Merge branch 'develop' into miner

This commit is contained in:
obscuren 2015-02-13 17:00:15 +01:00
commit 8305d409d2
63 changed files with 4634 additions and 2177 deletions

93
cmd/bootnode/main.go Normal file

@ -0,0 +1,93 @@
/*
This file is part of go-ethereum
go-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
go-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with go-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
// Command bootnode runs a bootstrap node for the Discovery Protocol.
package main
import (
"crypto/ecdsa"
"encoding/hex"
"flag"
"fmt"
"io/ioutil"
"log"
"os"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/p2p/nat"
)
func main() {
var (
listenAddr = flag.String("addr", ":30301", "listen address")
genKey = flag.String("genkey", "", "generate a node key and quit")
nodeKeyFile = flag.String("nodekey", "", "private key filename")
nodeKeyHex = flag.String("nodekeyhex", "", "private key as hex (for testing)")
natdesc = flag.String("nat", "none", "port mapping mechanism (any|none|upnp|pmp|extip:<IP>)")
nodeKey *ecdsa.PrivateKey
err error
)
flag.Parse()
logger.AddLogSystem(logger.NewStdLogSystem(os.Stdout, log.LstdFlags, logger.DebugLevel))
if *genKey != "" {
writeKey(*genKey)
os.Exit(0)
}
natm, err := nat.Parse(*natdesc)
if err != nil {
log.Fatalf("-nat: %v", err)
}
switch {
case *nodeKeyFile == "" && *nodeKeyHex == "":
log.Fatal("Use -nodekey or -nodekeyhex to specify a private key")
case *nodeKeyFile != "" && *nodeKeyHex != "":
log.Fatal("Options -nodekey and -nodekeyhex are mutually exclusive")
case *nodeKeyFile != "":
if nodeKey, err = crypto.LoadECDSA(*nodeKeyFile); err != nil {
log.Fatalf("-nodekey: %v", err)
}
case *nodeKeyHex != "":
if nodeKey, err = crypto.HexToECDSA(*nodeKeyHex); err != nil {
log.Fatalf("-nodekeyhex: %v", err)
}
}
if _, err := discover.ListenUDP(nodeKey, *listenAddr, natm); err != nil {
log.Fatal(err)
}
select {}
}
func writeKey(target string) {
key, err := crypto.GenerateKey()
if err != nil {
log.Fatal("could not generate key: %v", err)
}
b := crypto.FromECDSA(key)
if target == "-" {
fmt.Println(hex.EncodeToString(b))
} else {
if err := ioutil.WriteFile(target, b, 0600); err != nil {
log.Fatal("write error: ", err)
}
}
}

@ -21,6 +21,7 @@
package main
import (
"crypto/ecdsa"
"flag"
"fmt"
"log"
@ -28,7 +29,9 @@ import (
"os/user"
"path"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p/nat"
"github.com/ethereum/go-ethereum/vm"
)
@ -42,14 +45,14 @@ var (
StartWebSockets bool
RpcPort int
WsPort int
NatType string
PMPGateway string
OutboundPort string
ShowGenesis bool
AddPeer string
MaxPeer int
GenAddr bool
SeedNode string
BootNodes string
NodeKey *ecdsa.PrivateKey
NAT nat.Interface
SecretFile string
ExportDir string
NonInteractive bool
@ -58,6 +61,7 @@ var (
ConfigFile string
DebugFile string
LogLevel int
LogFormat string
Dump bool
DumpHash string
DumpNumber int
@ -83,6 +87,7 @@ func defaultDataDir() string {
var defaultConfigFile = path.Join(defaultDataDir(), "conf.ini")
func Init() {
// TODO: move common flag processing to cmd/util
flag.Usage = func() {
fmt.Fprintf(os.Stderr, "%s [options] [filename]:\noptions precedence: default < config file < environment variables < command line\n", os.Args[0])
flag.PrintDefaults()
@ -92,18 +97,12 @@ func Init() {
flag.StringVar(&Identifier, "id", "", "Custom client identifier")
flag.StringVar(&KeyRing, "keyring", "", "identifier for keyring to use")
flag.StringVar(&KeyStore, "keystore", "db", "system to store keyrings: db|file (db)")
flag.StringVar(&OutboundPort, "port", "30303", "listening port")
flag.StringVar(&NatType, "nat", "", "NAT support (UPNP|PMP) (none)")
flag.StringVar(&PMPGateway, "pmp", "", "Gateway IP for PMP")
flag.IntVar(&MaxPeer, "maxpeer", 30, "maximum desired peers")
flag.IntVar(&RpcPort, "rpcport", 8545, "port to start json-rpc server on")
flag.IntVar(&WsPort, "wsport", 40404, "port to start websocket rpc server on")
flag.BoolVar(&StartRpc, "rpc", false, "start rpc server")
flag.BoolVar(&StartWebSockets, "ws", false, "start websocket server")
flag.BoolVar(&NonInteractive, "y", false, "non-interactive mode (say yes to confirmations)")
flag.StringVar(&SeedNode, "seednode", "poc-8.ethdev.com:30303", "ip:port of seed node to connect to. Set to blank for skip")
flag.BoolVar(&SHH, "shh", true, "whisper protocol (on)")
flag.BoolVar(&Dial, "dial", true, "dial out connections (on)")
flag.BoolVar(&GenAddr, "genaddr", false, "create a new priv/pub key")
flag.StringVar(&SecretFile, "import", "", "imports the file given (hex or mnemonic formats)")
flag.StringVar(&ExportDir, "export", "", "exports the session keyring to files in the directory given")
@ -112,6 +111,7 @@ func Init() {
flag.StringVar(&ConfigFile, "conf", defaultConfigFile, "config file")
flag.StringVar(&DebugFile, "debug", "", "debug file (no debugging if not set)")
flag.IntVar(&LogLevel, "loglevel", int(logger.InfoLevel), "loglevel: 0-5: silent,error,warn,info,debug,debug detail)")
flag.StringVar(&LogFormat, "logformat", "std", "logformat: std,raw)")
flag.BoolVar(&DiffTool, "difftool", false, "creates output for diff'ing. Sets LogLevel=0")
flag.StringVar(&DiffType, "diff", "all", "sets the level of diff output [vm, all]. Has no effect if difftool=false")
flag.BoolVar(&ShowGenesis, "genesis", false, "Dump the genesis block")
@ -125,8 +125,38 @@ func Init() {
flag.BoolVar(&StartJsConsole, "js", false, "launches javascript console")
flag.BoolVar(&PrintVersion, "version", false, "prints version number")
// Network stuff
var (
nodeKeyFile = flag.String("nodekey", "", "network private key file")
nodeKeyHex = flag.String("nodekeyhex", "", "network private key (for testing)")
natstr = flag.String("nat", "any", "port mapping mechanism (any|none|upnp|pmp|extip:<IP>)")
)
flag.BoolVar(&Dial, "dial", true, "dial out connections (default on)")
flag.BoolVar(&SHH, "shh", true, "run whisper protocol (default on)")
flag.StringVar(&OutboundPort, "port", "30303", "listening port")
flag.StringVar(&BootNodes, "bootnodes", "", "space-separated node URLs for discovery bootstrap")
flag.IntVar(&MaxPeer, "maxpeer", 30, "maximum desired peers")
flag.Parse()
var err error
if NAT, err = nat.Parse(*natstr); err != nil {
log.Fatalf("-nat: %v", err)
}
switch {
case *nodeKeyFile != "" && *nodeKeyHex != "":
log.Fatal("Options -nodekey and -nodekeyhex are mutually exclusive")
case *nodeKeyFile != "":
if NodeKey, err = crypto.LoadECDSA(*nodeKeyFile); err != nil {
log.Fatalf("-nodekey: %v", err)
}
case *nodeKeyHex != "":
if NodeKey, err = crypto.HexToECDSA(*nodeKeyHex); err != nil {
log.Fatalf("-nodekeyhex: %v", err)
}
}
if VmType >= int(vm.MaxVmTy) {
log.Fatal("Invalid VM type ", VmType)
}

@ -31,6 +31,7 @@ import (
"github.com/ethereum/go-ethereum/eth"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/state"
)
@ -61,20 +62,19 @@ func main() {
utils.InitConfig(VmType, ConfigFile, Datadir, "ETH")
ethereum, err := eth.New(&eth.Config{
Name: ClientIdentifier,
Version: Version,
Name: p2p.MakeName(ClientIdentifier, Version),
KeyStore: KeyStore,
DataDir: Datadir,
LogFile: LogFile,
LogLevel: LogLevel,
Identifier: Identifier,
MaxPeers: MaxPeer,
Port: OutboundPort,
NATType: PMPGateway,
PMPGateway: PMPGateway,
NAT: NAT,
KeyRing: KeyRing,
Shh: SHH,
Dial: Dial,
BootNodes: BootNodes,
NodeKey: NodeKey,
})
if err != nil {
@ -134,7 +134,7 @@ func main() {
utils.StartWebSockets(ethereum, WsPort)
}
utils.StartEthereum(ethereum, SeedNode)
utils.StartEthereum(ethereum)
if StartJsConsole {
InitJsConsole(ethereum)

@ -79,6 +79,12 @@
contract.received({from: eth.coinbase}).changed(function() {
refresh();
});
var ev = contract.SingleTransact({})
ev.watch(function(log) {
someElement.innerHTML += "tnaheousnthaoeu";
});
eth.watch('chain').changed(function() {
refresh();
});

@ -1 +1,64 @@
var contract = web3.eth.contractFromAbi([{"constant":false,"inputs":[{"name":"_h","type":"hash256"}],"name":"confirm","outputs":[],"type":"function"},{"constant":false,"inputs":[{"name":_to","type":"address"},{"name":"_value","type":"uint256"},{"name":"_data","type":"bytes"}],"name":"execute","outputs":[{"name":"_r","type":"hash256"}],"type":"function"},{"constant":false,"inputs":[{"name":"_to","type":"address"}],"name":"kill","outputs":[],"type":"function"},{"constant":false,"inputs":[{"name":"_from","type":"address"},{"name":"_to","type":"address"}],"name":"changeOwner","outputs":[],"type":"function"},{"inputs":[{"indexed":false,"name":"value","type":"uint256"}],"name":"CashIn","type":"event"},{"inputs":[{"indexed":true,"name":"out","type":"string32"},{"indexed":false,"name":"owner","type":"address"},{"indexed":false,"name":"value","type":"uint256"},{"indexed":false,"name":"to","type":"address"}],"name":"SingleTransact","type":"event"},{"inputs":[{"indexed":true,"name":"out","type":"string32"},{"indexed":false,"name":"owner","type":"address"},{"indexed":false,"name":"operation","type":"hash256"},{"indexed":false,"name":"value","type":"uint256"},{"indexed":false,"name":"to","type":"address"}],"name":"MultiTransact","type":"event"}]);
var contract = web3.eth.contractFromAbi([
{
"constant":false,
"inputs":[
{"name":"_h","type":"hash256"}
],
"name":"confirm",
"outputs":[],
"type":"function"
},{
"constant":false,
"inputs":[
{"name":_to,"type":"address"},
{"name":"_value","type":"uint256"},
{"name":"_data","type":"bytes"}
],
"name":"execute",
"outputs":[
{"name":"_r","type":"hash256"}
],
"type":"function"
},{
"constant":false,
"inputs":[
{"name":"_to","type":"address"}
],"name":"kill",
"outputs":[],
"type":"function"
},{
"constant":false,
"inputs":[
{"name":"_from","type":"address"},
{"name":"_to","type":"address"}
],
"name":"changeOwner",
"outputs":[],
"type":"function"
},{
"inputs":[
{"indexed":false,"name":"value","type":"uint256"}
],
"name":"CashIn",
"type":"event"
},{
"inputs":[
{"indexed":true,"name":"out","type":"string32"},
{"indexed":false,"name":"owner","type":"address"},
{"indexed":false,"name":"value","type":"uint256"},
{"indexed":false,"name":"to","type":"address"}
],
"name":"SingleTransact",
"type":"event"
},{
"inputs":[
{"indexed":true,"name":"out","type":"string32"},
{"indexed":false,"name":"owner","type":"address"},
{"indexed":false,"name":"operation","type":"hash256"},
{"indexed":false,"name":"value","type":"uint256"},
{"indexed":false,"name":"to","type":"address"}
],
"name":"MultiTransact",
"type":"event"
}
]);

@ -17,6 +17,7 @@ ApplicationWindow {
// Use this to make the window frameless. But then you'll need to do move and resize by hand
property var ethx : Eth.ethx
property var catalog;
width: 1200
height: 820
@ -39,7 +40,7 @@ ApplicationWindow {
// Takes care of loading all default plugins
Component.onCompleted: {
var catalog = addPlugin("./views/catalog.qml", {noAdd: true, close: false, section: "begin"});
catalog = addPlugin("./views/catalog.qml", {noAdd: true, close: false, section: "begin"});
var wallet = addPlugin("./views/wallet.qml", {noAdd: true, close: false, section: "ethereum", active: true});
addPlugin("./views/miner.qml", {noAdd: true, close: false, section: "ethereum", active: true});
@ -169,7 +170,7 @@ ApplicationWindow {
text: "New tab"
shortcut: "Ctrl+t"
onTriggered: {
newBrowserTab("http://etherian.io");
activeView(catalog.view, catalog.menuItem);
}
}

@ -32,18 +32,6 @@ Rectangle {
width: 500
}
Label {
text: "Client ID"
}
TextField {
text: gui.getCustomIdentifier()
width: 500
placeholderText: "Anonymous"
onTextChanged: {
gui.setCustomIdentifier(text)
}
}
TextArea {
objectName: "statsPane"
width: parent.width

@ -64,15 +64,6 @@ func (gui *Gui) Transact(recipient, value, gas, gasPrice, d string) (string, err
return gui.xeth.Transact(recipient, value, gas, gasPrice, data)
}
func (gui *Gui) SetCustomIdentifier(customIdentifier string) {
gui.clientIdentity.SetCustomIdentifier(customIdentifier)
gui.config.Save("id", customIdentifier)
}
func (gui *Gui) GetCustomIdentifier() string {
return gui.clientIdentity.GetCustomIdentifier()
}
// functions that allow Gui to implement interface guilogger.LogSystem
func (gui *Gui) SetLogLevel(level logger.LogLevel) {
gui.logLevel = level

@ -24,7 +24,6 @@ import (
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/state"
"github.com/ethereum/go-ethereum/ui/qt"
"github.com/ethereum/go-ethereum/xeth"
"github.com/obscuren/qml"
@ -39,7 +38,6 @@ type AppContainer interface {
NewBlock(*types.Block)
NewWatcher(chan bool)
Messages(state.Messages, string)
Post(string, int)
}
@ -79,10 +77,6 @@ func (app *ExtApplication) run() {
return
}
// Subscribe to events
mux := app.lib.eth.EventMux()
app.events = mux.Subscribe(core.NewBlockEvent{}, state.Messages(nil))
// Call the main loop
go app.mainLoop()
@ -126,23 +120,3 @@ func (app *ExtApplication) mainLoop() {
func (self *ExtApplication) Watch(filterOptions map[string]interface{}, identifier string) {
self.filters[identifier] = qt.NewFilterFromMap(filterOptions, self.eth)
}
func (self *ExtApplication) GetMessages(object map[string]interface{}) string {
/* TODO remove me
filter := qt.NewFilterFromMap(object, self.eth)
messages := filter.Find()
var msgs []javascript.JSMessage
for _, m := range messages {
msgs = append(msgs, javascript.NewJSMessage(m))
}
b, err := json.Marshal(msgs)
if err != nil {
return "{\"error\":" + err.Error() + "}"
}
return string(b)
*/
return ""
}

@ -21,6 +21,7 @@
package main
import (
"crypto/ecdsa"
"flag"
"fmt"
"log"
@ -31,7 +32,9 @@ import (
"runtime"
"bitbucket.org/kardianos/osext"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p/nat"
"github.com/ethereum/go-ethereum/vm"
)
@ -39,19 +42,18 @@ var (
Identifier string
KeyRing string
KeyStore string
PMPGateway string
StartRpc bool
StartWebSockets bool
RpcPort int
WsPort int
UseUPnP bool
NatType string
OutboundPort string
ShowGenesis bool
AddPeer string
MaxPeer int
GenAddr bool
SeedNode string
BootNodes string
NodeKey *ecdsa.PrivateKey
NAT nat.Interface
SecretFile string
ExportDir string
NonInteractive bool
@ -99,6 +101,7 @@ func defaultDataDir() string {
var defaultConfigFile = path.Join(defaultDataDir(), "conf.ini")
func Init() {
// TODO: move common flag processing to cmd/utils
flag.Usage = func() {
fmt.Fprintf(os.Stderr, "%s [options] [filename]:\noptions precedence: default < config file < environment variables < command line\n", os.Args[0])
flag.PrintDefaults()
@ -108,30 +111,51 @@ func Init() {
flag.StringVar(&Identifier, "id", "", "Custom client identifier")
flag.StringVar(&KeyRing, "keyring", "", "identifier for keyring to use")
flag.StringVar(&KeyStore, "keystore", "db", "system to store keyrings: db|file (db)")
flag.StringVar(&OutboundPort, "port", "30303", "listening port")
flag.BoolVar(&UseUPnP, "upnp", true, "enable UPnP support")
flag.IntVar(&MaxPeer, "maxpeer", 30, "maximum desired peers")
flag.IntVar(&RpcPort, "rpcport", 8545, "port to start json-rpc server on")
flag.IntVar(&WsPort, "wsport", 40404, "port to start websocket rpc server on")
flag.BoolVar(&StartRpc, "rpc", true, "start rpc server")
flag.BoolVar(&StartWebSockets, "ws", false, "start websocket server")
flag.BoolVar(&NonInteractive, "y", false, "non-interactive mode (say yes to confirmations)")
flag.StringVar(&SeedNode, "seednode", "poc-8.ethdev.com:30303", "ip:port of seed node to connect to. Set to blank for skip")
flag.BoolVar(&GenAddr, "genaddr", false, "create a new priv/pub key")
flag.StringVar(&NatType, "nat", "", "NAT support (UPNP|PMP) (none)")
flag.StringVar(&SecretFile, "import", "", "imports the file given (hex or mnemonic formats)")
flag.StringVar(&ExportDir, "export", "", "exports the session keyring to files in the directory given")
flag.StringVar(&LogFile, "logfile", "", "log file (defaults to standard output)")
flag.StringVar(&Datadir, "datadir", defaultDataDir(), "specifies the datadir to use")
flag.StringVar(&PMPGateway, "pmp", "", "Gateway IP for PMP")
flag.StringVar(&ConfigFile, "conf", defaultConfigFile, "config file")
flag.StringVar(&DebugFile, "debug", "", "debug file (no debugging if not set)")
flag.IntVar(&LogLevel, "loglevel", int(logger.InfoLevel), "loglevel: 0-5: silent,error,warn,info,debug,debug detail)")
flag.StringVar(&AssetPath, "asset_path", defaultAssetPath(), "absolute path to GUI assets directory")
// Network stuff
var (
nodeKeyFile = flag.String("nodekey", "", "network private key file")
nodeKeyHex = flag.String("nodekeyhex", "", "network private key (for testing)")
natstr = flag.String("nat", "any", "port mapping mechanism (any|none|upnp|pmp|extip:<IP>)")
)
flag.StringVar(&OutboundPort, "port", "30303", "listening port")
flag.StringVar(&BootNodes, "bootnodes", "", "space-separated node URLs for discovery bootstrap")
flag.IntVar(&MaxPeer, "maxpeer", 30, "maximum desired peers")
flag.Parse()
var err error
if NAT, err = nat.Parse(*natstr); err != nil {
log.Fatalf("-nat: %v", err)
}
switch {
case *nodeKeyFile != "" && *nodeKeyHex != "":
log.Fatal("Options -nodekey and -nodekeyhex are mutually exclusive")
case *nodeKeyFile != "":
if NodeKey, err = crypto.LoadECDSA(*nodeKeyFile); err != nil {
log.Fatalf("-nodekey: %v", err)
}
case *nodeKeyHex != "":
if NodeKey, err = crypto.HexToECDSA(*nodeKeyHex); err != nil {
log.Fatalf("-nodekeyhex: %v", err)
}
}
if VmType >= int(vm.MaxVmTy) {
log.Fatal("Invalid VM type ", VmType)
}

