(i)
if err != nil {
return err
}
accounts[accIndex.address] = accData
accountList = append(accountList, accIndex.address)
// Resolve storage slots
slotList, slotData, err := r.readStorage(accIndex)
if err != nil {
return err
}
if len(slotList) > 0 {
storageList[accIndex.address] = slotList
storages[accIndex.address] = slotData
}
}
h.accounts = accounts
h.accountList = accountList
h.storages = storages
h.storageList = storageList
return nil
}
// readHistory reads and decodes the state history object by the given id.
func readHistory(freezer *rawdb.ResettableFreezer, id uint64) (*history, error) {
blob := rawdb.ReadStateHistoryMeta(freezer, id)
if len(blob) == 0 {
return nil, fmt.Errorf("state history not found %d", id)
}
var m meta
if err := m.decode(blob); err != nil {
return nil, err
}
var (
dec = history{meta: &m}
accountData = rawdb.ReadStateAccountHistory(freezer, id)
storageData = rawdb.ReadStateStorageHistory(freezer, id)
accountIndexes = rawdb.ReadStateAccountIndex(freezer, id)
storageIndexes = rawdb.ReadStateStorageIndex(freezer, id)
)
if err := dec.decode(accountData, storageData, accountIndexes, storageIndexes); err != nil {
return nil, err
}
return &dec, nil
}
// writeHistory writes the state history with provided state set. After
// storing the corresponding state history, it will also prune the stale
// histories from the disk with the given threshold.
func writeHistory(db ethdb.KeyValueStore, freezer *rawdb.ResettableFreezer, dl *diffLayer, limit uint64) error {
// Short circuit if state set is not available.
if dl.states == nil {
return errors.New("state change set is not available")
}
var (
err error
n int
start = time.Now()
h = newHistory(dl.rootHash(), dl.parentLayer().rootHash(), dl.block, dl.states)
)
accountData, storageData, accountIndex, storageIndex := h.encode()
dataSize := common.StorageSize(len(accountData) + len(storageData))
indexSize := common.StorageSize(len(accountIndex) + len(storageIndex))
// Write history data into five freezer table respectively.
rawdb.WriteStateHistory(freezer, dl.stateID(), h.meta.encode(), accountIndex, storageIndex, accountData, storageData)
// Prune stale state histories based on the config.
if limit != 0 && dl.stateID() > limit {
n, err = truncateFromTail(db, freezer, dl.stateID()-limit)
if err != nil {
return err
}
}
historyDataBytesMeter.Mark(int64(dataSize))
historyIndexBytesMeter.Mark(int64(indexSize))
historyBuildTimeMeter.UpdateSince(start)
log.Debug("Stored state history", "id", dl.stateID(), "block", dl.block, "data", dataSize, "index", indexSize, "pruned", n, "elapsed", common.PrettyDuration(time.Since(start)))
return nil
}
// checkHistories retrieves a batch of meta objects with the specified range
// and performs the callback on each item.
func checkHistories(freezer *rawdb.ResettableFreezer, start, count uint64, check func(*meta) error) error {
for count > 0 {
number := count
if number > 10000 {
number = 10000 // split the big read into small chunks
}
blobs, err := rawdb.ReadStateHistoryMetaList(freezer, start, number)
if err != nil {
return err
}
for _, blob := range blobs {
var dec meta
if err := dec.decode(blob); err != nil {
return err
}
if err := check(&dec); err != nil {
return err
}
}
count -= uint64(len(blobs))
start += uint64(len(blobs))
}
return nil
}
// truncateFromHead removes the extra state histories from the head with the given
// parameters. It returns the number of items removed from the head.
func truncateFromHead(db ethdb.Batcher, freezer *rawdb.ResettableFreezer, nhead uint64) (int, error) {
ohead, err := freezer.Ancients()
if err != nil {
return 0, err
}
if ohead <= nhead {
return 0, nil
}
// Load the meta objects in range [nhead+1, ohead]
blobs, err := rawdb.ReadStateHistoryMetaList(freezer, nhead+1, ohead-nhead)
if err != nil {
return 0, err
}
batch := db.NewBatch()
for _, blob := range blobs {
var m meta
if err := m.decode(blob); err != nil {
return 0, err
}
rawdb.DeleteStateID(batch, m.root)
}
if err := batch.Write(); err != nil {
return 0, err
}
ohead, err = freezer.TruncateHead(nhead)
if err != nil {
return 0, err
}
return int(ohead - nhead), nil
}
// truncateFromTail removes the extra state histories from the tail with the given
// parameters. It returns the number of items removed from the tail.
func truncateFromTail(db ethdb.Batcher, freezer *rawdb.ResettableFreezer, ntail uint64) (int, error) {
otail, err := freezer.Tail()
if err != nil {
return 0, err
}
if otail >= ntail {
return 0, nil
}
// Load the meta objects in range [otail+1, ntail]
blobs, err := rawdb.ReadStateHistoryMetaList(freezer, otail+1, ntail-otail)
if err != nil {
return 0, err
}
batch := db.NewBatch()
for _, blob := range blobs {
var m meta
if err := m.decode(blob); err != nil {
return 0, err
}
rawdb.DeleteStateID(batch, m.root)
}
if err := batch.Write(); err != nil {
return 0, err
}
otail, err = freezer.TruncateTail(ntail)
if err != nil {
return 0, err
}
return int(ntail - otail), nil
}

@ -0,0 +1,290 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>
package pathdb
import (
"bytes"
"fmt"
"reflect"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie/testutil"
"github.com/ethereum/go-ethereum/trie/triestate"
)
// randomStateSet generates a random state change set.