@ -41,7 +41,6 @@ import (
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/miner"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/ui/qt/qwhisper"
"github.com/ethereum/go-ethereum/xeth"
"github.com/obscuren/qml"
@ -78,7 +77,6 @@ type Gui struct {
xeth *xeth.XEth
Session string
clientIdentity *p2p.SimpleClientIdentity
config *ethutil.ConfigManager
plugins map[string]plugin
@ -87,7 +85,7 @@ type Gui struct {
}
// Create GUI, but doesn't start it
func NewWindow(ethereum *eth.Ethereum, config *ethutil.ConfigManager, clientIdentity *p2p.SimpleClientIdentity, session string, logLevel int) *Gui {
func NewWindow(ethereum *eth.Ethereum, config *ethutil.ConfigManager, session string, logLevel int) *Gui {
db, err := ethdb.NewLDBDatabase("tx_database")
if err != nil {
panic(err)
@ -100,7 +98,6 @@ func NewWindow(ethereum *eth.Ethereum, config *ethutil.ConfigManager, clientIden
logLevel: logger.LogLevel(logLevel),
Session: session,
open: false,
clientIdentity: clientIdentity,
config: config,
plugins: make(map[string]plugin),
serviceEvents: make(chan ServEv, 1),

@ -31,7 +31,6 @@ import (
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/state"
"github.com/ethereum/go-ethereum/xeth"
"github.com/howeyc/fsnotify"
"github.com/obscuren/qml"
@ -144,19 +143,6 @@ func (app *HtmlApplication) NewBlock(block *types.Block) {
app.webView.Call("onNewBlockCb", b)
}
func (self *HtmlApplication) Messages(messages state.Messages, id string) {
/* TODO remove me
var msgs []javascript.JSMessage
for _, m := range messages {
msgs = append(msgs, javascript.NewJSMessage(m))
}
b, _ := json.Marshal(msgs)
self.webView.Call("onWatchedCb", string(b), id)
*/
}
func (app *HtmlApplication) Destroy() {
app.engine.Destroy()
}

@ -52,17 +52,16 @@ func run() error {
config := utils.InitConfig(VmType, ConfigFile, Datadir, "ETH")
ethereum, err := eth.New(&eth.Config{
Name: ClientIdentifier,
Version: Version,
Name: p2p.MakeName(ClientIdentifier, Version),
KeyStore: KeyStore,
DataDir: Datadir,
LogFile: LogFile,
LogLevel: LogLevel,
Identifier: Identifier,
MaxPeers: MaxPeer,
Port: OutboundPort,
NATType: PMPGateway,
PMPGateway: PMPGateway,
NAT: NAT,
BootNodes: BootNodes,
NodeKey: NodeKey,
KeyRing: KeyRing,
Dial: true,
})
@ -79,12 +78,12 @@ func run() error {
utils.StartWebSockets(ethereum, WsPort)
}
gui := NewWindow(ethereum, config, ethereum.ClientIdentity().(*p2p.SimpleClientIdentity), KeyRing, LogLevel)
gui := NewWindow(ethereum, config, KeyRing, LogLevel)
utils.RegisterInterrupt(func(os.Signal) {
gui.Stop()
})
go utils.StartEthereum(ethereum, SeedNode)
go utils.StartEthereum(ethereum)
fmt.Println("ETH stack took", time.Since(tstart))

@ -22,12 +22,10 @@
package main
import (
"fmt"
"runtime"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/state"
"github.com/ethereum/go-ethereum/xeth"
"github.com/obscuren/qml"
)
@ -74,10 +72,6 @@ func (app *QmlApplication) NewBlock(block *types.Block) {
app.win.Call("onNewBlockCb", pblock)
}
func (self *QmlApplication) Messages(msgs state.Messages, id string) {
fmt.Println("IMPLEMENT QML APPLICATION MESSAGES METHOD")
}
// Getters
func (app *QmlApplication) Engine() *qml.Engine {
return app.engine

@ -136,15 +136,15 @@ func (ui *UiLib) Muted(content string) {
func (ui *UiLib) Connect(button qml.Object) {
if !ui.connected {
ui.eth.Start(SeedNode)
ui.eth.Start()
ui.connected = true
button.Set("enabled", false)
}
}
func (ui *UiLib) ConnectToPeer(addr string) {
if err := ui.eth.SuggestPeer(addr); err != nil {
guilogger.Infoln(err)
func (ui *UiLib) ConnectToPeer(nodeURL string) {
if err := ui.eth.SuggestPeer(nodeURL); err != nil {
guilogger.Infoln("SuggestPeer error: " + err.Error())
}
}

@ -1,58 +0,0 @@
/*
This file is part of go-ethereum
go-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
go-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with go-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
package main
import (
"crypto/elliptic"
"flag"
"log"
"os"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p"
)
var (
natType = flag.String("nat", "", "NAT traversal implementation")
pmpGateway = flag.String("gateway", "", "gateway address for NAT-PMP")
listenAddr = flag.String("addr", ":30301", "listen address")
)
func main() {
flag.Parse()
nat, err := p2p.ParseNAT(*natType, *pmpGateway)
if err != nil {
log.Fatal("invalid nat:", err)
}
logger.AddLogSystem(logger.NewStdLogSystem(os.Stdout, log.LstdFlags, logger.InfoLevel))
key, _ := crypto.GenerateKey()
marshaled := elliptic.Marshal(crypto.S256(), key.PublicKey.X, key.PublicKey.Y)
srv := p2p.Server{
MaxPeers: 100,
Identity: p2p.NewSimpleClientIdentity("Ethereum(G)", "0.1", "Peer Server Two", marshaled),
ListenAddr: *listenAddr,
NAT: nat,
NoDial: true,
}
if err := srv.Start(); err != nil {
log.Fatal("could not start server:", err)
}
select {}
}

@ -121,13 +121,11 @@ func exit(err error) {
os.Exit(status)
}
func StartEthereum(ethereum *eth.Ethereum, SeedNode string) {
clilogger.Infof("Starting %s", ethereum.ClientIdentity())
err := ethereum.Start(SeedNode)
if err != nil {
func StartEthereum(ethereum *eth.Ethereum) {
clilogger.Infoln("Starting ", ethereum.Name())
if err := ethereum.Start(); err != nil {
exit(err)
}
RegisterInterrupt(func(sig os.Signal) {
ethereum.Stop()
logger.Flush()

@ -9,7 +9,6 @@ import (
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/p2p"
)
// Implement our EthTest Manager
@ -54,13 +53,6 @@ func (tm *TestManager) TxPool() *TxPool {
func (tm *TestManager) EventMux() *event.TypeMux {
return tm.eventMux
}
func (tm *TestManager) Broadcast(msgType p2p.Msg, data []interface{}) {
fmt.Println("Broadcast not implemented")
}
func (tm *TestManager) ClientIdentity() p2p.ClientIdentity {
return nil
}
func (tm *TestManager) KeyManager() *crypto.KeyManager {
return nil
}

@ -16,7 +16,6 @@ type EthManager interface {
IsListening() bool
Peers() []*p2p.Peer
KeyManager() *crypto.KeyManager
ClientIdentity() p2p.ClientIdentity
Db() ethutil.Database
EventMux() *event.TypeMux
}

@ -8,6 +8,8 @@ import (
"crypto/rand"
"crypto/sha256"
"fmt"
"io"
"os"
"encoding/hex"
"encoding/json"
@ -27,10 +29,11 @@ func init() {
ecies.AddParamsForCurve(S256(), ecies.ECIES_AES128_SHA256)
}
func Sha3(data []byte) []byte {
func Sha3(data ...[]byte) []byte {
d := sha3.NewKeccak256()
d.Write(data)
for _, b := range data {
d.Write(b)
}
return d.Sum(nil)
}
@ -98,6 +101,32 @@ func FromECDSAPub(pub *ecdsa.PublicKey) []byte {
return elliptic.Marshal(S256(), pub.X, pub.Y)
}
// HexToECDSA parses a secp256k1 private key.
func HexToECDSA(hexkey string) (*ecdsa.PrivateKey, error) {
b, err := hex.DecodeString(hexkey)
if err != nil {
return nil, errors.New("invalid hex string")
}
if len(b) != 32 {
return nil, errors.New("invalid length, need 256 bits")
}
return ToECDSA(b), nil
}
// LoadECDSA loads a secp256k1 private key from the given file.
func LoadECDSA(file string) (*ecdsa.PrivateKey, error) {
buf := make([]byte, 32)
fd, err := os.Open(file)
if err != nil {
return nil, err
}
defer fd.Close()
if _, err := io.ReadFull(fd, buf); err != nil {
return nil, err
}
return ToECDSA(buf), nil
}
func GenerateKey() (*ecdsa.PrivateKey, error) {
return ecdsa.GenerateKey(S256(), rand.Reader)
}

@ -18,7 +18,7 @@ import (
func TestSha3(t *testing.T) {
msg := []byte("abc")
exp, _ := hex.DecodeString("4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45")
checkhash(t, "Sha3-256", Sha3, msg, exp)
checkhash(t, "Sha3-256", func(in []byte) []byte { return Sha3(in) }, msg, exp)
}
func TestSha256(t *testing.T) {

@ -25,11 +25,12 @@ package crypto
import (
"bytes"
"code.google.com/p/go-uuid/uuid"
"crypto/ecdsa"
"crypto/elliptic"
"encoding/json"
"io"
"code.google.com/p/go-uuid/uuid"
)
type Key struct {

@ -1,9 +1,9 @@
package eth
import (
"crypto/ecdsa"
"fmt"
"net"
"sync"
"strings"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/crypto"
@ -12,33 +12,58 @@ import (
"github.com/ethereum/go-ethereum/event"
ethlogger "github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/p2p/nat"
"github.com/ethereum/go-ethereum/pow/ezp"
"github.com/ethereum/go-ethereum/rpc"
"github.com/ethereum/go-ethereum/whisper"
)
var logger = ethlogger.NewLogger("SERV")
var jsonlogger = ethlogger.NewJsonLogger()
type Config struct {
Name string
Version string
Identifier string
KeyStore string
DataDir string
LogFile string
LogLevel int
KeyRing string
LogFormat string
MaxPeers int
Port string
NATType string
PMPGateway string
// This should be a space-separated list of
// discovery node URLs.
BootNodes string
// This key is used to identify the node on the network.
// If nil, an ephemeral key is used.
NodeKey *ecdsa.PrivateKey
NAT nat.Interface
Shh bool
Dial bool
KeyManager *crypto.KeyManager
}
var logger = ethlogger.NewLogger("SERV")
func (cfg *Config) parseBootNodes() []*discover.Node {
var ns []*discover.Node
for _, url := range strings.Split(cfg.BootNodes, " ") {
if url == "" {
continue
}
n, err := discover.ParseNode(url)
if err != nil {
logger.Errorf("Bootstrap URL %s: %v\n", url, err)
continue
}
ns = append(ns, n)
}
return ns
}
type Ethereum struct {
// Channel for shutting down the ethereum
@ -66,18 +91,14 @@ type Ethereum struct {
WsServer rpc.RpcServer
keyManager *crypto.KeyManager
clientIdentity p2p.ClientIdentity
logger ethlogger.LogSystem
synclock sync.Mutex
syncGroup sync.WaitGroup
Mining bool
}
func New(config *Config) (*Ethereum, error) {
// Boostrap database
logger := ethlogger.New(config.DataDir, config.LogFile, config.LogLevel)
logger := ethlogger.New(config.DataDir, config.LogFile, config.LogLevel, config.LogFormat)
db, err := ethdb.NewLDBDatabase("blockchain")
if err != nil {
return nil, err
@ -103,9 +124,6 @@ func New(config *Config) (*Ethereum, error) {
// Initialise the keyring
keyManager.Init(config.KeyRing, 0, false)
// Create a new client id for this instance. This will help identifying the node on the network
clientId := p2p.NewSimpleClientIdentity(config.Name, config.Version, config.Identifier, keyManager.PublicKey())
saveProtocolVersion(db)
//ethutil.Config.Db = db
@ -114,7 +132,6 @@ func New(config *Config) (*Ethereum, error) {
quit: make(chan bool),
db: db,
keyManager: keyManager,
clientIdentity: clientId,
blacklist: p2p.NewBlacklist(),
eventMux: &event.TypeMux{},
logger: logger,
@ -132,21 +149,22 @@ func New(config *Config) (*Ethereum, error) {
ethProto := EthProtocol(eth.txPool, eth.chainManager, eth.blockPool)
protocols := []p2p.Protocol{ethProto, eth.whisper.Protocol()}
nat, err := p2p.ParseNAT(config.NATType, config.PMPGateway)
if err != nil {
return nil, err
netprv := config.NodeKey
if netprv == nil {
if netprv, err = crypto.GenerateKey(); err != nil {
return nil, fmt.Errorf("could not generate server key: %v", err)
}
}
eth.net = &p2p.Server{
Identity: clientId,
PrivateKey: netprv,
Name: config.Name,
MaxPeers: config.MaxPeers,
Protocols: protocols,
Blacklist: eth.blacklist,
NAT: nat,
NAT: config.NAT,
NoDial: !config.Dial,
BootstrapNodes: config.parseBootNodes(),
}
if len(config.Port) > 0 {
eth.net.ListenAddr = ":" + config.Port
}
@ -162,8 +180,8 @@ func (s *Ethereum) Logger() ethlogger.LogSystem {
return s.logger
}
func (s *Ethereum) ClientIdentity() p2p.ClientIdentity {
return s.clientIdentity
func (s *Ethereum) Name() string {
return s.net.Name
}
func (s *Ethereum) ChainManager() *core.ChainManager {
@ -219,7 +237,14 @@ func (s *Ethereum) Coinbase() []byte {
}
// Start the ethereum
func (s *Ethereum) Start(seedNode string) error {
func (s *Ethereum) Start() error {
jsonlogger.LogJson(&ethlogger.LogStarting{
ClientString: s.net.Name,
Coinbase: ethutil.Bytes2Hex(s.KeyManager().Address()),
ProtocolVersion: ProtocolVersion,
LogEvent: ethlogger.LogEvent{Guid: ethutil.Bytes2Hex(crypto.FromECDSAPub(&s.net.PrivateKey.PublicKey))},
})
err := s.net.Start()
if err != nil {
return err
@ -241,26 +266,16 @@ func (s *Ethereum) Start(seedNode string) error {
s.blockSub = s.eventMux.Subscribe(core.NewMinedBlockEvent{})
go s.blockBroadcastLoop()
// TODO: read peers here
if len(seedNode) > 0 {
logger.Infof("Connect to seed node %v", seedNode)
if err := s.SuggestPeer(seedNode); err != nil {
logger.Infoln(err)
}
}
logger.Infoln("Server started")
return nil
}
func (self *Ethereum) SuggestPeer(addr string) error {
netaddr, err := net.ResolveTCPAddr("tcp", addr)
func (self *Ethereum) SuggestPeer(nodeURL string) error {
n, err := discover.ParseNode(nodeURL)
if err != nil {
logger.Errorf("couldn't resolve %s:", addr, err)
return err
return fmt.Errorf("invalid node URL: %v", err)
}
self.net.SuggestPeer(netaddr.IP, netaddr.Port, nil)
self.net.SuggestPeer(n)
return nil
}

@ -92,13 +92,14 @@ func EthProtocol(txPool txPool, chainManager chainManager, blockPool blockPool)
// the main loop that handles incoming messages
// note RemovePeer in the post-disconnect hook
func runEthProtocol(txPool txPool, chainManager chainManager, blockPool blockPool, peer *p2p.Peer, rw p2p.MsgReadWriter) (err error) {
id := peer.ID()
self := &ethProtocol{
txPool: txPool,
chainManager: chainManager,
blockPool: blockPool,
rw: rw,
peer: peer,
id: fmt.Sprintf("%x", peer.Identity().Pubkey()[:8]),
id: fmt.Sprintf("%x", id[:8]),
}
err = self.handleStatus()
if err == nil {

@ -14,6 +14,7 @@ import (
"github.com/ethereum/go-ethereum/ethutil"
ethlogger "github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/discover"
)
var sys = ethlogger.NewStdLogSystem(os.Stdout, log.LstdFlags, ethlogger.LogLevel(ethlogger.DebugDetailLevel))
@ -128,26 +129,11 @@ func (self *testBlockPool) RemovePeer(peerId string) {
}
}
// TODO: refactor this into p2p/client_identity
type peerId struct {
pubkey []byte
}
func (self *peerId) String() string {
return "test peer"
}
func (self *peerId) Pubkey() (pubkey []byte) {
pubkey = self.pubkey
if len(pubkey) == 0 {
pubkey = crypto.GenerateNewKeyPair().PublicKey
self.pubkey = pubkey
}
return
}
func testPeer() *p2p.Peer {
return p2p.NewPeer(&peerId{}, []p2p.Cap{})
var id discover.NodeID
pk := crypto.GenerateNewKeyPair().PublicKey
copy(id[:], pk)
return p2p.NewPeer(id, "test peer", []p2p.Cap{})
}
type ethProtocolTester struct {