func randomStateSet(n int) *triestate.Set {
var (
accounts = make(map[common.Address][]byte)
storages = make(map[common.Address]map[common.Hash][]byte)
)
for i := 0; i < n; i++ {
addr := testutil.RandomAddress()
storages[addr] = make(map[common.Hash][]byte)
for j := 0; j < 3; j++ {
v, _ := rlp.EncodeToBytes(common.TrimLeftZeroes(testutil.RandBytes(32)))
storages[addr][testutil.RandomHash()] = v
}
account := generateAccount(types.EmptyRootHash)
accounts[addr] = types.SlimAccountRLP(account)
}
return triestate.New(accounts, storages, nil)
}
func makeHistory() *history {
return newHistory(testutil.RandomHash(), types.EmptyRootHash, 0, randomStateSet(3))
}
func makeHistories(n int) []*history {
var (
parent = types.EmptyRootHash
result []*history
)
for i := 0; i < n; i++ {
root := testutil.RandomHash()
h := newHistory(root, parent, uint64(i), randomStateSet(3))
parent = root
result = append(result, h)
}
return result
}
func TestEncodeDecodeHistory(t *testing.T) {
var (
m meta
dec history
obj = makeHistory()
)
// check if meta data can be correctly encode/decode
blob := obj.meta.encode()
if err := m.decode(blob); err != nil {
t.Fatalf("Failed to decode %v", err)
}
if !reflect.DeepEqual(&m, obj.meta) {
t.Fatal("meta is mismatched")
}
// check if account/storage data can be correctly encode/decode
accountData, storageData, accountIndexes, storageIndexes := obj.encode()
if err := dec.decode(accountData, storageData, accountIndexes, storageIndexes); err != nil {
t.Fatalf("Failed to decode, err: %v", err)
}
if !compareSet(dec.accounts, obj.accounts) {
t.Fatal("account data is mismatched")
}
if !compareStorages(dec.storages, obj.storages) {
t.Fatal("storage data is mismatched")
}
if !compareList(dec.accountList, obj.accountList) {
t.Fatal("account list is mismatched")
}
if !compareStorageList(dec.storageList, obj.storageList) {
t.Fatal("storage list is mismatched")
}
}
func checkHistory(t *testing.T, db ethdb.KeyValueReader, freezer *rawdb.ResettableFreezer, id uint64, root common.Hash, exist bool) {
blob := rawdb.ReadStateHistoryMeta(freezer, id)
if exist && len(blob) == 0 {
t.Fatalf("Failed to load trie history, %d", id)
}
if !exist && len(blob) != 0 {
t.Fatalf("Unexpected trie history, %d", id)
}
if exist && rawdb.ReadStateID(db, root) == nil {
t.Fatalf("Root->ID mapping is not found, %d", id)
}
if !exist && rawdb.ReadStateID(db, root) != nil {
t.Fatalf("Unexpected root->ID mapping, %d", id)
}
}
func checkHistoriesInRange(t *testing.T, db ethdb.KeyValueReader, freezer *rawdb.ResettableFreezer, from, to uint64, roots []common.Hash, exist bool) {
for i, j := from, 0; i <= to; i, j = i+1, j+1 {
checkHistory(t, db, freezer, i, roots[j], exist)
}
}
func TestTruncateHeadHistory(t *testing.T) {
var (
roots []common.Hash
hs = makeHistories(10)
db = rawdb.NewMemoryDatabase()
freezer, _ = openFreezer(t.TempDir(), false)
)
defer freezer.Close()
for i := 0; i < len(hs); i++ {
accountData, storageData, accountIndex, storageIndex := hs[i].encode()
rawdb.WriteStateHistory(freezer, uint64(i+1), hs[i].meta.encode(), accountIndex, storageIndex, accountData, storageData)
rawdb.WriteStateID(db, hs[i].meta.root, uint64(i+1))
roots = append(roots, hs[i].meta.root)
}
for size := len(hs); size > 0; size-- {
pruned, err := truncateFromHead(db, freezer, uint64(size-1))
if err != nil {
t.Fatalf("Failed to truncate from head %v", err)
}
if pruned != 1 {
t.Error("Unexpected pruned items", "want", 1, "got", pruned)
}
checkHistoriesInRange(t, db, freezer, uint64(size), uint64(10), roots[size-1:], false)
checkHistoriesInRange(t, db, freezer, uint64(1), uint64(size-1), roots[:size-1], true)
}
}
func TestTruncateTailHistory(t *testing.T) {
var (
roots []common.Hash
hs = makeHistories(10)
db = rawdb.NewMemoryDatabase()
freezer, _ = openFreezer(t.TempDir(), false)
)
defer freezer.Close()
for i := 0; i < len(hs); i++ {
accountData, storageData, accountIndex, storageIndex := hs[i].encode()
rawdb.WriteStateHistory(freezer, uint64(i+1), hs[i].meta.encode(), accountIndex, storageIndex, accountData, storageData)
rawdb.WriteStateID(db, hs[i].meta.root, uint64(i+1))
roots = append(roots, hs[i].meta.root)
}
for newTail := 1; newTail < len(hs); newTail++ {
pruned, _ := truncateFromTail(db, freezer, uint64(newTail))
if pruned != 1 {
t.Error("Unexpected pruned items", "want", 1, "got", pruned)
}
checkHistoriesInRange(t, db, freezer, uint64(1), uint64(newTail), roots[:newTail], false)
checkHistoriesInRange(t, db, freezer, uint64(newTail+1), uint64(10), roots[newTail:], true)
}
}
func TestTruncateTailHistories(t *testing.T) {
var cases = []struct {
limit uint64
expPruned int
maxPruned uint64
minUnpruned uint64
empty bool
}{
{
1, 9, 9, 10, false,
},
{
0, 10, 10, 0 /* no meaning */, true,
},
{
10, 0, 0, 1, false,
},
}
for i, c := range cases {
var (
roots []common.Hash
hs = makeHistories(10)
db = rawdb.NewMemoryDatabase()
freezer, _ = openFreezer(t.TempDir()+fmt.Sprintf("%d", i), false)
)
defer freezer.Close()
for i := 0; i < len(hs); i++ {
accountData, storageData, accountIndex, storageIndex := hs[i].encode()
rawdb.WriteStateHistory(freezer, uint64(i+1), hs[i].meta.encode(), accountIndex, storageIndex, accountData, storageData)
rawdb.WriteStateID(db, hs[i].meta.root, uint64(i+1))
roots = append(roots, hs[i].meta.root)
}
pruned, _ := truncateFromTail(db, freezer, uint64(10)-c.limit)
if pruned != c.expPruned {
t.Error("Unexpected pruned items", "want", c.expPruned, "got", pruned)
}
if c.empty {
checkHistoriesInRange(t, db, freezer, uint64(1), uint64(10), roots, false)
} else {
tail := 10 - int(c.limit)
checkHistoriesInRange(t, db, freezer, uint64(1), c.maxPruned, roots[:tail], false)
checkHistoriesInRange(t, db, freezer, c.minUnpruned, uint64(10), roots[tail:], true)
}
}
}
// openFreezer initializes the freezer instance for storing state histories.
func openFreezer(datadir string, readOnly bool) (*rawdb.ResettableFreezer, error) {
return rawdb.NewStateHistoryFreezer(datadir, readOnly)
}
func compareSet[k comparable](a, b map[k][]byte) bool {
if len(a) != len(b) {
return false
}
for key, valA := range a {
valB, ok := b[key]
if !ok {
return false
}
if !bytes.Equal(valA, valB) {
return false
}
}
return true
}
func compareList[k comparable](a, b []k) bool {
if len(a) != len(b) {
return false
}
for i := 0; i < len(a); i++ {
if a[i] != b[i] {
return false
}
}
return true
}
func compareStorages(a, b map[common.Address]map[common.Hash][]byte) bool {
if len(a) != len(b) {
return false
}
for h, subA := range a {
subB, ok := b[h]
if !ok {
return false
}
if !compareSet(subA, subB) {
return false
}
}
return true
}
func compareStorageList(a, b map[common.Address][]common.Hash) bool {
if len(a) != len(b) {
return false
}
for h, la := range a {
lb, ok := b[h]
if !ok {
return false
}
if !compareList(la, lb) {
return false
}
}
return true
}

@ -0,0 +1,378 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pathdb
import (
"bytes"
"errors"
"fmt"
"io"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/triestate"
)
var (
errMissJournal = errors.New("journal not found")
errMissVersion = errors.New("version not found")
errUnexpectedVersion = errors.New("unexpected journal version")
errMissDiskRoot = errors.New("disk layer root not found")
errUnmatchedJournal = errors.New("unmatched journal")
)
const journalVersion uint64 = 0
// journalNode represents a trie node persisted in the journal.
type journalNode struct {
Path []byte // Path of the node in the trie
Blob []byte // RLP-encoded trie node blob, nil means the node is deleted
}
// journalNodes represents a list trie nodes belong to a single account
// or the main account trie.
type journalNodes struct {
Owner common.Hash
Nodes []journalNode
}
// journalAccounts represents a list accounts belong to the layer.
type journalAccounts struct {
Addresses []common.Address
Accounts [][]byte
}
// journalStorage represents a list of storage slots belong to an account.
type journalStorage struct {
Incomplete bool
Account common.Address
Hashes []common.Hash
Slots [][]byte
}
// loadJournal tries to parse the layer journal from the disk.
func (db *Database) loadJournal(diskRoot common.Hash) (layer, error) {
journal := rawdb.ReadTrieJournal(db.diskdb)
if len(journal) == 0 {
return nil, errMissJournal
}
r := rlp.NewStream(bytes.NewReader(journal), 0)
// Firstly, resolve the first element as the journal version
version, err := r.Uint64()
if err != nil {
return nil, errMissVersion
}
if version != journalVersion {
return nil, fmt.Errorf("%w want %d got %d", errUnexpectedVersion, journalVersion, version)
}
// Secondly, resolve the disk layer root, ensure it's continuous
// with disk layer. Note now we can ensure it's the layer journal
// correct version, so we expect everything can be resolved properly.
var root common.Hash
if err := r.Decode(&root); err != nil {
return nil, errMissDiskRoot
}
// The journal is not matched with persistent state, discard them.
// It can happen that geth crashes without persisting the journal.
if !bytes.Equal(root.Bytes(), diskRoot.Bytes()) {
return nil, fmt.Errorf("%w want %x got %x", errUnmatchedJournal, root, diskRoot)
}
// Load the disk layer from the journal
base, err := db.loadDiskLayer(r)
if err != nil {
return nil, err
}
// Load all the diff layers from the journal
head, err := db.loadDiffLayer(base, r)
if err != nil {
return nil, err
}
log.Debug("Loaded layer journal", "diskroot", diskRoot, "diffhead", head.rootHash())
return head, nil
}
// loadLayers loads a pre-existing state layer backed by a key-value store.
func (db *Database) loadLayers() layer {
// Retrieve the root node of persistent state.
_, root := rawdb.ReadAccountTrieNode(db.diskdb, nil)
root = types.TrieRootHash(root)
// Load the layers by resolving the journal
head, err := db.loadJournal(root)
if err == nil {
return head
}
// journal is not matched(or missing) with the persistent state, discard
// it. Display log for discarding journal, but try to avoid showing
// useless information when the db is created from scratch.
if !(root == types.EmptyRootHash && errors.Is(err, errMissJournal)) {
log.Info("Failed to load journal, discard it", "err", err)
}
// Return single layer with persistent state.
return newDiskLayer(root, rawdb.ReadPersistentStateID(db.diskdb), db, nil, newNodeBuffer(db.bufferSize, nil, 0))
}
// loadDiskLayer reads the binary blob from the layer journal, reconstructing
// a new disk layer on it.
func (db *Database) loadDiskLayer(r *rlp.Stream) (layer, error) {
// Resolve disk layer root
var root common.Hash
if err := r.Decode(&root); err != nil {
return nil, fmt.Errorf("load disk root: %v", err)
}
// Resolve the state id of disk layer, it can be different
// with the persistent id tracked in disk, the id distance
// is the number of transitions aggregated in disk layer.
var id uint64
if err := r.Decode(&id); err != nil {
return nil, fmt.Errorf("load state id: %v", err)
}
stored := rawdb.ReadPersistentStateID(db.diskdb)
if stored > id {
return nil, fmt.Errorf("invalid state id: stored %d resolved %d", stored, id)
}
// Resolve nodes cached in node buffer
var encoded []journalNodes
if err := r.Decode(&encoded); err != nil {
return nil, fmt.Errorf("load disk nodes: %v", err)
}
nodes := make(map[common.Hash]map[string]*trienode.Node)
for _, entry := range encoded {
subset := make(map[string]*trienode.Node)
for _, n := range entry.Nodes {
if len(n.Blob) > 0 {
subset[string(n.Path)] = trienode.New(crypto.Keccak256Hash(n.Blob), n.Blob)
} else {
subset[string(n.Path)] = trienode.NewDeleted()
}
}
nodes[entry.Owner] = subset
}
// Calculate the internal state transitions by id difference.
base := newDiskLayer(root, id, db, nil, newNodeBuffer(db.bufferSize, nodes, id-stored))
return base, nil
}
// loadDiffLayer reads the next sections of a layer journal, reconstructing a new
// diff and verifying that it can be linked to the requested parent.
func (db *Database) loadDiffLayer(parent layer, r *rlp.Stream) (layer, error) {
// Read the next diff journal entry
var root common.Hash
if err := r.Decode(&root); err != nil {
// The first read may fail with EOF, marking the end of the journal
if err == io.EOF {
return parent, nil
}
return nil, fmt.Errorf("load diff root: %v", err)
}
var block uint64
if err := r.Decode(&block); err != nil {
return nil, fmt.Errorf("load block number: %v", err)
}
// Read in-memory trie nodes from journal
var encoded []journalNodes
if err := r.Decode(&encoded); err != nil {
return nil, fmt.Errorf("load diff nodes: %v", err)
}
nodes := make(map[common.Hash]map[string]*trienode.Node)
for _, entry := range encoded {
subset := make(map[string]*trienode.Node)
for _, n := range entry.Nodes {
if len(n.Blob) > 0 {
subset[string(n.Path)] = trienode.New(crypto.Keccak256Hash(n.Blob), n.Blob)
} else {
subset[string(n.Path)] = trienode.NewDeleted()
}
}
nodes[entry.Owner] = subset
}
// Read state changes from journal
var (
jaccounts journalAccounts
jstorages []journalStorage
accounts = make(map[common.Address][]byte)
storages = make(map[common.Address]map[common.Hash][]byte)
incomplete = make(map[common.Address]struct{})
)
if err := r.Decode(&jaccounts); err != nil {
return nil, fmt.Errorf("load diff accounts: %v", err)
}
for i, addr := range jaccounts.Addresses {
accounts[addr] = jaccounts.Accounts[i]
}
if err := r.Decode(&jstorages); err != nil {
return nil, fmt.Errorf("load diff storages: %v", err)
}
for _, entry := range jstorages {
set := make(map[common.Hash][]byte)
for i, h := range entry.Hashes {
if len(entry.Slots[i]) > 0 {
set[h] = entry.Slots[i]
} else {
set[h] = nil
}
}
if entry.Incomplete {
incomplete[entry.Account] = struct{}{}
}
storages[entry.Account] = set
}
return db.loadDiffLayer(newDiffLayer(parent, root, parent.stateID()+1, block, nodes, triestate.New(accounts, storages, incomplete)), r)
}
// journal implements the layer interface, marshaling the un-flushed trie nodes
// along with layer meta data into provided byte buffer.
func (dl *diskLayer) journal(w io.Writer) error {
dl.lock.RLock()
defer dl.lock.RUnlock()
// Ensure the layer didn't get stale
if dl.stale {
return errSnapshotStale
}
// Step one, write the disk root into the journal.