@ -1,11 +1,11 @@
package ethdb
import (
"fmt"
"path"
"fmt"
"github.com/ethereum/go-ethereum/compression/rle"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/compression/rle"
"github.com/syndtr/goleveldb/leveldb"
"github.com/syndtr/goleveldb/leveldb/iterator"
)

@ -197,12 +197,13 @@ func (self *JSRE) watch(call otto.FunctionCall) otto.Value {
}
func (self *JSRE) addPeer(call otto.FunctionCall) otto.Value {
host, err := call.Argument(0).ToString()
nodeURL, err := call.Argument(0).ToString()
if err != nil {
return otto.FalseValue()
}
self.ethereum.SuggestPeer(host)
if err := self.ethereum.SuggestPeer(nodeURL); err != nil {
return otto.FalseValue()
}
return otto.TrueValue()
}

@ -18,7 +18,7 @@ func openLogFile(datadir string, filename string) *os.File {
return file
}
func New(datadir string, logFile string, logLevel int) LogSystem {
func New(datadir string, logFile string, logLevel int, logFormat string) LogSystem {
var writer io.Writer
if logFile == "" {
writer = os.Stdout
@ -26,7 +26,13 @@ func New(datadir string, logFile string, logLevel int) LogSystem {
writer = openLogFile(datadir, logFile)
}
sys := NewStdLogSystem(writer, log.LstdFlags, LogLevel(logLevel))
var sys LogSystem
switch logFormat {
case "raw":
sys = NewRawLogSystem(writer, 0, LogLevel(logLevel))
default:
sys = NewStdLogSystem(writer, log.LstdFlags, LogLevel(logLevel))
}
AddLogSystem(sys)
return sys

@ -13,28 +13,12 @@ logging of mutable state.
package logger
import (
"encoding/json"
"fmt"
"io"
"log"
"os"
"sync"
"sync/atomic"
)
// LogSystem is implemented by log output devices.
// All methods can be called concurrently from multiple goroutines.
type LogSystem interface {
GetLogLevel() LogLevel
SetLogLevel(i LogLevel)
LogPrint(LogLevel, string)
}
type message struct {
level LogLevel
msg string
}
type LogLevel uint8
type LogLevel uint32
const (
// Standard log levels
@ -44,102 +28,9 @@ const (
InfoLevel
DebugLevel
DebugDetailLevel
JsonLevel = 1000
)
var (
logMessageC = make(chan message)
addSystemC = make(chan LogSystem)
flushC = make(chan chan struct{})
resetC = make(chan chan struct{})
)
func init() {
go dispatchLoop()
}
// each system can buffer this many messages before
// blocking incoming log messages.
const sysBufferSize = 500
func dispatchLoop() {
var (
systems []LogSystem
systemIn []chan message
systemWG sync.WaitGroup
)
bootSystem := func(sys LogSystem) {
in := make(chan message, sysBufferSize)
systemIn = append(systemIn, in)
systemWG.Add(1)
go sysLoop(sys, in, &systemWG)
}
for {
select {
case msg := <-logMessageC:
for _, c := range systemIn {
c <- msg
}
case sys := <-addSystemC:
systems = append(systems, sys)
bootSystem(sys)
case waiter := <-resetC:
// reset means terminate all systems
for _, c := range systemIn {
close(c)
}
systems = nil
systemIn = nil
systemWG.Wait()
close(waiter)
case waiter := <-flushC:
// flush means reboot all systems
for _, c := range systemIn {
close(c)
}
systemIn = nil
systemWG.Wait()
for _, sys := range systems {
bootSystem(sys)
}
close(waiter)
}
}
}
func sysLoop(sys LogSystem, in <-chan message, wg *sync.WaitGroup) {
for msg := range in {
if sys.GetLogLevel() >= msg.level {
sys.LogPrint(msg.level, msg.msg)
}
}
wg.Done()
}
// Reset removes all active log systems.
// It blocks until all current messages have been delivered.
func Reset() {
waiter := make(chan struct{})
resetC <- waiter
<-waiter
}
// Flush waits until all current log messages have been dispatched to
// the active log systems.
func Flush() {
waiter := make(chan struct{})
flushC <- waiter
<-waiter
}
// AddLogSystem starts printing messages to the given LogSystem.
func AddLogSystem(sys LogSystem) {
addSystemC <- sys
}
// A Logger prints messages prefixed by a given tag. It provides named
// Printf and Println style methods for all loglevels. Each ethereum
// component should have its own logger with a unique prefix.
@ -223,26 +114,21 @@ func (logger *Logger) Fatalf(format string, v ...interface{}) {
os.Exit(0)
}
// NewStdLogSystem creates a LogSystem that prints to the given writer.
// The flag values are defined package log.
func NewStdLogSystem(writer io.Writer, flags int, level LogLevel) LogSystem {
logger := log.New(writer, "", flags)
return &stdLogSystem{logger, uint32(level)}
type JsonLogger struct {
Coinbase string
}
type stdLogSystem struct {
logger *log.Logger
level uint32
func NewJsonLogger() *JsonLogger {
return &JsonLogger{}
}
func (t *stdLogSystem) LogPrint(level LogLevel, msg string) {
t.logger.Print(msg)
func (logger *JsonLogger) LogJson(v JsonLog) {
msgname := v.EventName()
obj := map[string]interface{}{
msgname: v,
}
func (t *stdLogSystem) SetLogLevel(i LogLevel) {
atomic.StoreUint32(&t.level, uint32(i))
}
jsontxt, _ := json.Marshal(obj)
logMessageC <- message{JsonLevel, string(jsontxt)}
func (t *stdLogSystem) GetLogLevel() LogLevel {
return LogLevel(atomic.LoadUint32(&t.level))
}

63
logger/logsystem.go Normal file

@ -0,0 +1,63 @@
package logger
import (
"io"
"log"
"sync/atomic"
)
// LogSystem is implemented by log output devices.
// All methods can be called concurrently from multiple goroutines.
type LogSystem interface {
GetLogLevel() LogLevel
SetLogLevel(i LogLevel)
LogPrint(LogLevel, string)
}
// NewStdLogSystem creates a LogSystem that prints to the given writer.
// The flag values are defined package log.
func NewStdLogSystem(writer io.Writer, flags int, level LogLevel) LogSystem {
logger := log.New(writer, "", flags)
return &stdLogSystem{logger, uint32(level)}
}
type stdLogSystem struct {
logger *log.Logger
level uint32
}
func (t *stdLogSystem) LogPrint(level LogLevel, msg string) {
t.logger.Print(msg)
}
func (t *stdLogSystem) SetLogLevel(i LogLevel) {
atomic.StoreUint32(&t.level, uint32(i))
}
func (t *stdLogSystem) GetLogLevel() LogLevel {
return LogLevel(atomic.LoadUint32(&t.level))
}
// NewRawLogSystem creates a LogSystem that prints to the given writer without
// adding extra information. Suitable for preformatted output
func NewRawLogSystem(writer io.Writer, flags int, level LogLevel) LogSystem {
logger := log.New(writer, "", 0)
return &rawLogSystem{logger, uint32(level)}
}
type rawLogSystem struct {
logger *log.Logger
level uint32
}
func (t *rawLogSystem) LogPrint(level LogLevel, msg string) {
t.logger.Print(msg)
}
func (t *rawLogSystem) SetLogLevel(i LogLevel) {
atomic.StoreUint32(&t.level, uint32(i))
}
func (t *rawLogSystem) GetLogLevel() LogLevel {
return LogLevel(atomic.LoadUint32(&t.level))
}

112
logger/sys.go Normal file

@ -0,0 +1,112 @@
package logger
import (
"sync"
)
type message struct {
level LogLevel
msg string
}
var (
logMessageC = make(chan message)
addSystemC = make(chan LogSystem)
flushC = make(chan chan struct{})
resetC = make(chan chan struct{})
)
func init() {
go dispatchLoop()
}
// each system can buffer this many messages before
// blocking incoming log messages.
const sysBufferSize = 500
func dispatchLoop() {
var (
systems []LogSystem
systemIn []chan message
systemWG sync.WaitGroup
)
bootSystem := func(sys LogSystem) {
in := make(chan message, sysBufferSize)
systemIn = append(systemIn, in)
systemWG.Add(1)
go sysLoop(sys, in, &systemWG)
}
for {
select {
case msg := <-logMessageC:
for _, c := range systemIn {
c <- msg
}
case sys := <-addSystemC:
systems = append(systems, sys)
bootSystem(sys)
case waiter := <-resetC:
// reset means terminate all systems
for _, c := range systemIn {
close(c)
}
systems = nil
systemIn = nil
systemWG.Wait()
close(waiter)
case waiter := <-flushC:
// flush means reboot all systems
for _, c := range systemIn {
close(c)
}
systemIn = nil
systemWG.Wait()
for _, sys := range systems {
bootSystem(sys)
}
close(waiter)
}
}
}
func sysLoop(sys LogSystem, in <-chan message, wg *sync.WaitGroup) {
for msg := range in {
switch sys.(type) {
case *rawLogSystem:
// This is a semantic hack since rawLogSystem has little to do with JsonLevel
if msg.level == JsonLevel {
sys.LogPrint(msg.level, msg.msg)
}
default:
if sys.GetLogLevel() >= msg.level {
sys.LogPrint(msg.level, msg.msg)
}
}
}
wg.Done()
}
// Reset removes all active log systems.
// It blocks until all current messages have been delivered.
func Reset() {
waiter := make(chan struct{})
resetC <- waiter
<-waiter
}
// Flush waits until all current log messages have been dispatched to
// the active log systems.
func Flush() {
waiter := make(chan struct{})
flushC <- waiter
<-waiter
}
// AddLogSystem starts printing messages to the given LogSystem.
func AddLogSystem(sys LogSystem) {
addSystemC <- sys
}

360
logger/types.go Normal file

@ -0,0 +1,360 @@
package logger
import (
"time"
)
type utctime8601 struct{}
func (utctime8601) MarshalJSON() ([]byte, error) {
// FIX This should be re-formated for proper ISO 8601
return []byte(`"` + time.Now().UTC().Format(time.RFC3339Nano)[:26] + `Z"`), nil
}
type JsonLog interface {
EventName() string
}
type LogEvent struct {
Guid string `json:"guid"`
Ts utctime8601 `json:"ts"`
// Level string `json:"level"`
}
type LogStarting struct {
ClientString string `json:"version_string"`
Coinbase string `json:"coinbase"`
ProtocolVersion int `json:"eth_version"`
LogEvent
}
func (l *LogStarting) EventName() string {
return "starting"
}
type P2PConnecting struct {
RemoteId string `json:"remote_id"`
RemoteEndpoint string `json:"remote_endpoint"`
NumConnections int `json:"num_connections"`
LogEvent
}
func (l *P2PConnecting) EventName() string {
return "p2p.connecting"
}
type P2PConnected struct {
NumConnections int `json:"num_connections"`
RemoteId string `json:"remote_id"`
LogEvent
}
func (l *P2PConnected) EventName() string {
return "p2p.connected"
}
type P2PHandshaked struct {
RemoteCapabilities []string `json:"remote_capabilities"`
RemoteId string `json:"remote_id"`
NumConnections int `json:"num_connections"`
LogEvent
}
func (l *P2PHandshaked) EventName() string {
return "p2p.handshaked"
}
type P2PDisconnected struct {
NumConnections int `json:"num_connections"`
RemoteId string `json:"remote_id"`
LogEvent
}
func (l *P2PDisconnected) EventName() string {
return "p2p.disconnected"
}
type P2PDisconnecting struct {
Reason string `json:"reason"`
RemoteId string `json:"remote_id"`
NumConnections int `json:"num_connections"`
LogEvent
}
func (l *P2PDisconnecting) EventName() string {
return "p2p.disconnecting"
}
type P2PDisconnectingBadHandshake struct {
Reason string `json:"reason"`
RemoteId string `json:"remote_id"`
NumConnections int `json:"num_connections"`
LogEvent
}
func (l *P2PDisconnectingBadHandshake) EventName() string {
return "p2p.disconnecting.bad_handshake"
}
type P2PDisconnectingBadProtocol struct {
Reason string `json:"reason"`
RemoteId string `json:"remote_id"`
NumConnections int `json:"num_connections"`
LogEvent
}
func (l *P2PDisconnectingBadProtocol) EventName() string {
return "p2p.disconnecting.bad_protocol"
}
type P2PDisconnectingReputation struct {
Reason string `json:"reason"`
RemoteId string `json:"remote_id"`
NumConnections int `json:"num_connections"`
LogEvent
}
func (l *P2PDisconnectingReputation) EventName() string {
return "p2p.disconnecting.reputation"
}
type P2PDisconnectingDHT struct {
Reason string `json:"reason"`
RemoteId string `json:"remote_id"`
NumConnections int `json:"num_connections"`
LogEvent
}
func (l *P2PDisconnectingDHT) EventName() string {
return "p2p.disconnecting.dht"
}
type P2PEthDisconnectingBadBlock struct {
Reason string `json:"reason"`
RemoteId string `json:"remote_id"`
NumConnections int `json:"num_connections"`
LogEvent
}
func (l *P2PEthDisconnectingBadBlock) EventName() string {
return "p2p.eth.disconnecting.bad_block"
}
type P2PEthDisconnectingBadTx struct {
Reason string `json:"reason"`
RemoteId string `json:"remote_id"`
NumConnections int `json:"num_connections"`
LogEvent
}
func (l *P2PEthDisconnectingBadTx) EventName() string {
return "p2p.eth.disconnecting.bad_tx"
}
type EthNewBlockMined struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
BlockHash string `json:"block_hash"`
BlockHexRlp string `json:"block_hexrlp"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockMined) EventName() string {
return "eth.newblock.mined"
}
type EthNewBlockBroadcasted struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
BlockHash string `json:"block_hash"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockBroadcasted) EventName() string {
return "eth.newblock.broadcasted"
}
type EthNewBlockReceived struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
BlockHash string `json:"block_hash"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockReceived) EventName() string {
return "eth.newblock.received"
}
type EthNewBlockIsKnown struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
BlockHash string `json:"block_hash"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockIsKnown) EventName() string {
return "eth.newblock.is_known"
}
type EthNewBlockIsNew struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
BlockHash string `json:"block_hash"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockIsNew) EventName() string {
return "eth.newblock.is_new"
}
type EthNewBlockMissingParent struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
BlockHash string `json:"block_hash"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockMissingParent) EventName() string {
return "eth.newblock.missing_parent"
}
type EthNewBlockIsInvalid struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
BlockHash string `json:"block_hash"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockIsInvalid) EventName() string {
return "eth.newblock.is_invalid"
}
type EthNewBlockChainIsOlder struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
BlockHash string `json:"block_hash"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockChainIsOlder) EventName() string {
return "eth.newblock.chain.is_older"
}
type EthNewBlockChainIsCanonical struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
BlockHash string `json:"block_hash"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockChainIsCanonical) EventName() string {
return "eth.newblock.chain.is_cannonical"
}
type EthNewBlockChainNotCanonical struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
BlockHash string `json:"block_hash"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockChainNotCanonical) EventName() string {
return "eth.newblock.chain.not_cannonical"
}
type EthNewBlockChainSwitched struct {
BlockNumber int `json:"block_number"`
HeadHash string `json:"head_hash"`
OldHeadHash string `json:"old_head_hash"`
BlockHash string `json:"block_hash"`
BlockDifficulty int `json:"block_difficulty"`
BlockPrevHash string `json:"block_prev_hash"`
LogEvent
}
func (l *EthNewBlockChainSwitched) EventName() string {
return "eth.newblock.chain.switched"
}
type EthTxCreated struct {
TxHash string `json:"tx_hash"`
TxSender string `json:"tx_sender"`
TxAddress string `json:"tx_address"`
TxHexRLP string `json:"tx_hexrlp"`
TxNonce int `json:"tx_nonce"`
LogEvent
}
func (l *EthTxCreated) EventName() string {
return "eth.tx.created"
}
type EthTxReceived struct {
TxHash string `json:"tx_hash"`
TxAddress string `json:"tx_address"`
TxHexRLP string `json:"tx_hexrlp"`
RemoteId string `json:"remote_id"`
TxNonce int `json:"tx_nonce"`
LogEvent
}
func (l *EthTxReceived) EventName() string {
return "eth.tx.received"
}
type EthTxBroadcasted struct {
TxHash string `json:"tx_hash"`
TxSender string `json:"tx_sender"`
TxAddress string `json:"tx_address"`
TxNonce int `json:"tx_nonce"`
LogEvent
}
func (l *EthTxBroadcasted) EventName() string {
return "eth.tx.broadcasted"
}
type EthTxValidated struct {
TxHash string `json:"tx_hash"`
TxSender string `json:"tx_sender"`
TxAddress string `json:"tx_address"`
TxNonce int `json:"tx_nonce"`
LogEvent
}
func (l *EthTxValidated) EventName() string {
return "eth.tx.validated"
}
type EthTxIsInvalid struct {
TxHash string `json:"tx_hash"`
TxSender string `json:"tx_sender"`
TxAddress string `json:"tx_address"`
Reason string `json:"reason"`
TxNonce int `json:"tx_nonce"`
LogEvent
}
func (l *EthTxIsInvalid) EventName() string {
return "eth.tx.is_invalid"
}

@ -1,63 +0,0 @@
package p2p
import (
"fmt"
"runtime"
)
// ClientIdentity represents the identity of a peer.
type ClientIdentity interface {
String() string // human readable identity
Pubkey() []byte // 512-bit public key
}
type SimpleClientIdentity struct {
clientIdentifier string
version string
customIdentifier string
os string
implementation string
pubkey []byte
}
func NewSimpleClientIdentity(clientIdentifier string, version string, customIdentifier string, pubkey []byte) *SimpleClientIdentity {
clientIdentity := &SimpleClientIdentity{
clientIdentifier: clientIdentifier,
version: version,
customIdentifier: customIdentifier,
os: runtime.GOOS,
implementation: runtime.Version(),
pubkey: pubkey,
}
return clientIdentity
}
func (c *SimpleClientIdentity) init() {
}
func (c *SimpleClientIdentity) String() string {
var id string
if len(c.customIdentifier) > 0 {
id = "/" + c.customIdentifier
}
return fmt.Sprintf("%s/v%s%s/%s/%s",
c.clientIdentifier,
c.version,
id,
c.os,
c.implementation)
}
func (c *SimpleClientIdentity) Pubkey() []byte {
return []byte(c.pubkey)
}
func (c *SimpleClientIdentity) SetCustomIdentifier(customIdentifier string) {
c.customIdentifier = customIdentifier
}
func (c *SimpleClientIdentity) GetCustomIdentifier() string {
return c.customIdentifier
}