if err := rlp.Encode(w, dl.root); err != nil {
return err
}
// Step two, write the corresponding state id into the journal
if err := rlp.Encode(w, dl.id); err != nil {
return err
}
// Step three, write all unwritten nodes into the journal
nodes := make([]journalNodes, 0, len(dl.buffer.nodes))
for owner, subset := range dl.buffer.nodes {
entry := journalNodes{Owner: owner}
for path, node := range subset {
entry.Nodes = append(entry.Nodes, journalNode{Path: []byte(path), Blob: node.Blob})
}
nodes = append(nodes, entry)
}
if err := rlp.Encode(w, nodes); err != nil {
return err
}
log.Debug("Journaled pathdb disk layer", "root", dl.root, "nodes", len(dl.buffer.nodes))
return nil
}
// journal implements the layer interface, writing the memory layer contents
// into a buffer to be stored in the database as the layer journal.
func (dl *diffLayer) journal(w io.Writer) error {
dl.lock.RLock()
defer dl.lock.RUnlock()
// journal the parent first
if err := dl.parent.journal(w); err != nil {
return err
}
// Everything below was journaled, persist this layer too
if err := rlp.Encode(w, dl.root); err != nil {
return err
}
if err := rlp.Encode(w, dl.block); err != nil {
return err
}
// Write the accumulated trie nodes into buffer
nodes := make([]journalNodes, 0, len(dl.nodes))
for owner, subset := range dl.nodes {
entry := journalNodes{Owner: owner}
for path, node := range subset {
entry.Nodes = append(entry.Nodes, journalNode{Path: []byte(path), Blob: node.Blob})
}
nodes = append(nodes, entry)
}
if err := rlp.Encode(w, nodes); err != nil {
return err
}
// Write the accumulated state changes into buffer
var jacct journalAccounts
for addr, account := range dl.states.Accounts {
jacct.Addresses = append(jacct.Addresses, addr)
jacct.Accounts = append(jacct.Accounts, account)
}
if err := rlp.Encode(w, jacct); err != nil {
return err
}
storage := make([]journalStorage, 0, len(dl.states.Storages))
for addr, slots := range dl.states.Storages {
entry := journalStorage{Account: addr}
if _, ok := dl.states.Incomplete[addr]; ok {
entry.Incomplete = true
}
for slotHash, slot := range slots {
entry.Hashes = append(entry.Hashes, slotHash)
entry.Slots = append(entry.Slots, slot)
}
storage = append(storage, entry)
}
if err := rlp.Encode(w, storage); err != nil {
return err
}
log.Debug("Journaled pathdb diff layer", "root", dl.root, "parent", dl.parent.rootHash(), "id", dl.stateID(), "block", dl.block, "nodes", len(dl.nodes))
return nil
}
// Journal commits an entire diff hierarchy to disk into a single journal entry.
// This is meant to be used during shutdown to persist the layer without
// flattening everything down (bad for reorgs). And this function will mark the
// database as read-only to prevent all following mutation to disk.
func (db *Database) Journal(root common.Hash) error {
// Retrieve the head layer to journal from.
l := db.tree.get(root)
if l == nil {
return fmt.Errorf("triedb layer [%#x] missing", root)
}
// Run the journaling
db.lock.Lock()
defer db.lock.Unlock()
// Short circuit if the database is in read only mode.
if db.readOnly {
return errSnapshotReadOnly
}
// Firstly write out the metadata of journal
journal := new(bytes.Buffer)
if err := rlp.Encode(journal, journalVersion); err != nil {
return err
}
// The stored state in disk might be empty, convert the
// root to emptyRoot in this case.
_, diskroot := rawdb.ReadAccountTrieNode(db.diskdb, nil)
diskroot = types.TrieRootHash(diskroot)
// Secondly write out the state root in disk, ensure all layers
// on top are continuous with disk.
if err := rlp.Encode(journal, diskroot); err != nil {
return err
}
// Finally write out the journal of each layer in reverse order.
if err := l.journal(journal); err != nil {
return err
}
// Store the journal into the database and return
rawdb.WriteTrieJournal(db.diskdb, journal.Bytes())
// Set the db in read only mode to reject all following mutations
db.readOnly = true
log.Info("Stored journal in triedb", "disk", diskroot, "size", common.StorageSize(journal.Len()))
return nil
}

@ -0,0 +1,214 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>
package pathdb
import (
"errors"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/triestate"
)
// layerTree is a group of state layers identified by the state root.
// This structure defines a few basic operations for manipulating
// state layers linked with each other in a tree structure. It's
// thread-safe to use. However, callers need to ensure the thread-safety
// of the referenced layer by themselves.
type layerTree struct {
lock sync.RWMutex
layers map[common.Hash]layer
}
// newLayerTree constructs the layerTree with the given head layer.
func newLayerTree(head layer) *layerTree {
tree := new(layerTree)
tree.reset(head)
return tree
}
// reset initializes the layerTree by the given head layer.
// All the ancestors will be iterated out and linked in the tree.
func (tree *layerTree) reset(head layer) {
tree.lock.Lock()
defer tree.lock.Unlock()
var layers = make(map[common.Hash]layer)
for head != nil {
layers[head.rootHash()] = head
head = head.parentLayer()
}
tree.layers = layers
}
// get retrieves a layer belonging to the given state root.
func (tree *layerTree) get(root common.Hash) layer {
tree.lock.RLock()
defer tree.lock.RUnlock()
return tree.layers[types.TrieRootHash(root)]
}
// forEach iterates the stored layers inside and applies the
// given callback on them.
func (tree *layerTree) forEach(onLayer func(layer)) {
tree.lock.RLock()
defer tree.lock.RUnlock()
for _, layer := range tree.layers {
onLayer(layer)
}
}
// len returns the number of layers cached.
func (tree *layerTree) len() int {
tree.lock.RLock()
defer tree.lock.RUnlock()
return len(tree.layers)
}
// add inserts a new layer into the tree if it can be linked to an existing old parent.
func (tree *layerTree) add(root common.Hash, parentRoot common.Hash, block uint64, nodes *trienode.MergedNodeSet, states *triestate.Set) error {
// Reject noop updates to avoid self-loops. This is a special case that can
// happen for clique networks and proof-of-stake networks where empty blocks
// don't modify the state (0 block subsidy).
//
// Although we could silently ignore this internally, it should be the caller's
// responsibility to avoid even attempting to insert such a layer.
root, parentRoot = types.TrieRootHash(root), types.TrieRootHash(parentRoot)
if root == parentRoot {
return errors.New("layer cycle")
}
parent := tree.get(parentRoot)
if parent == nil {
return fmt.Errorf("triedb parent [%#x] layer missing", parentRoot)
}
l := parent.update(root, parent.stateID()+1, block, nodes.Flatten(), states)
tree.lock.Lock()
tree.layers[l.rootHash()] = l
tree.lock.Unlock()
return nil
}
// cap traverses downwards the diff tree until the number of allowed diff layers
// are crossed. All diffs beyond the permitted number are flattened downwards.
func (tree *layerTree) cap(root common.Hash, layers int) error {
// Retrieve the head layer to cap from
root = types.TrieRootHash(root)
l := tree.get(root)
if l == nil {
return fmt.Errorf("triedb layer [%#x] missing", root)
}
diff, ok := l.(*diffLayer)
if !ok {
return fmt.Errorf("triedb layer [%#x] is disk layer", root)
}
tree.lock.Lock()
defer tree.lock.Unlock()
// If full commit was requested, flatten the diffs and merge onto disk
if layers == 0 {
base, err := diff.persist(true)
if err != nil {
return err
}
// Replace the entire layer tree with the flat base
tree.layers = map[common.Hash]layer{base.rootHash(): base}
return nil
}
// Dive until we run out of layers or reach the persistent database
for i := 0; i < layers-1; i++ {
// If we still have diff layers below, continue down
if parent, ok := diff.parentLayer().(*diffLayer); ok {
diff = parent
} else {
// Diff stack too shallow, return without modifications
return nil
}
}
// We're out of layers, flatten anything below, stopping if it's the disk or if
// the memory limit is not yet exceeded.
switch parent := diff.parentLayer().(type) {
case *diskLayer:
return nil
case *diffLayer:
// Hold the lock to prevent any read operations until the new
// parent is linked correctly.
diff.lock.Lock()
base, err := parent.persist(false)
if err != nil {
diff.lock.Unlock()
return err
}
tree.layers[base.rootHash()] = base
diff.parent = base
diff.lock.Unlock()
default:
panic(fmt.Sprintf("unknown data layer in triedb: %T", parent))
}
// Remove any layer that is stale or links into a stale layer
children := make(map[common.Hash][]common.Hash)
for root, layer := range tree.layers {
if dl, ok := layer.(*diffLayer); ok {
parent := dl.parentLayer().rootHash()
children[parent] = append(children[parent], root)
}
}
var remove func(root common.Hash)
remove = func(root common.Hash) {
delete(tree.layers, root)
for _, child := range children[root] {
remove(child)
}
delete(children, root)
}
for root, layer := range tree.layers {
if dl, ok := layer.(*diskLayer); ok && dl.isStale() {
remove(root)
}
}
return nil
}
// bottom returns the bottom-most disk layer in this tree.
func (tree *layerTree) bottom() *diskLayer {
tree.lock.RLock()
defer tree.lock.RUnlock()
if len(tree.layers) == 0 {
return nil // Shouldn't happen, empty tree
}
// pick a random one as the entry point
var current layer
for _, layer := range tree.layers {
current = layer
break
}
for current.parentLayer() != nil {
current = current.parentLayer()
}
return current.(*diskLayer)
}

@ -0,0 +1,50 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>
package pathdb
import "github.com/ethereum/go-ethereum/metrics"
var (
cleanHitMeter = metrics.NewRegisteredMeter("pathdb/clean/hit", nil)
cleanMissMeter = metrics.NewRegisteredMeter("pathdb/clean/miss", nil)
cleanReadMeter = metrics.NewRegisteredMeter("pathdb/clean/read", nil)
cleanWriteMeter = metrics.NewRegisteredMeter("pathdb/clean/write", nil)
dirtyHitMeter = metrics.NewRegisteredMeter("pathdb/dirty/hit", nil)
dirtyMissMeter = metrics.NewRegisteredMeter("pathdb/dirty/miss", nil)
dirtyReadMeter = metrics.NewRegisteredMeter("pathdb/dirty/read", nil)
dirtyWriteMeter = metrics.NewRegisteredMeter("pathdb/dirty/write", nil)
dirtyNodeHitDepthHist = metrics.NewRegisteredHistogram("pathdb/dirty/depth", nil, metrics.NewExpDecaySample(1028, 0.015))
cleanFalseMeter = metrics.NewRegisteredMeter("pathdb/clean/false", nil)
dirtyFalseMeter = metrics.NewRegisteredMeter("pathdb/dirty/false", nil)
diskFalseMeter = metrics.NewRegisteredMeter("pathdb/disk/false", nil)
commitTimeTimer = metrics.NewRegisteredTimer("pathdb/commit/time", nil)
commitNodesMeter = metrics.NewRegisteredMeter("pathdb/commit/nodes", nil)
commitBytesMeter = metrics.NewRegisteredMeter("pathdb/commit/bytes", nil)
gcNodesMeter = metrics.NewRegisteredMeter("pathdb/gc/nodes", nil)
gcBytesMeter = metrics.NewRegisteredMeter("pathdb/gc/bytes", nil)
diffLayerBytesMeter = metrics.NewRegisteredMeter("pathdb/diff/bytes", nil)
diffLayerNodesMeter = metrics.NewRegisteredMeter("pathdb/diff/nodes", nil)
historyBuildTimeMeter = metrics.NewRegisteredTimer("pathdb/history/time", nil)
historyDataBytesMeter = metrics.NewRegisteredMeter("pathdb/history/bytes/data", nil)
historyIndexBytesMeter = metrics.NewRegisteredMeter("pathdb/history/bytes/index", nil)
)

@ -0,0 +1,275 @@
// Copyright 2022 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pathdb
import (
"fmt"
"time"
"github.com/VictoriaMetrics/fastcache"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/trie/trienode"
)
// nodebuffer is a collection of modified trie nodes to aggregate the disk
// write. The content of the nodebuffer must be checked before diving into
// disk (since it basically is not-yet-written data).
type nodebuffer struct {
layers uint64 // The number of diff layers aggregated inside
size uint64 // The size of aggregated writes
limit uint64 // The maximum memory allowance in bytes
nodes map[common.Hash]map[string]*trienode.Node // The dirty node set, mapped by owner and path
}
// newNodeBuffer initializes the node buffer with the provided nodes.
func newNodeBuffer(limit int, nodes map[common.Hash]map[string]*trienode.Node, layers uint64) *nodebuffer {
if nodes == nil {
nodes = make(map[common.Hash]map[string]*trienode.Node)
}
var size uint64
for _, subset := range nodes {
for path, n := range subset {
size += uint64(len(n.Blob) + len(path))
}
}
return &nodebuffer{
layers: layers,
nodes: nodes,
size: size,
limit: uint64(limit),
}
}
// node retrieves the trie node with given node info.
func (b *nodebuffer) node(owner common.Hash, path []byte, hash common.Hash) (*trienode.Node, error) {
subset, ok := b.nodes[owner]
if !ok {
return nil, nil
}
n, ok := subset[string(path)]
if !ok {
return nil, nil
}
if n.Hash != hash {
dirtyFalseMeter.Mark(1)
log.Error("Unexpected trie node in node buffer", "owner", owner, "path", path, "expect", hash, "got", n.Hash)
return nil, newUnexpectedNodeError("dirty", hash, n.Hash, owner, path)
}
return n, nil
}
// commit merges the dirty nodes into the nodebuffer. This operation won't take
// the ownership of the nodes map which belongs to the bottom-most diff layer.
// It will just hold the node references from the given map which are safe to
// copy.
func (b *nodebuffer) commit(nodes map[common.Hash]map[string]*trienode.Node) *nodebuffer {
var (
delta int64
overwrite int64
overwriteSize int64
)
for owner, subset := range nodes {
current, exist := b.nodes[owner]
if !exist {
// Allocate a new map for the subset instead of claiming it directly
// from the passed map to avoid potential concurrent map read/write.