@ -1,30 +0,0 @@
package p2p
import (
"fmt"
"runtime"
"testing"
)
func TestClientIdentity(t *testing.T) {
clientIdentity := NewSimpleClientIdentity("Ethereum(G)", "0.5.16", "test", []byte("pubkey"))
clientString := clientIdentity.String()
expected := fmt.Sprintf("Ethereum(G)/v0.5.16/test/%s/%s", runtime.GOOS, runtime.Version())
if clientString != expected {
t.Errorf("Expected clientIdentity to be %v, got %v", expected, clientString)
}
customIdentifier := clientIdentity.GetCustomIdentifier()
if customIdentifier != "test" {
t.Errorf("Expected clientIdentity.GetCustomIdentifier() to be 'test', got %v", customIdentifier)
}
clientIdentity.SetCustomIdentifier("test2")
customIdentifier = clientIdentity.GetCustomIdentifier()
if customIdentifier != "test2" {
t.Errorf("Expected clientIdentity.GetCustomIdentifier() to be 'test2', got %v", customIdentifier)
}
clientString = clientIdentity.String()
expected = fmt.Sprintf("Ethereum(G)/v0.5.16/test2/%s/%s", runtime.GOOS, runtime.Version())
if clientString != expected {
t.Errorf("Expected clientIdentity to be %v, got %v", expected, clientString)
}
}

363
p2p/crypto.go Normal file

@ -0,0 +1,363 @@
package p2p
import (
// "binary"
"crypto/ecdsa"
"crypto/rand"
"fmt"
"io"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
ethlogger "github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/obscuren/ecies"
)
var clogger = ethlogger.NewLogger("CRYPTOID")
const (
sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
sigLen = 65 // elliptic S256
pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
shaLen = 32 // hash length (for nonce etc)
authMsgLen = sigLen + shaLen + pubLen + shaLen + 1
authRespLen = pubLen + shaLen + 1
eciesBytes = 65 + 16 + 32
iHSLen = authMsgLen + eciesBytes // size of the final ECIES payload sent as initiator's handshake
rHSLen = authRespLen + eciesBytes // size of the final ECIES payload sent as receiver's handshake
)
type hexkey []byte
func (self hexkey) String() string {
return fmt.Sprintf("(%d) %x", len(self), []byte(self))
}
func encHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, dial *discover.Node) (
remoteID discover.NodeID,
sessionToken []byte,
err error,
) {
if dial == nil {
var remotePubkey []byte
sessionToken, remotePubkey, err = inboundEncHandshake(conn, prv, nil)
copy(remoteID[:], remotePubkey)
} else {
remoteID = dial.ID
sessionToken, err = outboundEncHandshake(conn, prv, remoteID[:], nil)
}
return remoteID, sessionToken, err
}
// outboundEncHandshake negotiates a session token on conn.
// it should be called on the dialing side of the connection.
//
// privateKey is the local client's private key
// remotePublicKey is the remote peer's node ID
// sessionToken is the token from a previous session with this node.
func outboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, remotePublicKey []byte, sessionToken []byte) (
newSessionToken []byte,
err error,
) {
auth, initNonce, randomPrivKey, err := authMsg(prvKey, remotePublicKey, sessionToken)
if err != nil {
return nil, err
}
if sessionToken != nil {
clogger.Debugf("session-token: %v", hexkey(sessionToken))
}
clogger.Debugf("initiator-nonce: %v", hexkey(initNonce))
clogger.Debugf("initiator-random-private-key: %v", hexkey(crypto.FromECDSA(randomPrivKey)))
randomPublicKeyS, _ := exportPublicKey(&randomPrivKey.PublicKey)
clogger.Debugf("initiator-random-public-key: %v", hexkey(randomPublicKeyS))
if _, err = conn.Write(auth); err != nil {
return nil, err
}
clogger.Debugf("initiator handshake: %v", hexkey(auth))
response := make([]byte, rHSLen)
if _, err = io.ReadFull(conn, response); err != nil {
return nil, err
}
recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prvKey)
if err != nil {
return nil, err
}
clogger.Debugf("receiver-nonce: %v", hexkey(recNonce))
remoteRandomPubKeyS, _ := exportPublicKey(remoteRandomPubKey)
clogger.Debugf("receiver-random-public-key: %v", hexkey(remoteRandomPubKeyS))
return newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
}
// authMsg creates the initiator handshake.
func authMsg(prvKey *ecdsa.PrivateKey, remotePubKeyS, sessionToken []byte) (
auth, initNonce []byte,
randomPrvKey *ecdsa.PrivateKey,
err error,
) {
// session init, common to both parties
remotePubKey, err := importPublicKey(remotePubKeyS)
if err != nil {
return
}
var tokenFlag byte // = 0x00
if sessionToken == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
// generate shared key from prv and remote pubkey
if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
return
}
// tokenFlag = 0x00 // redundant
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
//E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0)
// E(remote-pubk, S(ecdhe-random, token^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x1)
// allocate msgLen long message,
var msg []byte = make([]byte, authMsgLen)
initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
if _, err = rand.Read(initNonce); err != nil {
return
}
// create known message
// ecdh-shared-secret^nonce for new peers
// token^nonce for old peers
var sharedSecret = xor(sessionToken, initNonce)
// generate random keypair to use for signing
if randomPrvKey, err = crypto.GenerateKey(); err != nil {
return
}
// sign shared secret (message known to both parties): shared-secret
var signature []byte
// signature = sign(ecdhe-random, shared-secret)
// uses secp256k1.Sign
if signature, err = crypto.Sign(sharedSecret, randomPrvKey); err != nil {
return
}
// message
// signed-shared-secret || H(ecdhe-random-pubk) || pubk || nonce || 0x0
copy(msg, signature) // copy signed-shared-secret
// H(ecdhe-random-pubk)
var randomPubKey64 []byte
if randomPubKey64, err = exportPublicKey(&randomPrvKey.PublicKey); err != nil {
return
}
var pubKey64 []byte
if pubKey64, err = exportPublicKey(&prvKey.PublicKey); err != nil {
return
}
copy(msg[sigLen:sigLen+shaLen], crypto.Sha3(randomPubKey64))
// pubkey copied to the correct segment.
copy(msg[sigLen+shaLen:sigLen+shaLen+pubLen], pubKey64)
// nonce is already in the slice
// stick tokenFlag byte to the end
msg[authMsgLen-1] = tokenFlag
// encrypt using remote-pubk
// auth = eciesEncrypt(remote-pubk, msg)
if auth, err = crypto.Encrypt(remotePubKey, msg); err != nil {
return
}
return
}
// completeHandshake is called when the initiator receives an
// authentication response (aka receiver handshake). It completes the
// handshake by reading off parameters the remote peer provides needed
// to set up the secure session.
func completeHandshake(auth []byte, prvKey *ecdsa.PrivateKey) (
respNonce []byte,
remoteRandomPubKey *ecdsa.PublicKey,
tokenFlag bool,
err error,
) {
var msg []byte
// they prove that msg is meant for me,
// I prove I possess private key if i can read it
if msg, err = crypto.Decrypt(prvKey, auth); err != nil {
return
}
respNonce = msg[pubLen : pubLen+shaLen]
var remoteRandomPubKeyS = msg[:pubLen]
if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
return
}
if msg[authRespLen-1] == 0x01 {
tokenFlag = true
}
return
}
// inboundEncHandshake negotiates a session token on conn.
// it should be called on the listening side of the connection.
//
// privateKey is the local client's private key
// sessionToken is the token from a previous session with this node.
func inboundEncHandshake(conn io.ReadWriter, prvKey *ecdsa.PrivateKey, sessionToken []byte) (
token, remotePubKey []byte,
err error,
) {
// we are listening connection. we are responders in the
// handshake. Extract info from the authentication. The initiator
// starts by sending us a handshake that we need to respond to. so
// we read auth message first, then respond.
auth := make([]byte, iHSLen)
if _, err := io.ReadFull(conn, auth); err != nil {
return nil, nil, err
}
response, recNonce, initNonce, remotePubKey, randomPrivKey, remoteRandomPubKey, err := authResp(auth, sessionToken, prvKey)
if err != nil {
return nil, nil, err
}
clogger.Debugf("receiver-nonce: %v", hexkey(recNonce))
clogger.Debugf("receiver-random-priv-key: %v", hexkey(crypto.FromECDSA(randomPrivKey)))
if _, err = conn.Write(response); err != nil {
return nil, nil, err
}
clogger.Debugf("receiver handshake:\n%v", hexkey(response))
token, err = newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
return token, remotePubKey, err
}
// authResp is called by peer if it accepted (but not
// initiated) the connection from the remote. It is passed the initiator
// handshake received and the session token belonging to the
// remote initiator.
//
// The first return value is the authentication response (aka receiver
// handshake) that is to be sent to the remote initiator.
func authResp(auth, sessionToken []byte, prvKey *ecdsa.PrivateKey) (
authResp, respNonce, initNonce, remotePubKeyS []byte,
randomPrivKey *ecdsa.PrivateKey,
remoteRandomPubKey *ecdsa.PublicKey,
err error,
) {
// they prove that msg is meant for me,
// I prove I possess private key if i can read it
msg, err := crypto.Decrypt(prvKey, auth)
if err != nil {
return
}
remotePubKeyS = msg[sigLen+shaLen : sigLen+shaLen+pubLen]
remotePubKey, _ := importPublicKey(remotePubKeyS)
var tokenFlag byte
if sessionToken == nil {
// no session token found means we need to generate shared secret.
// ecies shared secret is used as initial session token for new peers
// generate shared key from prv and remote pubkey
if sessionToken, err = ecies.ImportECDSA(prvKey).GenerateShared(ecies.ImportECDSAPublic(remotePubKey), sskLen, sskLen); err != nil {
return
}
// tokenFlag = 0x00 // redundant
} else {
// for known peers, we use stored token from the previous session
tokenFlag = 0x01
}
// the initiator nonce is read off the end of the message
initNonce = msg[authMsgLen-shaLen-1 : authMsgLen-1]
// I prove that i own prv key (to derive shared secret, and read
// nonce off encrypted msg) and that I own shared secret they
// prove they own the private key belonging to ecdhe-random-pubk
// we can now reconstruct the signed message and recover the peers
// pubkey
var signedMsg = xor(sessionToken, initNonce)
var remoteRandomPubKeyS []byte
if remoteRandomPubKeyS, err = secp256k1.RecoverPubkey(signedMsg, msg[:sigLen]); err != nil {
return
}
// convert to ECDSA standard
if remoteRandomPubKey, err = importPublicKey(remoteRandomPubKeyS); err != nil {
return
}
// now we find ourselves a long task too, fill it random
var resp = make([]byte, authRespLen)
// generate shaLen long nonce
respNonce = resp[pubLen : pubLen+shaLen]
if _, err = rand.Read(respNonce); err != nil {
return
}
// generate random keypair for session
if randomPrivKey, err = crypto.GenerateKey(); err != nil {
return
}
// responder auth message
// E(remote-pubk, ecdhe-random-pubk || nonce || 0x0)
var randomPubKeyS []byte
if randomPubKeyS, err = exportPublicKey(&randomPrivKey.PublicKey); err != nil {
return
}
copy(resp[:pubLen], randomPubKeyS)
// nonce is already in the slice
resp[authRespLen-1] = tokenFlag
// encrypt using remote-pubk
// auth = eciesEncrypt(remote-pubk, msg)
// why not encrypt with ecdhe-random-remote
if authResp, err = crypto.Encrypt(remotePubKey, resp); err != nil {
return
}
return
}
// newSession is called after the handshake is completed. The
// arguments are values negotiated in the handshake. The return value
// is a new session Token to be remembered for the next time we
// connect with this peer.
func newSession(initNonce, respNonce []byte, privKey *ecdsa.PrivateKey, remoteRandomPubKey *ecdsa.PublicKey) ([]byte, error) {
// 3) Now we can trust ecdhe-random-pubk to derive new keys
//ecdhe-shared-secret = ecdh.agree(ecdhe-random, remote-ecdhe-random-pubk)
pubKey := ecies.ImportECDSAPublic(remoteRandomPubKey)
dhSharedSecret, err := ecies.ImportECDSA(privKey).GenerateShared(pubKey, sskLen, sskLen)
if err != nil {
return nil, err
}
sharedSecret := crypto.Sha3(dhSharedSecret, crypto.Sha3(respNonce, initNonce))
sessionToken := crypto.Sha3(sharedSecret)
return sessionToken, nil
}
// importPublicKey unmarshals 512 bit public keys.
func importPublicKey(pubKey []byte) (pubKeyEC *ecdsa.PublicKey, err error) {
var pubKey65 []byte
switch len(pubKey) {
case 64:
// add 'uncompressed key' flag
pubKey65 = append([]byte{0x04}, pubKey...)
case 65:
pubKey65 = pubKey
default:
return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
}
return crypto.ToECDSAPub(pubKey65), nil
}
func exportPublicKey(pubKeyEC *ecdsa.PublicKey) (pubKey []byte, err error) {
if pubKeyEC == nil {
return nil, fmt.Errorf("no ECDSA public key given")
}
return crypto.FromECDSAPub(pubKeyEC)[1:], nil
}
func xor(one, other []byte) (xor []byte) {
xor = make([]byte, len(one))
for i := 0; i < len(one); i++ {
xor[i] = one[i] ^ other[i]
}
return xor
}

167
p2p/crypto_test.go Normal file

@ -0,0 +1,167 @@
package p2p
import (
"bytes"
"crypto/ecdsa"
"crypto/rand"
"net"
"testing"
"github.com/ethereum/go-ethereum/crypto"
"github.com/obscuren/ecies"
)
func TestPublicKeyEncoding(t *testing.T) {
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
pub0s := crypto.FromECDSAPub(pub0)
pub1, err := importPublicKey(pub0s)
if err != nil {
t.Errorf("%v", err)
}
eciesPub1 := ecies.ImportECDSAPublic(pub1)
if eciesPub1 == nil {
t.Errorf("invalid ecdsa public key")
}
pub1s, err := exportPublicKey(pub1)
if err != nil {
t.Errorf("%v", err)
}
if len(pub1s) != 64 {
t.Errorf("wrong length expect 64, got", len(pub1s))
}
pub2, err := importPublicKey(pub1s)
if err != nil {
t.Errorf("%v", err)
}
pub2s, err := exportPublicKey(pub2)
if err != nil {
t.Errorf("%v", err)
}
if !bytes.Equal(pub1s, pub2s) {
t.Errorf("exports dont match")
}
pub2sEC := crypto.FromECDSAPub(pub2)
if !bytes.Equal(pub0s, pub2sEC) {
t.Errorf("exports dont match")
}
}
func TestSharedSecret(t *testing.T) {
prv0, _ := crypto.GenerateKey() // = ecdsa.GenerateKey(crypto.S256(), rand.Reader)
pub0 := &prv0.PublicKey
prv1, _ := crypto.GenerateKey()
pub1 := &prv1.PublicKey
ss0, err := ecies.ImportECDSA(prv0).GenerateShared(ecies.ImportECDSAPublic(pub1), sskLen, sskLen)
if err != nil {
return
}
ss1, err := ecies.ImportECDSA(prv1).GenerateShared(ecies.ImportECDSAPublic(pub0), sskLen, sskLen)
if err != nil {
return
}
t.Logf("Secret:\n%v %x\n%v %x", len(ss0), ss0, len(ss0), ss1)
if !bytes.Equal(ss0, ss1) {
t.Errorf("dont match :(")
}
}
func TestCryptoHandshake(t *testing.T) {
testCryptoHandshake(newkey(), newkey(), nil, t)
}
func TestCryptoHandshakeWithToken(t *testing.T) {
sessionToken := make([]byte, shaLen)
rand.Read(sessionToken)
testCryptoHandshake(newkey(), newkey(), sessionToken, t)
}
func testCryptoHandshake(prv0, prv1 *ecdsa.PrivateKey, sessionToken []byte, t *testing.T) {
var err error
// pub0 := &prv0.PublicKey
pub1 := &prv1.PublicKey
// pub0s := crypto.FromECDSAPub(pub0)
pub1s := crypto.FromECDSAPub(pub1)
// simulate handshake by feeding output to input
// initiator sends handshake 'auth'
auth, initNonce, randomPrivKey, err := authMsg(prv0, pub1s, sessionToken)
if err != nil {
t.Errorf("%v", err)
}
t.Logf("-> %v", hexkey(auth))
// receiver reads auth and responds with response
response, remoteRecNonce, remoteInitNonce, _, remoteRandomPrivKey, remoteInitRandomPubKey, err := authResp(auth, sessionToken, prv1)
if err != nil {
t.Errorf("%v", err)
}
t.Logf("<- %v\n", hexkey(response))
// initiator reads receiver's response and the key exchange completes
recNonce, remoteRandomPubKey, _, err := completeHandshake(response, prv0)
if err != nil {
t.Errorf("completeHandshake error: %v", err)
}
// now both parties should have the same session parameters
initSessionToken, err := newSession(initNonce, recNonce, randomPrivKey, remoteRandomPubKey)
if err != nil {
t.Errorf("newSession error: %v", err)
}
recSessionToken, err := newSession(remoteInitNonce, remoteRecNonce, remoteRandomPrivKey, remoteInitRandomPubKey)
if err != nil {
t.Errorf("newSession error: %v", err)
}
// fmt.Printf("\nauth (%v) %x\n\nresp (%v) %x\n\n", len(auth), auth, len(response), response)
// fmt.Printf("\nauth %x\ninitNonce %x\nresponse%x\nremoteRecNonce %x\nremoteInitNonce %x\nremoteRandomPubKey %x\nrecNonce %x\nremoteInitRandomPubKey %x\ninitSessionToken %x\n\n", auth, initNonce, response, remoteRecNonce, remoteInitNonce, remoteRandomPubKey, recNonce, remoteInitRandomPubKey, initSessionToken)
if !bytes.Equal(initNonce, remoteInitNonce) {
t.Errorf("nonces do not match")
}
if !bytes.Equal(recNonce, remoteRecNonce) {
t.Errorf("receiver nonces do not match")
}
if !bytes.Equal(initSessionToken, recSessionToken) {
t.Errorf("session tokens do not match")
}
}
func TestHandshake(t *testing.T) {
defer testlog(t).detach()
prv0, _ := crypto.GenerateKey()
prv1, _ := crypto.GenerateKey()
pub0s, _ := exportPublicKey(&prv0.PublicKey)
pub1s, _ := exportPublicKey(&prv1.PublicKey)
rw0, rw1 := net.Pipe()
tokens := make(chan []byte)
go func() {
token, err := outboundEncHandshake(rw0, prv0, pub1s, nil)
if err != nil {
t.Errorf("outbound side error: %v", err)
}
tokens <- token
}()
go func() {
token, remotePubkey, err := inboundEncHandshake(rw1, prv1, nil)
if err != nil {
t.Errorf("inbound side error: %v", err)
}
if !bytes.Equal(remotePubkey, pub0s) {
t.Errorf("inbound side returned wrong remote pubkey\n got: %x\n want: %x", remotePubkey, pub0s)
}
tokens <- token
}()
t1, t2 := <-tokens, <-tokens
if !bytes.Equal(t1, t2) {
t.Error("session token mismatch")
}
}