// The nodes belong to original diff layer are still accessible even
// after merging, thus the ownership of nodes map should still belong
// to original layer and any mutation on it should be prevented.
current = make(map[string]*trienode.Node)
for path, n := range subset {
current[path] = n
delta += int64(len(n.Blob) + len(path))
}
b.nodes[owner] = current
continue
}
for path, n := range subset {
if orig, exist := current[path]; !exist {
delta += int64(len(n.Blob) + len(path))
} else {
delta += int64(len(n.Blob) - len(orig.Blob))
overwrite++
overwriteSize += int64(len(orig.Blob) + len(path))
}
current[path] = n
}
b.nodes[owner] = current
}
b.updateSize(delta)
b.layers++
gcNodesMeter.Mark(overwrite)
gcBytesMeter.Mark(overwriteSize)
return b
}
// revert is the reverse operation of commit. It also merges the provided nodes
// into the nodebuffer, the difference is that the provided node set should
// revert the changes made by the last state transition.
func (b *nodebuffer) revert(db ethdb.KeyValueReader, nodes map[common.Hash]map[string]*trienode.Node) error {
// Short circuit if no embedded state transition to revert.
if b.layers == 0 {
return errStateUnrecoverable
}
b.layers--
// Reset the entire buffer if only a single transition left.
if b.layers == 0 {
b.reset()
return nil
}
var delta int64
for owner, subset := range nodes {
current, ok := b.nodes[owner]
if !ok {
panic(fmt.Sprintf("non-existent subset (%x)", owner))
}
for path, n := range subset {
orig, ok := current[path]
if !ok {
// There is a special case in MPT that one child is removed from
// a fullNode which only has two children, and then a new child
// with different position is immediately inserted into the fullNode.
// In this case, the clean child of the fullNode will also be
// marked as dirty because of node collapse and expansion.
//
// In case of database rollback, don't panic if this "clean"
// node occurs which is not present in buffer.
var nhash common.Hash
if owner == (common.Hash{}) {
_, nhash = rawdb.ReadAccountTrieNode(db, []byte(path))
} else {
_, nhash = rawdb.ReadStorageTrieNode(db, owner, []byte(path))
}
// Ignore the clean node in the case described above.
if nhash == n.Hash {
continue
}
panic(fmt.Sprintf("non-existent node (%x %v) blob: %v", owner, path, crypto.Keccak256Hash(n.Blob).Hex()))
}
current[path] = n
delta += int64(len(n.Blob)) - int64(len(orig.Blob))
}
}
b.updateSize(delta)
return nil
}
// updateSize updates the total cache size by the given delta.
func (b *nodebuffer) updateSize(delta int64) {
size := int64(b.size) + delta
if size >= 0 {
b.size = uint64(size)
return
}
s := b.size
b.size = 0
log.Error("Invalid pathdb buffer size", "prev", common.StorageSize(s), "delta", common.StorageSize(delta))
}
// reset cleans up the disk cache.
func (b *nodebuffer) reset() {
b.layers = 0
b.size = 0
b.nodes = make(map[common.Hash]map[string]*trienode.Node)
}
// empty returns an indicator if nodebuffer contains any state transition inside.
func (b *nodebuffer) empty() bool {
return b.layers == 0
}
// setSize sets the buffer size to the provided number, and invokes a flush
// operation if the current memory usage exceeds the new limit.
func (b *nodebuffer) setSize(size int, db ethdb.KeyValueStore, clean *fastcache.Cache, id uint64) error {
b.limit = uint64(size)
return b.flush(db, clean, id, false)
}
// flush persists the in-memory dirty trie node into the disk if the configured
// memory threshold is reached. Note, all data must be written atomically.
func (b *nodebuffer) flush(db ethdb.KeyValueStore, clean *fastcache.Cache, id uint64, force bool) error {
if b.size <= b.limit && !force {
return nil
}
// Ensure the target state id is aligned with the internal counter.
head := rawdb.ReadPersistentStateID(db)
if head+b.layers != id {
return fmt.Errorf("buffer layers (%d) cannot be applied on top of persisted state id (%d) to reach requested state id (%d)", b.layers, head, id)
}
var (
start = time.Now()
batch = db.NewBatchWithSize(int(b.size))
)
nodes := writeNodes(batch, b.nodes, clean)
rawdb.WritePersistentStateID(batch, id)
// Flush all mutations in a single batch
size := batch.ValueSize()
if err := batch.Write(); err != nil {
return err
}
commitBytesMeter.Mark(int64(size))
commitNodesMeter.Mark(int64(nodes))
commitTimeTimer.UpdateSince(start)
log.Debug("Persisted pathdb nodes", "nodes", len(b.nodes), "bytes", common.StorageSize(size), "elapsed", common.PrettyDuration(time.Since(start)))
b.reset()
return nil
}
// writeNodes writes the trie nodes into the provided database batch.
// Note this function will also inject all the newly written nodes
// into clean cache.
func writeNodes(batch ethdb.Batch, nodes map[common.Hash]map[string]*trienode.Node, clean *fastcache.Cache) (total int) {
for owner, subset := range nodes {
for path, n := range subset {
if n.IsDeleted() {
if owner == (common.Hash{}) {
rawdb.DeleteAccountTrieNode(batch, []byte(path))
} else {
rawdb.DeleteStorageTrieNode(batch, owner, []byte(path))
}
if clean != nil {
clean.Del(cacheKey(owner, []byte(path)))
}
} else {
if owner == (common.Hash{}) {
rawdb.WriteAccountTrieNode(batch, []byte(path), n.Blob)
} else {
rawdb.WriteStorageTrieNode(batch, owner, []byte(path), n.Blob)
}
if clean != nil {
clean.Set(cacheKey(owner, []byte(path)), n.Blob)
}
}
}
total += len(subset)
}
return total
}
// cacheKey constructs the unique key of clean cache.
func cacheKey(owner common.Hash, path []byte) []byte {
if owner == (common.Hash{}) {
return path
}
return append(owner.Bytes(), path...)
}

@ -0,0 +1,156 @@
// Copyright 2023 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package pathdb
import (
"bytes"
"fmt"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/trie/trienode"
"github.com/ethereum/go-ethereum/trie/triestate"
"golang.org/x/exp/slices"
)
// testHasher is a test utility for computing root hash of a batch of state
// elements. The hash algorithm is to sort all the elements in lexicographical
// order, concat the key and value in turn, and perform hash calculation on
// the concatenated bytes. Except the root hash, a nodeset will be returned
// once Commit is called, which contains all the changes made to hasher.
type testHasher struct {
owner common.Hash // owner identifier
root common.Hash // original root
dirties map[common.Hash][]byte // dirty states
cleans map[common.Hash][]byte // clean states
}
// newTestHasher constructs a hasher object with provided states.
func newTestHasher(owner common.Hash, root common.Hash, cleans map[common.Hash][]byte) (*testHasher, error) {
if cleans == nil {
cleans = make(map[common.Hash][]byte)
}
if got, _ := hash(cleans); got != root {
return nil, fmt.Errorf("state root mismatched, want: %x, got: %x", root, got)
}
return &testHasher{
owner: owner,
root: root,
dirties: make(map[common.Hash][]byte),
cleans: cleans,
}, nil
}
// Get returns the value for key stored in the trie.
func (h *testHasher) Get(key []byte) ([]byte, error) {
hash := common.BytesToHash(key)
val, ok := h.dirties[hash]
if ok {
return val, nil
}
return h.cleans[hash], nil
}
// Update associates key with value in the trie.
func (h *testHasher) Update(key, value []byte) error {
h.dirties[common.BytesToHash(key)] = common.CopyBytes(value)
return nil
}
// Delete removes any existing value for key from the trie.