291
p2p/discover/node.go Normal file

@ -0,0 +1,291 @@
package discover
import (
"crypto/ecdsa"
"crypto/elliptic"
"encoding/hex"
"errors"
"fmt"
"io"
"math/rand"
"net"
"net/url"
"strconv"
"strings"
"time"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
"github.com/ethereum/go-ethereum/rlp"
)
const nodeIDBits = 512
// Node represents a host on the network.
type Node struct {
ID NodeID
IP net.IP
DiscPort int // UDP listening port for discovery protocol
TCPPort int // TCP listening port for RLPx
active time.Time
}
func newNode(id NodeID, addr *net.UDPAddr) *Node {
return &Node{
ID: id,
IP: addr.IP,
DiscPort: addr.Port,
TCPPort: addr.Port,
active: time.Now(),
}
}
func (n *Node) isValid() bool {
// TODO: don't accept localhost, LAN addresses from internet hosts
return !n.IP.IsMulticast() && !n.IP.IsUnspecified() && n.TCPPort != 0 && n.DiscPort != 0
}
// The string representation of a Node is a URL.
// Please see ParseNode for a description of the format.
func (n *Node) String() string {
addr := net.TCPAddr{IP: n.IP, Port: n.TCPPort}
u := url.URL{
Scheme: "enode",
User: url.User(fmt.Sprintf("%x", n.ID[:])),
Host: addr.String(),
}
if n.DiscPort != n.TCPPort {
u.RawQuery = "discport=" + strconv.Itoa(n.DiscPort)
}
return u.String()
}
// ParseNode parses a node URL.
//
// A node URL has scheme "enode".
//
// The hexadecimal node ID is encoded in the username portion of the
// URL, separated from the host by an @ sign. The hostname can only be
// given as an IP address, DNS domain names are not allowed. The port
// in the host name section is the TCP listening port. If the TCP and
// UDP (discovery) ports differ, the UDP port is specified as query
// parameter "discport".
//
// In the following example, the node URL describes
// a node with IP address 10.3.58.6, TCP listening port 30303
// and UDP discovery port 30301.
//
// enode://<hex node id>@10.3.58.6:30303?discport=30301
func ParseNode(rawurl string) (*Node, error) {
var n Node
u, err := url.Parse(rawurl)
if u.Scheme != "enode" {
return nil, errors.New("invalid URL scheme, want \"enode\"")
}
if u.User == nil {
return nil, errors.New("does not contain node ID")
}
if n.ID, err = HexID(u.User.String()); err != nil {
return nil, fmt.Errorf("invalid node ID (%v)", err)
}
ip, port, err := net.SplitHostPort(u.Host)
if err != nil {
return nil, fmt.Errorf("invalid host: %v", err)
}
if n.IP = net.ParseIP(ip); n.IP == nil {
return nil, errors.New("invalid IP address")
}
if n.TCPPort, err = strconv.Atoi(port); err != nil {
return nil, errors.New("invalid port")
}
qv := u.Query()
if qv.Get("discport") == "" {
n.DiscPort = n.TCPPort
} else {
if n.DiscPort, err = strconv.Atoi(qv.Get("discport")); err != nil {
return nil, errors.New("invalid discport in query")
}
}
return &n, nil
}
// MustParseNode parses a node URL. It panics if the URL is not valid.
func MustParseNode(rawurl string) *Node {
n, err := ParseNode(rawurl)
if err != nil {
panic("invalid node URL: " + err.Error())
}
return n
}
func (n Node) EncodeRLP(w io.Writer) error {
return rlp.Encode(w, rpcNode{IP: n.IP.String(), Port: uint16(n.TCPPort), ID: n.ID})
}
func (n *Node) DecodeRLP(s *rlp.Stream) (err error) {
var ext rpcNode
if err = s.Decode(&ext); err == nil {
n.TCPPort = int(ext.Port)
n.DiscPort = int(ext.Port)
n.ID = ext.ID
if n.IP = net.ParseIP(ext.IP); n.IP == nil {
return errors.New("invalid IP string")
}
}
return err
}
// NodeID is a unique identifier for each node.
// The node identifier is a marshaled elliptic curve public key.
type NodeID [nodeIDBits / 8]byte
// NodeID prints as a long hexadecimal number.
func (n NodeID) String() string {
return fmt.Sprintf("%#x", n[:])
}
// The Go syntax representation of a NodeID is a call to HexID.
func (n NodeID) GoString() string {
return fmt.Sprintf("discover.HexID(\"%#x\")", n[:])
}
// HexID converts a hex string to a NodeID.
// The string may be prefixed with 0x.
func HexID(in string) (NodeID, error) {
if strings.HasPrefix(in, "0x") {
in = in[2:]
}
var id NodeID
b, err := hex.DecodeString(in)
if err != nil {
return id, err
} else if len(b) != len(id) {
return id, fmt.Errorf("wrong length, need %d hex bytes", len(id))
}
copy(id[:], b)
return id, nil
}
// MustHexID converts a hex string to a NodeID.
// It panics if the string is not a valid NodeID.
func MustHexID(in string) NodeID {
id, err := HexID(in)
if err != nil {
panic(err)
}
return id
}
// PubkeyID returns a marshaled representation of the given public key.
func PubkeyID(pub *ecdsa.PublicKey) NodeID {
var id NodeID
pbytes := elliptic.Marshal(pub.Curve, pub.X, pub.Y)
if len(pbytes)-1 != len(id) {
panic(fmt.Errorf("need %d bit pubkey, got %d bits", (len(id)+1)*8, len(pbytes)))
}
copy(id[:], pbytes[1:])
return id
}
// recoverNodeID computes the public key used to sign the
// given hash from the signature.
func recoverNodeID(hash, sig []byte) (id NodeID, err error) {
pubkey, err := secp256k1.RecoverPubkey(hash, sig)
if err != nil {
return id, err
}
if len(pubkey)-1 != len(id) {
return id, fmt.Errorf("recovered pubkey has %d bits, want %d bits", len(pubkey)*8, (len(id)+1)*8)
}
for i := range id {
id[i] = pubkey[i+1]
}
return id, nil
}
// distcmp compares the distances a->target and b->target.
// Returns -1 if a is closer to target, 1 if b is closer to target
// and 0 if they are equal.
func distcmp(target, a, b NodeID) int {
for i := range target {
da := a[i] ^ target[i]
db := b[i] ^ target[i]
if da > db {
return 1
} else if da < db {
return -1
}
}
return 0
}
// table of leading zero counts for bytes [0..255]
var lzcount = [256]int{
8, 7, 6, 6, 5, 5, 5, 5,
4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
}
// logdist returns the logarithmic distance between a and b, log2(a ^ b).
func logdist(a, b NodeID) int {
lz := 0
for i := range a {
x := a[i] ^ b[i]
if x == 0 {
lz += 8
} else {
lz += lzcount[x]
break
}
}
return len(a)*8 - lz
}
// randomID returns a random NodeID such that logdist(a, b) == n
func randomID(a NodeID, n int) (b NodeID) {
if n == 0 {
return a
}
// flip bit at position n, fill the rest with random bits
b = a
pos := len(a) - n/8 - 1
bit := byte(0x01) << (byte(n%8) - 1)
if bit == 0 {
pos++
bit = 0x80
}
b[pos] = a[pos]&^bit | ^a[pos]&bit // TODO: randomize end bits
for i := pos + 1; i < len(a); i++ {
b[i] = byte(rand.Intn(255))
}
return b
}

201
p2p/discover/node_test.go Normal file

@ -0,0 +1,201 @@
package discover
import (
"math/big"
"math/rand"
"net"
"reflect"
"testing"
"testing/quick"
"time"
"github.com/ethereum/go-ethereum/crypto"
)
var (
quickrand = rand.New(rand.NewSource(time.Now().Unix()))
quickcfg = &quick.Config{MaxCount: 5000, Rand: quickrand}
)
var parseNodeTests = []struct {
rawurl string
wantError string
wantResult *Node
}{
{
rawurl: "http://foobar",
wantError: `invalid URL scheme, want "enode"`,
},
{
rawurl: "enode://foobar",
wantError: `does not contain node ID`,
},
{
rawurl: "enode://01010101@123.124.125.126:3",
wantError: `invalid node ID (wrong length, need 64 hex bytes)`,
},
{
rawurl: "enode://1dd9d65c4552b5eb43d5ad55a2ee3f56c6cbc1c64a5c8d659f51fcd51bace24351232b8d7821617d2b29b54b81cdefb9b3e9c37d7fd5f63270bcc9e1a6f6a439@hostname:3",
wantError: `invalid IP address`,
},
{
rawurl: "enode://1dd9d65c4552b5eb43d5ad55a2ee3f56c6cbc1c64a5c8d659f51fcd51bace24351232b8d7821617d2b29b54b81cdefb9b3e9c37d7fd5f63270bcc9e1a6f6a439@127.0.0.1:foo",
wantError: `invalid port`,
},
{
rawurl: "enode://1dd9d65c4552b5eb43d5ad55a2ee3f56c6cbc1c64a5c8d659f51fcd51bace24351232b8d7821617d2b29b54b81cdefb9b3e9c37d7fd5f63270bcc9e1a6f6a439@127.0.0.1:3?discport=foo",
wantError: `invalid discport in query`,
},
{
rawurl: "enode://1dd9d65c4552b5eb43d5ad55a2ee3f56c6cbc1c64a5c8d659f51fcd51bace24351232b8d7821617d2b29b54b81cdefb9b3e9c37d7fd5f63270bcc9e1a6f6a439@127.0.0.1:52150",
wantResult: &Node{
ID: MustHexID("0x1dd9d65c4552b5eb43d5ad55a2ee3f56c6cbc1c64a5c8d659f51fcd51bace24351232b8d7821617d2b29b54b81cdefb9b3e9c37d7fd5f63270bcc9e1a6f6a439"),
IP: net.ParseIP("127.0.0.1"),
DiscPort: 52150,
TCPPort: 52150,
},
},
{
rawurl: "enode://1dd9d65c4552b5eb43d5ad55a2ee3f56c6cbc1c64a5c8d659f51fcd51bace24351232b8d7821617d2b29b54b81cdefb9b3e9c37d7fd5f63270bcc9e1a6f6a439@[::]:52150",
wantResult: &Node{
ID: MustHexID("0x1dd9d65c4552b5eb43d5ad55a2ee3f56c6cbc1c64a5c8d659f51fcd51bace24351232b8d7821617d2b29b54b81cdefb9b3e9c37d7fd5f63270bcc9e1a6f6a439"),
IP: net.ParseIP("::"),
DiscPort: 52150,
TCPPort: 52150,
},
},
{
rawurl: "enode://1dd9d65c4552b5eb43d5ad55a2ee3f56c6cbc1c64a5c8d659f51fcd51bace24351232b8d7821617d2b29b54b81cdefb9b3e9c37d7fd5f63270bcc9e1a6f6a439@127.0.0.1:52150?discport=223344",
wantResult: &Node{
ID: MustHexID("0x1dd9d65c4552b5eb43d5ad55a2ee3f56c6cbc1c64a5c8d659f51fcd51bace24351232b8d7821617d2b29b54b81cdefb9b3e9c37d7fd5f63270bcc9e1a6f6a439"),
IP: net.ParseIP("127.0.0.1"),
DiscPort: 223344,
TCPPort: 52150,
},
},
}
func TestParseNode(t *testing.T) {
for i, test := range parseNodeTests {
n, err := ParseNode(test.rawurl)
if err == nil && test.wantError != "" {
t.Errorf("test %d: got nil error, expected %#q", i, test.wantError)
continue
}
if err != nil && err.Error() != test.wantError {
t.Errorf("test %d: got error %#q, expected %#q", i, err.Error(), test.wantError)
continue
}
if !reflect.DeepEqual(n, test.wantResult) {
t.Errorf("test %d: result mismatch:\ngot: %#v, want: %#v", i, n, test.wantResult)
}
}
}
func TestNodeString(t *testing.T) {
for i, test := range parseNodeTests {
if test.wantError != "" {
continue
}
str := test.wantResult.String()
if str != test.rawurl {
t.Errorf("test %d: Node.String() mismatch:\ngot: %s\nwant: %s", i, str, test.rawurl)
}
}
}
func TestHexID(t *testing.T) {
ref := NodeID{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128, 106, 217, 182, 31, 165, 174, 1, 67, 7, 235, 220, 150, 66, 83, 173, 205, 159, 44, 10, 57, 42, 161, 26, 188}
id1 := MustHexID("0x000000000000000000000000000000000000000000000000000000000000000000000000000000806ad9b61fa5ae014307ebdc964253adcd9f2c0a392aa11abc")
id2 := MustHexID("000000000000000000000000000000000000000000000000000000000000000000000000000000806ad9b61fa5ae014307ebdc964253adcd9f2c0a392aa11abc")
if id1 != ref {
t.Errorf("wrong id1\ngot %v\nwant %v", id1[:], ref[:])
}
if id2 != ref {
t.Errorf("wrong id2\ngot %v\nwant %v", id2[:], ref[:])
}
}
func TestNodeID_recover(t *testing.T) {
prv := newkey()
hash := make([]byte, 32)
sig, err := crypto.Sign(hash, prv)
if err != nil {
t.Fatalf("signing error: %v", err)
}
pub := PubkeyID(&prv.PublicKey)
recpub, err := recoverNodeID(hash, sig)
if err != nil {
t.Fatalf("recovery error: %v", err)
}
if pub != recpub {
t.Errorf("recovered wrong pubkey:\ngot: %v\nwant: %v", recpub, pub)
}
}
func TestNodeID_distcmp(t *testing.T) {
distcmpBig := func(target, a, b NodeID) int {
tbig := new(big.Int).SetBytes(target[:])
abig := new(big.Int).SetBytes(a[:])
bbig := new(big.Int).SetBytes(b[:])
return new(big.Int).Xor(tbig, abig).Cmp(new(big.Int).Xor(tbig, bbig))
}
if err := quick.CheckEqual(distcmp, distcmpBig, quickcfg); err != nil {
t.Error(err)
}
}
// the random tests is likely to miss the case where they're equal.
func TestNodeID_distcmpEqual(t *testing.T) {
base := NodeID{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
x := NodeID{15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}
if distcmp(base, x, x) != 0 {
t.Errorf("distcmp(base, x, x) != 0")
}
}
func TestNodeID_logdist(t *testing.T) {
logdistBig := func(a, b NodeID) int {
abig, bbig := new(big.Int).SetBytes(a[:]), new(big.Int).SetBytes(b[:])
return new(big.Int).Xor(abig, bbig).BitLen()
}
if err := quick.CheckEqual(logdist, logdistBig, quickcfg); err != nil {
t.Error(err)
}
}
// the random tests is likely to miss the case where they're equal.
func TestNodeID_logdistEqual(t *testing.T) {
x := NodeID{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
if logdist(x, x) != 0 {
t.Errorf("logdist(x, x) != 0")
}
}
func TestNodeID_randomID(t *testing.T) {
// we don't use quick.Check here because its output isn't
// very helpful when the test fails.
for i := 0; i < quickcfg.MaxCount; i++ {
a := gen(NodeID{}, quickrand).(NodeID)
dist := quickrand.Intn(len(NodeID{}) * 8)
result := randomID(a, dist)
actualdist := logdist(result, a)
if dist != actualdist {
t.Log("a: ", a)
t.Log("result:", result)
t.Fatalf("#%d: distance of result is %d, want %d", i, actualdist, dist)
}
}
}
func (NodeID) Generate(rand *rand.Rand, size int) reflect.Value {
var id NodeID
m := rand.Intn(len(id))
for i := len(id) - 1; i > m; i-- {
id[i] = byte(rand.Uint32())
}
return reflect.ValueOf(id)
}