func (h *testHasher) Delete(key []byte) error {
h.dirties[common.BytesToHash(key)] = nil
return nil
}
// Commit computes the new hash of the states and returns the set with all
// state changes.
func (h *testHasher) Commit(collectLeaf bool) (common.Hash, *trienode.NodeSet) {
var (
nodes = make(map[common.Hash][]byte)
set = trienode.NewNodeSet(h.owner)
)
for hash, val := range h.cleans {
nodes[hash] = val
}
for hash, val := range h.dirties {
nodes[hash] = val
if bytes.Equal(val, h.cleans[hash]) {
continue
}
if len(val) == 0 {
set.AddNode(hash.Bytes(), trienode.NewDeleted())
} else {
set.AddNode(hash.Bytes(), trienode.New(crypto.Keccak256Hash(val), val))
}
}
root, blob := hash(nodes)
// Include the dirty root node as well.
if root != types.EmptyRootHash && root != h.root {
set.AddNode(nil, trienode.New(root, blob))
}
if root == types.EmptyRootHash && h.root != types.EmptyRootHash {
set.AddNode(nil, trienode.NewDeleted())
}
return root, set
}
// hash performs the hash computation upon the provided states.
func hash(states map[common.Hash][]byte) (common.Hash, []byte) {
var hs []common.Hash
for hash := range states {
hs = append(hs, hash)
}
slices.SortFunc(hs, func(a, b common.Hash) bool { return a.Less(b) })
var input []byte
for _, hash := range hs {
if len(states[hash]) == 0 {
continue
}
input = append(input, hash.Bytes()...)
input = append(input, states[hash]...)
}
if len(input) == 0 {
return types.EmptyRootHash, nil
}
return crypto.Keccak256Hash(input), input
}
type hashLoader struct {
accounts map[common.Hash][]byte
storages map[common.Hash]map[common.Hash][]byte
}
func newHashLoader(accounts map[common.Hash][]byte, storages map[common.Hash]map[common.Hash][]byte) *hashLoader {
return &hashLoader{
accounts: accounts,
storages: storages,
}
}
// OpenTrie opens the main account trie.
func (l *hashLoader) OpenTrie(root common.Hash) (triestate.Trie, error) {
return newTestHasher(common.Hash{}, root, l.accounts)
}
// OpenStorageTrie opens the storage trie of an account.
func (l *hashLoader) OpenStorageTrie(stateRoot common.Hash, addrHash, root common.Hash) (triestate.Trie, error) {
return newTestHasher(addrHash, root, l.storages[addrHash])
}

@ -25,8 +25,8 @@ import (
)
// Node is a wrapper which contains the encoded blob of the trie node and its
// unique hash identifier. It is general enough that can be used to represent
// trie nodes corresponding to different trie implementations.
// node hash. It is general enough that can be used to represent trie node
// corresponding to different trie implementations.
type Node struct {
Hash common.Hash // Node hash, empty for deleted node
Blob []byte // Encoded node blob, nil for the deleted node
@ -42,35 +42,13 @@ func (n *Node) IsDeleted() bool {
return n.Hash == (common.Hash{})
}
// WithPrev wraps the Node with the previous node value attached.
type WithPrev struct {
*Node
Prev []byte // Encoded original value, nil means it's non-existent
}
// Unwrap returns the internal Node object.
func (n *WithPrev) Unwrap() *Node {
return n.Node
}
// Size returns the total memory size used by this node. It overloads
// the function in Node by counting the size of previous value as well.
func (n *WithPrev) Size() int {
return n.Node.Size() + len(n.Prev)
}
// New constructs a node with provided node information.
func New(hash common.Hash, blob []byte) *Node {
return &Node{Hash: hash, Blob: blob}
}
// NewWithPrev constructs a node with provided node information.
func NewWithPrev(hash common.Hash, blob []byte, prev []byte) *WithPrev {
return &WithPrev{
Node: New(hash, blob),
Prev: prev,
}
}
// NewDeleted constructs a node which is deleted.
func NewDeleted() *Node { return New(common.Hash{}, nil) }
// leaf represents a trie leaf node
type leaf struct {
@ -83,7 +61,7 @@ type leaf struct {
type NodeSet struct {
Owner common.Hash
Leaves []*leaf
Nodes map[string]*WithPrev
Nodes map[string]*Node
updates int // the count of updated and inserted nodes
deletes int // the count of deleted nodes
}
@ -93,7 +71,7 @@ type NodeSet struct {
func NewNodeSet(owner common.Hash) *NodeSet {
return &NodeSet{
Owner: owner,
Nodes: make(map[string]*WithPrev),
Nodes: make(map[string]*Node),
}
}
@ -104,17 +82,17 @@ func (set *NodeSet) ForEachWithOrder(callback func(path string, n *Node)) {
for path := range set.Nodes {
paths = append(paths, path)
}
// Bottom-up, longest path first
// Bottom-up, the longest path first
slices.SortFunc(paths, func(a, b string) bool {
return a > b // Sort in reverse order
})
for _, path := range paths {
callback(path, set.Nodes[path].Unwrap())
callback(path, set.Nodes[path])
}
}
// AddNode adds the provided node into set.
func (set *NodeSet) AddNode(path []byte, n *WithPrev) {
func (set *NodeSet) AddNode(path []byte, n *Node) {
if n.IsDeleted() {
set.deletes += 1
} else {
@ -124,7 +102,7 @@ func (set *NodeSet) AddNode(path []byte, n *WithPrev) {
}
// Merge adds a set of nodes into the set.
func (set *NodeSet) Merge(owner common.Hash, nodes map[string]*WithPrev) error {
func (set *NodeSet) Merge(owner common.Hash, nodes map[string]*Node) error {
if set.Owner != owner {
return fmt.Errorf("nodesets belong to different owner are not mergeable %x-%x", set.Owner, owner)
}
@ -172,16 +150,11 @@ func (set *NodeSet) Summary() string {
for path, n := range set.Nodes {
// Deletion
if n.IsDeleted() {
fmt.Fprintf(out, " [-]: %x prev: %x\n", path, n.Prev)
fmt.Fprintf(out, " [-]: %x\n", path)
continue
}
// Insertion
if len(n.Prev) == 0 {
fmt.Fprintf(out, " [+]: %x -> %v\n", path, n.Hash)
continue
}
// Update
fmt.Fprintf(out, " [*]: %x -> %v prev: %x\n", path, n.Hash, n.Prev)
// Insertion or update
fmt.Fprintf(out, " [+/*]: %x -> %v \n", path, n.Hash)
}
}
for _, n := range set.Leaves {
@ -217,3 +190,12 @@ func (set *MergedNodeSet) Merge(other *NodeSet) error {
set.Sets[other.Owner] = other
return nil
}
// Flatten returns a two-dimensional map for internal nodes.
func (set *MergedNodeSet) Flatten() map[common.Hash]map[string]*Node {
nodes := make(map[common.Hash]map[string]*Node)
for owner, set := range set.Sets {
nodes[owner] = set.Nodes
}
return nodes
}

@ -16,7 +16,44 @@
package triestate
import "github.com/ethereum/go-ethereum/common"
import (
"errors"
"fmt"
"sync"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/rlp"
"github.com/ethereum/go-ethereum/trie/trienode"
"golang.org/x/crypto/sha3"
)
// Trie is an Ethereum state trie, can be implemented by Ethereum Merkle Patricia
// tree or Verkle tree.
type Trie interface {
// Get returns the value for key stored in the trie.