280
p2p/discover/table.go Normal file

@ -0,0 +1,280 @@
// Package discover implements the Node Discovery Protocol.
//
// The Node Discovery protocol provides a way to find RLPx nodes that
// can be connected to. It uses a Kademlia-like protocol to maintain a
// distributed database of the IDs and endpoints of all listening
// nodes.
package discover
import (
"net"
"sort"
"sync"
"time"
)
const (
alpha = 3 // Kademlia concurrency factor
bucketSize = 16 // Kademlia bucket size
nBuckets = nodeIDBits + 1 // Number of buckets
)
type Table struct {
mutex sync.Mutex // protects buckets, their content, and nursery
buckets [nBuckets]*bucket // index of known nodes by distance
nursery []*Node // bootstrap nodes
net transport
self *Node // metadata of the local node
}
// transport is implemented by the UDP transport.
// it is an interface so we can test without opening lots of UDP
// sockets and without generating a private key.
type transport interface {
ping(*Node) error
findnode(e *Node, target NodeID) ([]*Node, error)
close()
}
// bucket contains nodes, ordered by their last activity.
type bucket struct {
lastLookup time.Time
entries []*Node
}
func newTable(t transport, ourID NodeID, ourAddr *net.UDPAddr) *Table {
tab := &Table{net: t, self: newNode(ourID, ourAddr)}
for i := range tab.buckets {
tab.buckets[i] = new(bucket)
}
return tab
}
// Self returns the local node ID.
func (tab *Table) Self() NodeID {
return tab.self.ID
}
// Close terminates the network listener.
func (tab *Table) Close() {
tab.net.close()
}
// Bootstrap sets the bootstrap nodes. These nodes are used to connect
// to the network if the table is empty. Bootstrap will also attempt to
// fill the table by performing random lookup operations on the
// network.
func (tab *Table) Bootstrap(nodes []*Node) {
tab.mutex.Lock()
// TODO: maybe filter nodes with bad fields (nil, etc.) to avoid strange crashes
tab.nursery = make([]*Node, 0, len(nodes))
for _, n := range nodes {
cpy := *n
tab.nursery = append(tab.nursery, &cpy)
}
tab.mutex.Unlock()
tab.refresh()
}
// Lookup performs a network search for nodes close
// to the given target. It approaches the target by querying
// nodes that are closer to it on each iteration.
func (tab *Table) Lookup(target NodeID) []*Node {
var (
asked = make(map[NodeID]bool)
seen = make(map[NodeID]bool)
reply = make(chan []*Node, alpha)
pendingQueries = 0
)
// don't query further if we hit the target or ourself.
// unlikely to happen often in practice.
asked[target] = true
asked[tab.self.ID] = true
tab.mutex.Lock()
// update last lookup stamp (for refresh logic)
tab.buckets[logdist(tab.self.ID, target)].lastLookup = time.Now()
// generate initial result set
result := tab.closest(target, bucketSize)
tab.mutex.Unlock()
for {
// ask the alpha closest nodes that we haven't asked yet
for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
n := result.entries[i]
if !asked[n.ID] {
asked[n.ID] = true
pendingQueries++
go func() {
result, _ := tab.net.findnode(n, target)
reply <- result
}()
}
}
if pendingQueries == 0 {
// we have asked all closest nodes, stop the search
break
}
// wait for the next reply
for _, n := range <-reply {
cn := n
if !seen[n.ID] {
seen[n.ID] = true
result.push(cn, bucketSize)
}
}
pendingQueries--
}
return result.entries
}
// refresh performs a lookup for a random target to keep buckets full.
func (tab *Table) refresh() {
ld := -1 // logdist of chosen bucket
tab.mutex.Lock()
for i, b := range tab.buckets {
if i > 0 && b.lastLookup.Before(time.Now().Add(-1*time.Hour)) {
ld = i
break
}
}
tab.mutex.Unlock()
result := tab.Lookup(randomID(tab.self.ID, ld))
if len(result) == 0 {
// bootstrap the table with a self lookup
tab.mutex.Lock()
tab.add(tab.nursery)
tab.mutex.Unlock()
tab.Lookup(tab.self.ID)
// TODO: the Kademlia paper says that we're supposed to perform
// random lookups in all buckets further away than our closest neighbor.
}
}
// closest returns the n nodes in the table that are closest to the
// given id. The caller must hold tab.mutex.
func (tab *Table) closest(target NodeID, nresults int) *nodesByDistance {
// This is a very wasteful way to find the closest nodes but
// obviously correct. I believe that tree-based buckets would make
// this easier to implement efficiently.
close := &nodesByDistance{target: target}
for _, b := range tab.buckets {
for _, n := range b.entries {
close.push(n, nresults)
}
}
return close
}
func (tab *Table) len() (n int) {
for _, b := range tab.buckets {
n += len(b.entries)
}
return n
}
// bumpOrAdd updates the activity timestamp for the given node and
// attempts to insert the node into a bucket. The returned Node might
// not be part of the table. The caller must hold tab.mutex.
func (tab *Table) bumpOrAdd(node NodeID, from *net.UDPAddr) (n *Node) {
b := tab.buckets[logdist(tab.self.ID, node)]
if n = b.bump(node); n == nil {
n = newNode(node, from)
if len(b.entries) == bucketSize {
tab.pingReplace(n, b)
} else {
b.entries = append(b.entries, n)
}
}
return n
}
func (tab *Table) pingReplace(n *Node, b *bucket) {
old := b.entries[bucketSize-1]
go func() {
if err := tab.net.ping(old); err == nil {
// it responded, we don't need to replace it.
return
}
// it didn't respond, replace the node if it is still the oldest node.
tab.mutex.Lock()
if len(b.entries) > 0 && b.entries[len(b.entries)-1] == old {
// slide down other entries and put the new one in front.
// TODO: insert in correct position to keep the order
copy(b.entries[1:], b.entries)
b.entries[0] = n
}
tab.mutex.Unlock()
}()
}
// bump updates the activity timestamp for the given node.
// The caller must hold tab.mutex.
func (tab *Table) bump(node NodeID) {
tab.buckets[logdist(tab.self.ID, node)].bump(node)
}
// add puts the entries into the table if their corresponding
// bucket is not full. The caller must hold tab.mutex.
func (tab *Table) add(entries []*Node) {
outer:
for _, n := range entries {
if n == nil || n.ID == tab.self.ID {
// skip bad entries. The RLP decoder returns nil for empty
// input lists.
continue
}
bucket := tab.buckets[logdist(tab.self.ID, n.ID)]
for i := range bucket.entries {
if bucket.entries[i].ID == n.ID {
// already in bucket
continue outer
}
}
if len(bucket.entries) < bucketSize {
bucket.entries = append(bucket.entries, n)
}
}
}
func (b *bucket) bump(id NodeID) *Node {
for i, n := range b.entries {
if n.ID == id {
n.active = time.Now()
// move it to the front
copy(b.entries[1:], b.entries[:i+1])
b.entries[0] = n
return n
}
}
return nil
}
// nodesByDistance is a list of nodes, ordered by
// distance to target.
type nodesByDistance struct {
entries []*Node
target NodeID
}
// push adds the given node to the list, keeping the total size below maxElems.
func (h *nodesByDistance) push(n *Node, maxElems int) {
ix := sort.Search(len(h.entries), func(i int) bool {
return distcmp(h.target, h.entries[i].ID, n.ID) > 0
})
if len(h.entries) < maxElems {
h.entries = append(h.entries, n)
}
if ix == len(h.entries) {
// farther away than all nodes we already have.
// if there was room for it, the node is now the last element.
} else {
// slide existing entries down to make room
// this will overwrite the entry we just appended.
copy(h.entries[ix+1:], h.entries[ix:])
h.entries[ix] = n
}
}

311
p2p/discover/table_test.go Normal file

@ -0,0 +1,311 @@
package discover
import (
"crypto/ecdsa"
"errors"
"fmt"
"math/rand"
"net"
"reflect"
"testing"
"testing/quick"
"time"
"github.com/ethereum/go-ethereum/crypto"
)
func TestTable_bumpOrAddBucketAssign(t *testing.T) {
tab := newTable(nil, NodeID{}, &net.UDPAddr{})
for i := 1; i < len(tab.buckets); i++ {
tab.bumpOrAdd(randomID(tab.self.ID, i), &net.UDPAddr{})
}
for i, b := range tab.buckets {
if i > 0 && len(b.entries) != 1 {
t.Errorf("bucket %d has %d entries, want 1", i, len(b.entries))
}
}
}
func TestTable_bumpOrAddPingReplace(t *testing.T) {
pingC := make(pingC)
tab := newTable(pingC, NodeID{}, &net.UDPAddr{})
last := fillBucket(tab, 200)
// this bumpOrAdd should not replace the last node
// because the node replies to ping.
new := tab.bumpOrAdd(randomID(tab.self.ID, 200), &net.UDPAddr{})
pinged := <-pingC
if pinged != last.ID {
t.Fatalf("pinged wrong node: %v\nwant %v", pinged, last.ID)
}
tab.mutex.Lock()
defer tab.mutex.Unlock()
if l := len(tab.buckets[200].entries); l != bucketSize {
t.Errorf("wrong bucket size after bumpOrAdd: got %d, want %d", bucketSize, l)
}
if !contains(tab.buckets[200].entries, last.ID) {
t.Error("last entry was removed")
}
if contains(tab.buckets[200].entries, new.ID) {
t.Error("new entry was added")
}
}
func TestTable_bumpOrAddPingTimeout(t *testing.T) {
tab := newTable(pingC(nil), NodeID{}, &net.UDPAddr{})
last := fillBucket(tab, 200)
// this bumpOrAdd should replace the last node
// because the node does not reply to ping.
new := tab.bumpOrAdd(randomID(tab.self.ID, 200), &net.UDPAddr{})
// wait for async bucket update. damn. this needs to go away.
time.Sleep(2 * time.Millisecond)
tab.mutex.Lock()
defer tab.mutex.Unlock()
if l := len(tab.buckets[200].entries); l != bucketSize {
t.Errorf("wrong bucket size after bumpOrAdd: got %d, want %d", bucketSize, l)
}
if contains(tab.buckets[200].entries, last.ID) {
t.Error("last entry was not removed")
}
if !contains(tab.buckets[200].entries, new.ID) {
t.Error("new entry was not added")
}
}
func fillBucket(tab *Table, ld int) (last *Node) {
b := tab.buckets[ld]
for len(b.entries) < bucketSize {
b.entries = append(b.entries, &Node{ID: randomID(tab.self.ID, ld)})
}
return b.entries[bucketSize-1]
}
type pingC chan NodeID
func (t pingC) findnode(n *Node, target NodeID) ([]*Node, error) {
panic("findnode called on pingRecorder")
}
func (t pingC) close() {
panic("close called on pingRecorder")
}
func (t pingC) ping(n *Node) error {
if t == nil {
return errTimeout
}
t <- n.ID
return nil
}
func TestTable_bump(t *testing.T) {
tab := newTable(nil, NodeID{}, &net.UDPAddr{})
// add an old entry and two recent ones
oldactive := time.Now().Add(-2 * time.Minute)
old := &Node{ID: randomID(tab.self.ID, 200), active: oldactive}
others := []*Node{
&Node{ID: randomID(tab.self.ID, 200), active: time.Now()},
&Node{ID: randomID(tab.self.ID, 200), active: time.Now()},
}
tab.add(append(others, old))
if tab.buckets[200].entries[0] == old {
t.Fatal("old entry is at front of bucket")
}
// bumping the old entry should move it to the front
tab.bump(old.ID)
if old.active == oldactive {
t.Error("activity timestamp not updated")
}
if tab.buckets[200].entries[0] != old {
t.Errorf("bumped entry did not move to the front of bucket")
}
}
func TestTable_closest(t *testing.T) {
t.Parallel()
test := func(test *closeTest) bool {
// for any node table, Target and N
tab := newTable(nil, test.Self, &net.UDPAddr{})
tab.add(test.All)
// check that doClosest(Target, N) returns nodes
result := tab.closest(test.Target, test.N).entries
if hasDuplicates(result) {
t.Errorf("result contains duplicates")
return false
}
if !sortedByDistanceTo(test.Target, result) {
t.Errorf("result is not sorted by distance to target")
return false
}
// check that the number of results is min(N, tablen)
wantN := test.N
if tlen := tab.len(); tlen < test.N {
wantN = tlen
}
if len(result) != wantN {
t.Errorf("wrong number of nodes: got %d, want %d", len(result), wantN)
return false
} else if len(result) == 0 {
return true // no need to check distance
}
// check that the result nodes have minimum distance to target.
for _, b := range tab.buckets {
for _, n := range b.entries {
if contains(result, n.ID) {
continue // don't run the check below for nodes in result
}
farthestResult := result[len(result)-1].ID
if distcmp(test.Target, n.ID, farthestResult) < 0 {
t.Errorf("table contains node that is closer to target but it's not in result")
t.Logf(" Target: %v", test.Target)
t.Logf(" Farthest Result: %v", farthestResult)
t.Logf(" ID: %v", n.ID)
return false
}
}
}
return true
}
if err := quick.Check(test, quickcfg); err != nil {
t.Error(err)
}
}
type closeTest struct {
Self NodeID
Target NodeID
All []*Node
N int
}
func (*closeTest) Generate(rand *rand.Rand, size int) reflect.Value {
t := &closeTest{
Self: gen(NodeID{}, rand).(NodeID),
Target: gen(NodeID{}, rand).(NodeID),
N: rand.Intn(bucketSize),
}
for _, id := range gen([]NodeID{}, rand).([]NodeID) {
t.All = append(t.All, &Node{ID: id})
}
return reflect.ValueOf(t)
}
func TestTable_Lookup(t *testing.T) {
self := gen(NodeID{}, quickrand).(NodeID)
target := randomID(self, 200)
transport := findnodeOracle{t, target}
tab := newTable(transport, self, &net.UDPAddr{})
// lookup on empty table returns no nodes
if results := tab.Lookup(target); len(results) > 0 {
t.Fatalf("lookup on empty table returned %d results: %#v", len(results), results)
}
// seed table with initial node (otherwise lookup will terminate immediately)
tab.bumpOrAdd(randomID(target, 200), &net.UDPAddr{Port: 200})
results := tab.Lookup(target)
t.Logf("results:")
for _, e := range results {
t.Logf(" ld=%d, %v", logdist(target, e.ID), e.ID)
}
if len(results) != bucketSize {
t.Errorf("wrong number of results: got %d, want %d", len(results), bucketSize)
}
if hasDuplicates(results) {
t.Errorf("result set contains duplicate entries")
}
if !sortedByDistanceTo(target, results) {
t.Errorf("result set not sorted by distance to target")
}
if !contains(results, target) {
t.Errorf("result set does not contain target")
}
}
// findnode on this transport always returns at least one node
// that is one bucket closer to the target.
type findnodeOracle struct {
t *testing.T
target NodeID
}
func (t findnodeOracle) findnode(n *Node, target NodeID) ([]*Node, error) {
t.t.Logf("findnode query at dist %d", n.DiscPort)
// current log distance is encoded in port number
var result []*Node
switch n.DiscPort {
case 0:
panic("query to node at distance 0")
default:
// TODO: add more randomness to distances
next := n.DiscPort - 1
for i := 0; i < bucketSize; i++ {
result = append(result, &Node{ID: randomID(t.target, next), DiscPort: next})
}
}
return result, nil
}
func (t findnodeOracle) close() {}
func (t findnodeOracle) ping(n *Node) error {
return errors.New("ping is not supported by this transport")
}
func hasDuplicates(slice []*Node) bool {
seen := make(map[NodeID]bool)
for _, e := range slice {
if seen[e.ID] {
return true
}
seen[e.ID] = true
}
return false
}
func sortedByDistanceTo(distbase NodeID, slice []*Node) bool {
var last NodeID
for i, e := range slice {
if i > 0 && distcmp(distbase, e.ID, last) < 0 {
return false
}
last = e.ID
}
return true
}
func contains(ns []*Node, id NodeID) bool {
for _, n := range ns {
if n.ID == id {
return true
}
}
return false
}
// gen wraps quick.Value so it's easier to use.
// it generates a random value of the given value's type.
func gen(typ interface{}, rand *rand.Rand) interface{} {
v, ok := quick.Value(reflect.TypeOf(typ), rand)
if !ok {
panic(fmt.Sprintf("couldn't generate random value of type %T", typ))
}
return v.Interface()
}
func newkey() *ecdsa.PrivateKey {
key, err := crypto.GenerateKey()
if err != nil {
panic("couldn't generate key: " + err.Error())
}
return key
}