Get(key []byte) ([]byte, error)
// Update associates key with value in the trie.
Update(key, value []byte) error
// Delete removes any existing value for key from the trie.
Delete(key []byte) error
// Commit the trie and returns a set of dirty nodes generated along with
// the new root hash.
Commit(collectLeaf bool) (common.Hash, *trienode.NodeSet)
}
// TrieLoader wraps functions to load tries.
type TrieLoader interface {
// OpenTrie opens the main account trie.
OpenTrie(root common.Hash) (Trie, error)
// OpenStorageTrie opens the storage trie of an account.
OpenStorageTrie(stateRoot common.Hash, addrHash, root common.Hash) (Trie, error)
}
// Set represents a collection of mutated states during a state transition.
// The value refers to the original content of state before the transition
@ -24,5 +61,207 @@ import "github.com/ethereum/go-ethereum/common"
type Set struct {
Accounts map[common.Address][]byte // Mutated account set, nil means the account was not present
Storages map[common.Address]map[common.Hash][]byte // Mutated storage set, nil means the slot was not present
Incomplete map[common.Address]struct{} // Indicator whether the storage slot is incomplete due to large deletion
Incomplete map[common.Address]struct{} // Indicator whether the storage is incomplete due to large deletion
size common.StorageSize // Approximate size of set
}
// New constructs the state set with provided data.
func New(accounts map[common.Address][]byte, storages map[common.Address]map[common.Hash][]byte, incomplete map[common.Address]struct{}) *Set {
return &Set{
Accounts: accounts,
Storages: storages,
Incomplete: incomplete,
}
}
// Size returns the approximate memory size occupied by the set.
func (s *Set) Size() common.StorageSize {
if s.size != 0 {
return s.size
}
for _, account := range s.Accounts {
s.size += common.StorageSize(common.AddressLength + len(account))
}
for _, slots := range s.Storages {
for _, val := range slots {
s.size += common.StorageSize(common.HashLength + len(val))
}
s.size += common.StorageSize(common.AddressLength)
}
s.size += common.StorageSize(common.AddressLength * len(s.Incomplete))
return s.size
}
// context wraps all fields for executing state diffs.
type context struct {
prevRoot common.Hash
postRoot common.Hash
accounts map[common.Address][]byte
storages map[common.Address]map[common.Hash][]byte
accountTrie Trie
nodes *trienode.MergedNodeSet
}
// Apply traverses the provided state diffs, apply them in the associated
// post-state and return the generated dirty trie nodes. The state can be
// loaded via the provided trie loader.
func Apply(prevRoot common.Hash, postRoot common.Hash, accounts map[common.Address][]byte, storages map[common.Address]map[common.Hash][]byte, loader TrieLoader) (map[common.Hash]map[string]*trienode.Node, error) {
tr, err := loader.OpenTrie(postRoot)
if err != nil {
return nil, err
}
ctx := &context{
prevRoot: prevRoot,
postRoot: postRoot,
accounts: accounts,
storages: storages,
accountTrie: tr,
nodes: trienode.NewMergedNodeSet(),
}
for addr, account := range accounts {
var err error
if len(account) == 0 {
err = deleteAccount(ctx, loader, addr)
} else {
err = updateAccount(ctx, loader, addr)
}
if err != nil {
return nil, fmt.Errorf("failed to revert state, err: %w", err)
}
}
root, result := tr.Commit(false)
if root != prevRoot {
return nil, fmt.Errorf("failed to revert state, want %#x, got %#x", prevRoot, root)
}
if err := ctx.nodes.Merge(result); err != nil {
return nil, err
}
return ctx.nodes.Flatten(), nil
}
// updateAccount the account was present in prev-state, and may or may not
// existent in post-state. Apply the reverse diff and verify if the storage
// root matches the one in prev-state account.
func updateAccount(ctx *context, loader TrieLoader, addr common.Address) error {
// The account was present in prev-state, decode it from the
// 'slim-rlp' format bytes.
h := newHasher()
defer h.release()
addrHash := h.hash(addr.Bytes())
prev, err := types.FullAccount(ctx.accounts[addr])
if err != nil {
return err
}
// The account may or may not existent in post-state, try to
// load it and decode if it's found.
blob, err := ctx.accountTrie.Get(addrHash.Bytes())
if err != nil {
return err
}
post := types.NewEmptyStateAccount()
if len(blob) != 0 {
if err := rlp.DecodeBytes(blob, &post); err != nil {
return err
}
}
// Apply all storage changes into the post-state storage trie.
st, err := loader.OpenStorageTrie(ctx.postRoot, addrHash, post.Root)
if err != nil {
return err
}
for key, val := range ctx.storages[addr] {
var err error
if len(val) == 0 {
err = st.Delete(key.Bytes())
} else {
err = st.Update(key.Bytes(), val)
}
if err != nil {
return err
}
}
root, result := st.Commit(false)
if root != prev.Root {
return errors.New("failed to reset storage trie")
}
// The returned set can be nil if storage trie is not changed
// at all.
if result != nil {
if err := ctx.nodes.Merge(result); err != nil {
return err
}
}
// Write the prev-state account into the main trie
full, err := rlp.EncodeToBytes(prev)
if err != nil {
return err
}
return ctx.accountTrie.Update(addrHash.Bytes(), full)
}
// deleteAccount the account was not present in prev-state, and is expected
// to be existent in post-state. Apply the reverse diff and verify if the
// account and storage is wiped out correctly.
func deleteAccount(ctx *context, loader TrieLoader, addr common.Address) error {
// The account must be existent in post-state, load the account.
h := newHasher()
defer h.release()
addrHash := h.hash(addr.Bytes())
blob, err := ctx.accountTrie.Get(addrHash.Bytes())
if err != nil {
return err
}
if len(blob) == 0 {
return fmt.Errorf("account is non-existent %#x", addrHash)
}
var post types.StateAccount
if err := rlp.DecodeBytes(blob, &post); err != nil {
return err
}
st, err := loader.OpenStorageTrie(ctx.postRoot, addrHash, post.Root)
if err != nil {
return err
}
for key, val := range ctx.storages[addr] {
if len(val) != 0 {
return errors.New("expect storage deletion")
}
if err := st.Delete(key.Bytes()); err != nil {
return err
}
}
root, result := st.Commit(false)
if root != types.EmptyRootHash {
return errors.New("failed to clear storage trie")
}
// The returned set can be nil if storage trie is not changed
// at all.
if result != nil {
if err := ctx.nodes.Merge(result); err != nil {
return err
}
}
// Delete the post-state account from the main trie.
return ctx.accountTrie.Delete(addrHash.Bytes())
}
// hasher is used to compute the sha256 hash of the provided data.
type hasher struct{ sha crypto.KeccakState }
var hasherPool = sync.Pool{
New: func() interface{} { return &hasher{sha: sha3.NewLegacyKeccak256().(crypto.KeccakState)} },
}
func newHasher() *hasher {
return hasherPool.Get().(*hasher)
}
func (h *hasher) hash(data []byte) common.Hash {
return crypto.HashData(h.sha, data)
}
func (h *hasher) release() {
hasherPool.Put(h)
}