431
p2p/discover/udp.go Normal file

@ -0,0 +1,431 @@
package discover
import (
"bytes"
"crypto/ecdsa"
"errors"
"fmt"
"net"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p/nat"
"github.com/ethereum/go-ethereum/rlp"
)
var log = logger.NewLogger("P2P Discovery")
// Errors
var (
errPacketTooSmall = errors.New("too small")
errBadHash = errors.New("bad hash")
errExpired = errors.New("expired")
errTimeout = errors.New("RPC timeout")
errClosed = errors.New("socket closed")
)
// Timeouts
const (
respTimeout = 300 * time.Millisecond
sendTimeout = 300 * time.Millisecond
expiration = 20 * time.Second
refreshInterval = 1 * time.Hour
)
// RPC packet types
const (
pingPacket = iota + 1 // zero is 'reserved'
pongPacket
findnodePacket
neighborsPacket
)
// RPC request structures
type (
ping struct {
IP string // our IP
Port uint16 // our port
Expiration uint64
}
// reply to Ping
pong struct {
ReplyTok []byte
Expiration uint64
}
findnode struct {
// Id to look up. The responding node will send back nodes
// closest to the target.
Target NodeID
Expiration uint64
}
// reply to findnode
neighbors struct {
Nodes []*Node
Expiration uint64
}
)
type rpcNode struct {
IP string
Port uint16
ID NodeID
}
// udp implements the RPC protocol.
type udp struct {
conn *net.UDPConn
priv *ecdsa.PrivateKey
addpending chan *pending
replies chan reply
closing chan struct{}
nat nat.Interface
*Table
}
// pending represents a pending reply.
//
// some implementations of the protocol wish to send more than one
// reply packet to findnode. in general, any neighbors packet cannot
// be matched up with a specific findnode packet.
//
// our implementation handles this by storing a callback function for
// each pending reply. incoming packets from a node are dispatched
// to all the callback functions for that node.
type pending struct {
// these fields must match in the reply.
from NodeID
ptype byte
// time when the request must complete
deadline time.Time
// callback is called when a matching reply arrives. if it returns
// true, the callback is removed from the pending reply queue.
// if it returns false, the reply is considered incomplete and
// the callback will be invoked again for the next matching reply.
callback func(resp interface{}) (done bool)
// errc receives nil when the callback indicates completion or an
// error if no further reply is received within the timeout.
errc chan<- error
}
type reply struct {
from NodeID
ptype byte
data interface{}
}
// ListenUDP returns a new table that listens for UDP packets on laddr.
func ListenUDP(priv *ecdsa.PrivateKey, laddr string, natm nat.Interface) (*Table, error) {
addr, err := net.ResolveUDPAddr("udp", laddr)
if err != nil {
return nil, err
}
conn, err := net.ListenUDP("udp", addr)
if err != nil {
return nil, err
}
udp := &udp{
conn: conn,
priv: priv,
closing: make(chan struct{}),
addpending: make(chan *pending),
replies: make(chan reply),
}
realaddr := conn.LocalAddr().(*net.UDPAddr)
if natm != nil {
if !realaddr.IP.IsLoopback() {
go nat.Map(natm, udp.closing, "udp", realaddr.Port, realaddr.Port, "ethereum discovery")
}
// TODO: react to external IP changes over time.
if ext, err := natm.ExternalIP(); err == nil {
realaddr = &net.UDPAddr{IP: ext, Port: realaddr.Port}
}
}
udp.Table = newTable(udp, PubkeyID(&priv.PublicKey), realaddr)
go udp.loop()
go udp.readLoop()
log.Infoln("Listening, ", udp.self)
return udp.Table, nil
}
func (t *udp) close() {
close(t.closing)
t.conn.Close()
// TODO: wait for the loops to end.
}
// ping sends a ping message to the given node and waits for a reply.
func (t *udp) ping(e *Node) error {
// TODO: maybe check for ReplyTo field in callback to measure RTT
errc := t.pending(e.ID, pongPacket, func(interface{}) bool { return true })
t.send(e, pingPacket, ping{
IP: t.self.IP.String(),
Port: uint16(t.self.TCPPort),
Expiration: uint64(time.Now().Add(expiration).Unix()),
})
return <-errc
}
// findnode sends a findnode request to the given node and waits until
// the node has sent up to k neighbors.
func (t *udp) findnode(to *Node, target NodeID) ([]*Node, error) {
nodes := make([]*Node, 0, bucketSize)
nreceived := 0
errc := t.pending(to.ID, neighborsPacket, func(r interface{}) bool {
reply := r.(*neighbors)
for _, n := range reply.Nodes {
nreceived++
if n.isValid() {
nodes = append(nodes, n)
}
}
return nreceived >= bucketSize
})
t.send(to, findnodePacket, findnode{
Target: target,
Expiration: uint64(time.Now().Add(expiration).Unix()),
})
err := <-errc
return nodes, err
}
// pending adds a reply callback to the pending reply queue.
// see the documentation of type pending for a detailed explanation.
func (t *udp) pending(id NodeID, ptype byte, callback func(interface{}) bool) <-chan error {
ch := make(chan error, 1)
p := &pending{from: id, ptype: ptype, callback: callback, errc: ch}
select {
case t.addpending <- p:
// loop will handle it
case <-t.closing:
ch <- errClosed
}
return ch
}
// loop runs in its own goroutin. it keeps track of
// the refresh timer and the pending reply queue.
func (t *udp) loop() {
var (
pending []*pending
nextDeadline time.Time
timeout = time.NewTimer(0)
refresh = time.NewTicker(refreshInterval)
)
<-timeout.C // ignore first timeout
defer refresh.Stop()
defer timeout.Stop()
rearmTimeout := func() {
if len(pending) == 0 || nextDeadline == pending[0].deadline {
return
}
nextDeadline = pending[0].deadline
timeout.Reset(nextDeadline.Sub(time.Now()))
}
for {
select {
case <-refresh.C:
go t.refresh()
case <-t.closing:
for _, p := range pending {
p.errc <- errClosed
}
return
case p := <-t.addpending:
p.deadline = time.Now().Add(respTimeout)
pending = append(pending, p)
rearmTimeout()
case reply := <-t.replies:
// run matching callbacks, remove if they return false.
for i, p := range pending {
if reply.from == p.from && reply.ptype == p.ptype && p.callback(reply.data) {
p.errc <- nil
copy(pending[i:], pending[i+1:])
pending = pending[:len(pending)-1]
i--
}
}
rearmTimeout()
case now := <-timeout.C:
// notify and remove callbacks whose deadline is in the past.
i := 0
for ; i < len(pending) && now.After(pending[i].deadline); i++ {
pending[i].errc <- errTimeout
}
if i > 0 {
copy(pending, pending[i:])
pending = pending[:len(pending)-i]
}
rearmTimeout()
}
}
}
const (
macSize = 256 / 8
sigSize = 520 / 8
headSize = macSize + sigSize // space of packet frame data
)
var headSpace = make([]byte, headSize)
func (t *udp) send(to *Node, ptype byte, req interface{}) error {
b := new(bytes.Buffer)
b.Write(headSpace)
b.WriteByte(ptype)
if err := rlp.Encode(b, req); err != nil {
log.Errorln("error encoding packet:", err)
return err
}
packet := b.Bytes()
sig, err := crypto.Sign(crypto.Sha3(packet[headSize:]), t.priv)
if err != nil {
log.Errorln("could not sign packet:", err)
return err
}
copy(packet[macSize:], sig)
// add the hash to the front. Note: this doesn't protect the
// packet in any way. Our public key will be part of this hash in
// the future.
copy(packet, crypto.Sha3(packet[macSize:]))
toaddr := &net.UDPAddr{IP: to.IP, Port: to.DiscPort}
log.DebugDetailf(">>> %v %T %v\n", toaddr, req, req)
if _, err = t.conn.WriteToUDP(packet, toaddr); err != nil {
log.DebugDetailln("UDP send failed:", err)
}
return err
}
// readLoop runs in its own goroutine. it handles incoming UDP packets.
func (t *udp) readLoop() {
defer t.conn.Close()
buf := make([]byte, 4096) // TODO: good buffer size
for {
nbytes, from, err := t.conn.ReadFromUDP(buf)
if err != nil {
return
}
if err := t.packetIn(from, buf[:nbytes]); err != nil {
log.Debugf("Bad packet from %v: %v\n", from, err)
}
}
}
func (t *udp) packetIn(from *net.UDPAddr, buf []byte) error {
if len(buf) < headSize+1 {
return errPacketTooSmall
}
hash, sig, sigdata := buf[:macSize], buf[macSize:headSize], buf[headSize:]
shouldhash := crypto.Sha3(buf[macSize:])
if !bytes.Equal(hash, shouldhash) {
return errBadHash
}
fromID, err := recoverNodeID(crypto.Sha3(buf[headSize:]), sig)
if err != nil {
return err
}
var req interface {
handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error
}
switch ptype := sigdata[0]; ptype {
case pingPacket:
req = new(ping)
case pongPacket:
req = new(pong)
case findnodePacket:
req = new(findnode)
case neighborsPacket:
req = new(neighbors)
default:
return fmt.Errorf("unknown type: %d", ptype)
}
if err := rlp.Decode(bytes.NewReader(sigdata[1:]), req); err != nil {
return err
}
log.DebugDetailf("<<< %v %T %v\n", from, req, req)
return req.handle(t, from, fromID, hash)
}
func (req *ping) handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error {
if expired(req.Expiration) {
return errExpired
}
t.mutex.Lock()
// Note: we're ignoring the provided IP address right now
n := t.bumpOrAdd(fromID, from)
if req.Port != 0 {
n.TCPPort = int(req.Port)
}
t.mutex.Unlock()
t.send(n, pongPacket, pong{
ReplyTok: mac,
Expiration: uint64(time.Now().Add(expiration).Unix()),
})
return nil
}
func (req *pong) handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error {
if expired(req.Expiration) {
return errExpired
}
t.mutex.Lock()
t.bump(fromID)
t.mutex.Unlock()
t.replies <- reply{fromID, pongPacket, req}
return nil
}
func (req *findnode) handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error {
if expired(req.Expiration) {
return errExpired
}
t.mutex.Lock()
e := t.bumpOrAdd(fromID, from)
closest := t.closest(req.Target, bucketSize).entries
t.mutex.Unlock()
t.send(e, neighborsPacket, neighbors{
Nodes: closest,
Expiration: uint64(time.Now().Add(expiration).Unix()),
})
return nil
}
func (req *neighbors) handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error {
if expired(req.Expiration) {
return errExpired
}
t.mutex.Lock()
t.bump(fromID)
t.add(req.Nodes)
t.mutex.Unlock()
t.replies <- reply{fromID, neighborsPacket, req}
return nil
}
func expired(ts uint64) bool {
return time.Unix(int64(ts), 0).Before(time.Now())
}

211
p2p/discover/udp_test.go Normal file

@ -0,0 +1,211 @@
package discover
import (
"fmt"
logpkg "log"
"net"
"os"
"testing"
"time"
"github.com/ethereum/go-ethereum/logger"
)
func init() {
logger.AddLogSystem(logger.NewStdLogSystem(os.Stdout, logpkg.LstdFlags, logger.ErrorLevel))
}
func TestUDP_ping(t *testing.T) {
t.Parallel()
n1, _ := ListenUDP(newkey(), "127.0.0.1:0", nil)
n2, _ := ListenUDP(newkey(), "127.0.0.1:0", nil)
defer n1.Close()
defer n2.Close()
if err := n1.net.ping(n2.self); err != nil {
t.Fatalf("ping error: %v", err)
}
if find(n2, n1.self.ID) == nil {
t.Errorf("node 2 does not contain id of node 1")
}
if e := find(n1, n2.self.ID); e != nil {
t.Errorf("node 1 does contains id of node 2: %v", e)
}
}
func find(tab *Table, id NodeID) *Node {
for _, b := range tab.buckets {
for _, e := range b.entries {
if e.ID == id {
return e
}
}
}
return nil
}
func TestUDP_findnode(t *testing.T) {
t.Parallel()
n1, _ := ListenUDP(newkey(), "127.0.0.1:0", nil)
n2, _ := ListenUDP(newkey(), "127.0.0.1:0", nil)
defer n1.Close()
defer n2.Close()
// put a few nodes into n2. the exact distribution shouldn't
// matter much, altough we need to take care not to overflow
// any bucket.
target := randomID(n1.self.ID, 100)
nodes := &nodesByDistance{target: target}
for i := 0; i < bucketSize; i++ {
n2.add([]*Node{&Node{
IP: net.IP{1, 2, 3, byte(i)},
DiscPort: i + 2,
TCPPort: i + 2,
ID: randomID(n2.self.ID, i+2),
}})
}
n2.add(nodes.entries)
n2.bumpOrAdd(n1.self.ID, &net.UDPAddr{IP: n1.self.IP, Port: n1.self.DiscPort})
expected := n2.closest(target, bucketSize)
err := runUDP(10, func() error {
result, _ := n1.net.findnode(n2.self, target)
if len(result) != bucketSize {
return fmt.Errorf("wrong number of results: got %d, want %d", len(result), bucketSize)
}
for i := range result {
if result[i].ID != expected.entries[i].ID {
return fmt.Errorf("result mismatch at %d:\n got: %v\n want: %v", i, result[i], expected.entries[i])
}
}
return nil
})
if err != nil {
t.Error(err)
}
}
func TestUDP_replytimeout(t *testing.T) {
t.Parallel()
// reserve a port so we don't talk to an existing service by accident
addr, _ := net.ResolveUDPAddr("udp", "127.0.0.1:0")
fd, err := net.ListenUDP("udp", addr)
if err != nil {
t.Fatal(err)
}
defer fd.Close()
n1, _ := ListenUDP(newkey(), "127.0.0.1:0", nil)
defer n1.Close()
n2 := n1.bumpOrAdd(randomID(n1.self.ID, 10), fd.LocalAddr().(*net.UDPAddr))
if err := n1.net.ping(n2); err != errTimeout {
t.Error("expected timeout error, got", err)
}
if result, err := n1.net.findnode(n2, n1.self.ID); err != errTimeout {
t.Error("expected timeout error, got", err)
} else if len(result) > 0 {
t.Error("expected empty result, got", result)
}
}
func TestUDP_findnodeMultiReply(t *testing.T) {
t.Parallel()
n1, _ := ListenUDP(newkey(), "127.0.0.1:0", nil)
n2, _ := ListenUDP(newkey(), "127.0.0.1:0", nil)
udp2 := n2.net.(*udp)
defer n1.Close()
defer n2.Close()
err := runUDP(10, func() error {
nodes := make([]*Node, bucketSize)
for i := range nodes {
nodes[i] = &Node{
IP: net.IP{1, 2, 3, 4},
DiscPort: i + 1,
TCPPort: i + 1,
ID: randomID(n2.self.ID, i+1),
}
}
// ask N2 for neighbors. it will send an empty reply back.
// the request will wait for up to bucketSize replies.
resultc := make(chan []*Node)
errc := make(chan error)
go func() {
ns, err := n1.net.findnode(n2.self, n1.self.ID)
if err != nil {
errc <- err
} else {
resultc <- ns
}
}()
// send a few more neighbors packets to N1.
// it should collect those.
for end := 0; end < len(nodes); {
off := end
if end = end + 5; end > len(nodes) {
end = len(nodes)
}
udp2.send(n1.self, neighborsPacket, neighbors{
Nodes: nodes[off:end],
Expiration: uint64(time.Now().Add(10 * time.Second).Unix()),
})
}
// check that they are all returned. we cannot just check for
// equality because they might not be returned in the order they
// were sent.
var result []*Node
select {
case result = <-resultc:
case err := <-errc:
return err
}
if hasDuplicates(result) {
return fmt.Errorf("result slice contains duplicates")
}
if len(result) != len(nodes) {
return fmt.Errorf("wrong number of nodes returned: got %d, want %d", len(result), len(nodes))
}
matched := make(map[NodeID]bool)
for _, n := range result {
for _, expn := range nodes {
if n.ID == expn.ID { // && bytes.Equal(n.Addr.IP, expn.Addr.IP) && n.Addr.Port == expn.Addr.Port {
matched[n.ID] = true
}
}
}
if len(matched) != len(nodes) {
return fmt.Errorf("wrong number of matching nodes: got %d, want %d", len(matched), len(nodes))
}
return nil
})
if err != nil {
t.Error(err)
}
}
// runUDP runs a test n times and returns an error if the test failed
// in all n runs. This is necessary because UDP is unreliable even for
// connections on the local machine, causing test failures.
func runUDP(n int, test func() error) error {
errcount := 0
errors := ""
for i := 0; i < n; i++ {
if err := test(); err != nil {
errors += fmt.Sprintf("\n#%d: %v", i, err)
errcount++
}
}
if errcount == n {
return fmt.Errorf("failed on all %d iterations:%s", n, errors)
}
return nil
}

@ -1,6 +1,7 @@
package p2p
import (
"bufio"
"bytes"
"encoding/binary"
"errors"
@ -8,12 +9,37 @@ import (
"io"
"io/ioutil"
"math/big"
"net"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/ethutil"
"github.com/ethereum/go-ethereum/rlp"
)
// parameters for frameRW
const (
// maximum time allowed for reading a message header.
// this is effectively the amount of time a connection can be idle.
frameReadTimeout = 1 * time.Minute
// maximum time allowed for reading the payload data of a message.
// this is shorter than (and distinct from) frameReadTimeout because
// the connection is not considered idle while a message is transferred.
// this also limits the payload size of messages to how much the connection
// can transfer within the timeout.
payloadReadTimeout = 5 * time.Second
// maximum amount of time allowed for writing a complete message.
msgWriteTimeout = 5 * time.Second
// messages smaller than this many bytes will be read at
// once before passing them to a protocol. this increases
// concurrency in the processing.
wholePayloadSize = 64 * 1024
)
// Msg defines the structure of a p2p message.
//
// Note that a Msg can only be sent once since the Payload reader is
@ -74,11 +100,14 @@ type MsgWriter interface {
// WriteMsg sends a message. It will block until the message's
// Payload has been consumed by the other end.
//
// Note that messages can be sent only once.
// Note that messages can be sent only once because their
// payload reader is drained.
WriteMsg(Msg) error
}
// MsgReadWriter provides reading and writing of encoded messages.
// Implementations should ensure that ReadMsg and WriteMsg can be
// called simultaneously from multiple goroutines.
type MsgReadWriter interface {
MsgReader
MsgWriter
@ -90,8 +119,45 @@ func EncodeMsg(w MsgWriter, code uint64, data ...interface{}) error {
return w.WriteMsg(NewMsg(code, data...))
}
// frameRW is a MsgReadWriter that reads and writes devp2p message frames.
// As required by the interface, ReadMsg and WriteMsg can be called from
// multiple goroutines.
type frameRW struct {
net.Conn // make Conn methods available. be careful.
bufconn *bufio.ReadWriter
// this channel is used to 'lend' bufconn to a caller of ReadMsg
// until the message payload has been consumed. the channel
// receives a value when EOF is reached on the payload, unblocking
// a pending call to ReadMsg.
rsync chan struct{}
// this mutex guards writes to bufconn.
writeMu sync.Mutex
}
func newFrameRW(conn net.Conn, timeout time.Duration) *frameRW {
rsync := make(chan struct{}, 1)
rsync <- struct{}{}
return &frameRW{
Conn: conn,
bufconn: bufio.NewReadWriter(bufio.NewReader(conn), bufio.NewWriter(conn)),
rsync: rsync,
}
}
var magicToken = []byte{34, 64, 8, 145}
func (rw *frameRW) WriteMsg(msg Msg) error {
rw.writeMu.Lock()
defer rw.writeMu.Unlock()
rw.SetWriteDeadline(time.Now().Add(msgWriteTimeout))
if err := writeMsg(rw.bufconn, msg); err != nil {
return err
}
return rw.bufconn.Flush()
}
func writeMsg(w io.Writer, msg Msg) error {
// TODO: handle case when Size + len(code) + len(listhdr) overflows uint32
code := ethutil.Encode(uint32(msg.Code))
@ -120,31 +186,51 @@ func makeListHeader(length uint32) []byte {
return append([]byte{lenb}, enc...)
}
// readMsg reads a message header from r.
// It takes an rlp.ByteReader to ensure that the decoding doesn't buffer.
func readMsg(r rlp.ByteReader) (msg Msg, err error) {
func (rw *frameRW) ReadMsg() (msg Msg, err error) {
<-rw.rsync // wait until bufconn is ours
rw.SetReadDeadline(time.Now().Add(frameReadTimeout))
// read magic and payload size
start := make([]byte, 8)
if _, err = io.ReadFull(r, start); err != nil {
return msg, newPeerError(errRead, "%v", err)
if _, err = io.ReadFull(rw.bufconn, start); err != nil {
return msg, err
}
if !bytes.HasPrefix(start, magicToken) {
return msg, newPeerError(errMagicTokenMismatch, "got %x, want %x", start[:4], magicToken)
return msg, fmt.Errorf("bad magic token %x", start[:4], magicToken)
}
size := binary.BigEndian.Uint32(start[4:])
// decode start of RLP message to get the message code
posr := &postrack{r, 0}
posr := &postrack{rw.bufconn, 0}
s := rlp.NewStream(posr)
if _, err := s.List(); err != nil {
return msg, err
}
code, err := s.Uint()
msg.Code, err = s.Uint()
if err != nil {
return msg, err
}
payloadsize := size - posr.p
return Msg{code, payloadsize, io.LimitReader(r, int64(payloadsize))}, nil
msg.Size = size - posr.p
rw.SetReadDeadline(time.Now().Add(payloadReadTimeout))
if msg.Size <= wholePayloadSize {
// msg is small, read all of it and move on to the next message.
pbuf := make([]byte, msg.Size)
if _, err := io.ReadFull(rw.bufconn, pbuf); err != nil {
return msg, err
}
rw.rsync <- struct{}{} // bufconn is available again
msg.Payload = bytes.NewReader(pbuf)
} else {
// lend bufconn to the caller until it has
// consumed the payload. eofSignal will send a value
// on rw.rsync when EOF is reached.
pr := &eofSignal{rw.bufconn, msg.Size, rw.rsync}
msg.Payload = pr
}
return msg, nil
}
// postrack wraps an rlp.ByteReader with a position counter.
@ -167,6 +253,39 @@ func (r *postrack) ReadByte() (byte, error) {
return b, err
}
// eofSignal wraps a reader with eof signaling. the eof channel is
// closed when the wrapped reader returns an error or when count bytes
// have been read.
type eofSignal struct {
wrapped io.Reader
count uint32 // number of bytes left
eof chan<- struct{}
}
// note: when using eofSignal to detect whether a message payload
// has been read, Read might not be called for zero sized messages.
func (r *eofSignal) Read(buf []byte) (int, error) {
if r.count == 0 {
if r.eof != nil {
r.eof <- struct{}{}
r.eof = nil
}
return 0, io.EOF
}
max := len(buf)
if int(r.count) < len(buf) {
max = int(r.count)
}
n, err := r.wrapped.Read(buf[:max])
r.count -= uint32(n)
if (err != nil || r.count == 0) && r.eof != nil {
r.eof <- struct{}{} // tell Peer that msg has been consumed
r.eof = nil
}
return n, err
}
// MsgPipe creates a message pipe. Reads on one end are matched
// with writes on the other. The pipe is full-duplex, both ends
// implement MsgReadWriter.
@ -198,7 +317,7 @@ type MsgPipeRW struct {
func (p *MsgPipeRW) WriteMsg(msg Msg) error {
if atomic.LoadInt32(p.closed) == 0 {
consumed := make(chan struct{}, 1)
msg.Payload = &eofSignal{msg.Payload, int64(msg.Size), consumed}
msg.Payload = &eofSignal{msg.Payload, msg.Size, consumed}
select {
case p.w <- msg:
if msg.Size > 0 {

@ -3,12 +3,11 @@ package p2p
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"runtime"
"testing"
"time"
"github.com/ethereum/go-ethereum/ethutil"
)
func TestNewMsg(t *testing.T) {
@ -26,51 +25,51 @@ func TestNewMsg(t *testing.T) {
}
}
func TestEncodeDecodeMsg(t *testing.T) {
msg := NewMsg(3, 1, "000")
buf := new(bytes.Buffer)
if err := writeMsg(buf, msg); err != nil {
t.Fatalf("encodeMsg error: %v", err)
}
// t.Logf("encoded: %x", buf.Bytes())
// func TestEncodeDecodeMsg(t *testing.T) {
// msg := NewMsg(3, 1, "000")
// buf := new(bytes.Buffer)
// if err := writeMsg(buf, msg); err != nil {
// t.Fatalf("encodeMsg error: %v", err)
// }
// // t.Logf("encoded: %x", buf.Bytes())
decmsg, err := readMsg(buf)
if err != nil {
t.Fatalf("readMsg error: %v", err)
}
if decmsg.Code != 3 {
t.Errorf("incorrect code %d, want %d", decmsg.Code, 3)
}
if decmsg.Size != 5 {
t.Errorf("incorrect size %d, want %d", decmsg.Size, 5)
}
// decmsg, err := readMsg(buf)
// if err != nil {
// t.Fatalf("readMsg error: %v", err)
// }
// if decmsg.Code != 3 {
// t.Errorf("incorrect code %d, want %d", decmsg.Code, 3)
// }
// if decmsg.Size != 5 {
// t.Errorf("incorrect size %d, want %d", decmsg.Size, 5)
// }
var data struct {
I uint
S string
}
if err := decmsg.Decode(&data); err != nil {
t.Fatalf("Decode error: %v", err)
}
if data.I != 1 {
t.Errorf("incorrect data.I: got %v, expected %d", data.I, 1)
}
if data.S != "000" {
t.Errorf("incorrect data.S: got %q, expected %q", data.S, "000")
}
}
// var data struct {
// I uint
// S string
// }
// if err := decmsg.Decode(&data); err != nil {
// t.Fatalf("Decode error: %v", err)
// }
// if data.I != 1 {
// t.Errorf("incorrect data.I: got %v, expected %d", data.I, 1)
// }
// if data.S != "000" {
// t.Errorf("incorrect data.S: got %q, expected %q", data.S, "000")
// }
// }
func TestDecodeRealMsg(t *testing.T) {
data := ethutil.Hex2Bytes("2240089100000080f87e8002b5457468657265756d282b2b292f5065657220536572766572204f6e652f76302e372e382f52656c656173652f4c696e75782f672b2bc082765fb84086dd80b7aefd6a6d2e3b93f4f300a86bfb6ef7bdc97cb03f793db6bb")
msg, err := readMsg(bytes.NewReader(data))
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
// func TestDecodeRealMsg(t *testing.T) {
// data := ethutil.Hex2Bytes("2240089100000080f87e8002b5457468657265756d282b2b292f5065657220536572766572204f6e652f76302e372e382f52656c656173652f4c696e75782f672b2bc082765fb84086dd80b7aefd6a6d2e3b93f4f300a86bfb6ef7bdc97cb03f793db6bb")
// msg, err := readMsg(bytes.NewReader(data))
// if err != nil {
// t.Fatalf("unexpected error: %v", err)
// }
if msg.Code != 0 {
t.Errorf("incorrect code %d, want %d", msg.Code, 0)
}
}
// if msg.Code != 0 {
// t.Errorf("incorrect code %d, want %d", msg.Code, 0)
// }
// }
func ExampleMsgPipe() {
rw1, rw2 := MsgPipe()
@ -131,3 +130,58 @@ func TestMsgPipeConcurrentClose(t *testing.T) {
go rw1.Close()
}
}
func TestEOFSignal(t *testing.T) {
rb := make([]byte, 10)
// empty reader
eof := make(chan struct{}, 1)
sig := &eofSignal{new(bytes.Buffer), 0, eof}
if n, err := sig.Read(rb); n != 0 || err != io.EOF {
t.Errorf("Read returned unexpected values: (%v, %v)", n, err)
}
select {
case <-eof:
default:
t.Error("EOF chan not signaled")
}
// count before error
eof = make(chan struct{}, 1)
sig = &eofSignal{bytes.NewBufferString("aaaaaaaa"), 4, eof}
if n, err := sig.Read(rb); n != 4 || err != nil {
t.Errorf("Read returned unexpected values: (%v, %v)", n, err)
}
select {
case <-eof:
default:
t.Error("EOF chan not signaled")
}
// error before count
eof = make(chan struct{}, 1)
sig = &eofSignal{bytes.NewBufferString("aaaa"), 999, eof}
if n, err := sig.Read(rb); n != 4 || err != nil {
t.Errorf("Read returned unexpected values: (%v, %v)", n, err)
}
if n, err := sig.Read(rb); n != 0 || err != io.EOF {
t.Errorf("Read returned unexpected values: (%v, %v)", n, err)
}
select {
case <-eof:
default:
t.Error("EOF chan not signaled")
}
// no signal if neither occurs
eof = make(chan struct{}, 1)
sig = &eofSignal{bytes.NewBufferString("aaaaaaaaaaaaaaaaaaaaa"), 999, eof}
if n, err := sig.Read(rb); n != 10 || err != nil {
t.Errorf("Read returned unexpected values: (%v, %v)", n, err)
}
select {
case <-eof:
t.Error("unexpected EOF signal")
default:
}
}

@ -1,23 +0,0 @@
package p2p
import (
"fmt"
"net"
)
func ParseNAT(natType string, gateway string) (nat NAT, err error) {
switch natType {
case "UPNP":
nat = UPNP()
case "PMP":
ip := net.ParseIP(gateway)
if ip == nil {
return nil, fmt.Errorf("cannot resolve PMP gateway IP %s", gateway)
}
nat = PMP(ip)
case "":
default:
return nil, fmt.Errorf("unrecognised NAT type '%s'", natType)
}
return
}

235
p2p/nat/nat.go Normal file

@ -0,0 +1,235 @@
// Package nat provides access to common port mapping protocols.
package nat
import (
"errors"
"fmt"
"net"
"strings"
"sync"
"time"
"github.com/ethereum/go-ethereum/logger"
"github.com/jackpal/go-nat-pmp"
)
var log = logger.NewLogger("P2P NAT")
// An implementation of nat.Interface can map local ports to ports
// accessible from the Internet.
type Interface interface {
// These methods manage a mapping between a port on the local
// machine to a port that can be connected to from the internet.
//
// protocol is "UDP" or "TCP". Some implementations allow setting
// a display name for the mapping. The mapping may be removed by
// the gateway when its lifetime ends.
AddMapping(protocol string, extport, intport int, name string, lifetime time.Duration) error
DeleteMapping(protocol string, extport, intport int) error
// This method should return the external (Internet-facing)
// address of the gateway device.
ExternalIP() (net.IP, error)
// Should return name of the method. This is used for logging.
String() string
}
// Parse parses a NAT interface description.
// The following formats are currently accepted.
// Note that mechanism names are not case-sensitive.
//
// "" or "none" return nil
// "extip:77.12.33.4" will assume the local machine is reachable on the given IP
// "any" uses the first auto-detected mechanism
// "upnp" uses the Universal Plug and Play protocol
// "pmp" uses NAT-PMP with an auto-detected gateway address
// "pmp:192.168.0.1" uses NAT-PMP with the given gateway address
func Parse(spec string) (Interface, error) {
var (
parts = strings.SplitN(spec, ":", 2)
mech = strings.ToLower(parts[0])
ip net.IP
)
if len(parts) > 1 {
ip = net.ParseIP(parts[1])
if ip == nil {
return nil, errors.New("invalid IP address")
}
}
switch mech {
case "", "none", "off":
return nil, nil
case "any", "auto", "on":
return Any(), nil
case "extip", "ip":
if ip == nil {
return nil, errors.New("missing IP address")
}
return ExtIP(ip), nil
case "upnp":
return UPnP(), nil
case "pmp", "natpmp", "nat-pmp":
return PMP(ip), nil
default:
return nil, fmt.Errorf("unknown mechanism %q", parts[0])
}
}
const (
mapTimeout = 20 * time.Minute
mapUpdateInterval = 15 * time.Minute
)
// Map adds a port mapping on m and keeps it alive until c is closed.
// This function is typically invoked in its own goroutine.
func Map(m Interface, c chan struct{}, protocol string, extport, intport int, name string) {
refresh := time.NewTimer(mapUpdateInterval)
defer func() {
refresh.Stop()
log.Debugf("Deleting port mapping: %s %d -> %d (%s) using %s\n", protocol, extport, intport, name, m)
m.DeleteMapping(protocol, extport, intport)
}()
log.Debugf("add mapping: %s %d -> %d (%s) using %s\n", protocol, extport, intport, name, m)
if err := m.AddMapping(protocol, intport, extport, name, mapTimeout); err != nil {
log.Errorf("mapping error: %v\n", err)
}
for {
select {
case _, ok := <-c:
if !ok {
return
}
case <-refresh.C:
log.DebugDetailf("refresh mapping: %s %d -> %d (%s) using %s\n", protocol, extport, intport, name, m)
if err := m.AddMapping(protocol, intport, extport, name, mapTimeout); err != nil {
log.Errorf("mapping error: %v\n", err)
}
refresh.Reset(mapUpdateInterval)
}
}
}
// ExtIP assumes that the local machine is reachable on the given
// external IP address, and that any required ports were mapped manually.
// Mapping operations will not return an error but won't actually do anything.
func ExtIP(ip net.IP) Interface {
if ip == nil {
panic("IP must not be nil")
}
return extIP(ip)
}
type extIP net.IP
func (n extIP) ExternalIP() (net.IP, error) { return net.IP(n), nil }
func (n extIP) String() string { return fmt.Sprintf("ExtIP(%v)", net.IP(n)) }
// These do nothing.
func (extIP) AddMapping(string, int, int, string, time.Duration) error { return nil }
func (extIP) DeleteMapping(string, int, int) error { return nil }
// Any returns a port mapper that tries to discover any supported
// mechanism on the local network.
func Any() Interface {
// TODO: attempt to discover whether the local machine has an
// Internet-class address. Return ExtIP in this case.
return startautodisc("UPnP or NAT-PMP", func() Interface {
found := make(chan Interface, 2)
go func() { found <- discoverUPnP() }()
go func() { found <- discoverPMP() }()
for i := 0; i < cap(found); i++ {
if c := <-found; c != nil {
return c
}
}
return nil
})
}
// UPnP returns a port mapper that uses UPnP. It will attempt to
// discover the address of your router using UDP broadcasts.
func UPnP() Interface {
return startautodisc("UPnP", discoverUPnP)
}
// PMP returns a port mapper that uses NAT-PMP. The provided gateway
// address should be the IP of your router. If the given gateway
// address is nil, PMP will attempt to auto-discover the router.
func PMP(gateway net.IP) Interface {
if gateway != nil {
return &pmp{gw: gateway, c: natpmp.NewClient(gateway)}
}
return startautodisc("NAT-PMP", discoverPMP)
}
// autodisc represents a port mapping mechanism that is still being
// auto-discovered. Calls to the Interface methods on this type will
// wait until the discovery is done and then call the method on the
// discovered mechanism.
//
// This type is useful because discovery can take a while but we
// want return an Interface value from UPnP, PMP and Auto immediately.
type autodisc struct {
what string
done <-chan Interface
mu sync.Mutex
found Interface
}
func startautodisc(what string, doit func() Interface) Interface {
// TODO: monitor network configuration and rerun doit when it changes.
done := make(chan Interface)
ad := &autodisc{what: what, done: done}
go func() { done <- doit(); close(done) }()
return ad
}
func (n *autodisc) AddMapping(protocol string, extport, intport int, name string, lifetime time.Duration) error {
if err := n.wait(); err != nil {
return err
}
return n.found.AddMapping(protocol, extport, intport, name, lifetime)
}
func (n *autodisc) DeleteMapping(protocol string, extport, intport int) error {
if err := n.wait(); err != nil {
return err
}
return n.found.DeleteMapping(protocol, extport, intport)
}
func (n *autodisc) ExternalIP() (net.IP, error) {
if err := n.wait(); err != nil {
return nil, err
}
return n.found.ExternalIP()
}
func (n *autodisc) String() string {
n.mu.Lock()
defer n.mu.Unlock()
if n.found == nil {
return n.what
} else {
return n.found.String()
}
}
func (n *autodisc) wait() error {
n.mu.Lock()
found := n.found
n.mu.Unlock()
if found != nil {
// already discovered
return nil
}
if found = <-n.done; found == nil {
return errors.New("no devices discovered")
}
n.mu.Lock()
n.found = found
n.mu.Unlock()
return nil
}

115
p2p/nat/natpmp.go Normal file

@ -0,0 +1,115 @@
package nat
import (
"fmt"
"net"
"strings"
"time"
"github.com/jackpal/go-nat-pmp"
)
// natPMPClient adapts the NAT-PMP protocol implementation so it conforms to
// the common interface.
type pmp struct {
gw net.IP
c *natpmp.Client
}
func (n *pmp) String() string {
return fmt.Sprintf("NAT-PMP(%v)", n.gw)
}
func (n *pmp) ExternalIP() (net.IP, error) {
response, err := n.c.GetExternalAddress()
if err != nil {
return nil, err
}
return response.ExternalIPAddress[:], nil
}
func (n *pmp) AddMapping(protocol string, extport, intport int, name string, lifetime time.Duration) error {
if lifetime <= 0 {
return fmt.Errorf("lifetime must not be <= 0")
}
// Note order of port arguments is switched between our
// AddMapping and the client's AddPortMapping.
_, err := n.c.AddPortMapping(strings.ToLower(protocol), intport, extport, int(lifetime/time.Second))
return err
}
func (n *pmp) DeleteMapping(protocol string, extport, intport int) (err error) {
// To destroy a mapping, send an add-port with an internalPort of
// the internal port to destroy, an external port of zero and a
// time of zero.
_, err = n.c.AddPortMapping(strings.ToLower(protocol), intport, 0, 0)
return err
}
func discoverPMP() Interface {
// run external address lookups on all potential gateways
gws := potentialGateways()
found := make(chan *pmp, len(gws))
for i := range gws {
gw := gws[i]
go func() {
c := natpmp.NewClient(gw)
if _, err := c.GetExternalAddress(); err != nil {
found <- nil
} else {
found <- &pmp{gw, c}
}
}()
}
// return the one that responds first.
// discovery needs to be quick, so we stop caring about
// any responses after a very short timeout.
timeout := time.NewTimer(1 * time.Second)
defer timeout.Stop()
for _ = range gws {
select {
case c := <-found:
if c != nil {
return c
}
case <-timeout.C:
return nil
}
}
return nil
}
var (
// LAN IP ranges
_, lan10, _ = net.ParseCIDR("10.0.0.0/8")
_, lan176, _ = net.ParseCIDR("172.16.0.0/12")
_, lan192, _ = net.ParseCIDR("192.168.0.0/16")
)
// TODO: improve this. We currently assume that (on most networks)
// the router is X.X.X.1 in a local LAN range.
func potentialGateways() (gws []net.IP) {
ifaces, err := net.Interfaces()
if err != nil {
return nil
}
for _, iface := range ifaces {
ifaddrs, err := iface.Addrs()
if err != nil {
return gws
}
for _, addr := range ifaddrs {
switch x := addr.(type) {
case *net.IPNet:
if lan10.Contains(x.IP) || lan176.Contains(x.IP) || lan192.Contains(x.IP) {
ip := x.IP.Mask(x.Mask).To4()
if ip != nil {
ip[3] = ip[3] | 0x01
gws = append(gws, ip)
}
}
}
}
}
return gws
}

149
p2p/nat/natupnp.go Normal file

@ -0,0 +1,149 @@
package nat
import (
"errors"
"fmt"
"net"
"strings"
"time"
"github.com/fjl/goupnp"
"github.com/fjl/goupnp/dcps/internetgateway1"
"github.com/fjl/goupnp/dcps/internetgateway2"
)
type upnp struct {
dev *goupnp.RootDevice
service string
client upnpClient
}
type upnpClient interface {
GetExternalIPAddress() (string, error)
AddPortMapping(string, uint16, string, uint16, string, bool, string, uint32) error
DeletePortMapping(string, uint16, string) error
GetNATRSIPStatus() (sip bool, nat bool, err error)
}
func (n *upnp) ExternalIP() (addr net.IP, err error) {
ipString, err := n.client.GetExternalIPAddress()
if err != nil {
return nil, err
}
ip := net.ParseIP(ipString)
if ip == nil {
return nil, errors.New("bad IP in response")
}
return ip, nil
}
func (n *upnp) AddMapping(protocol string, extport, intport int, desc string, lifetime time.Duration) error {
ip, err := n.internalAddress()
if err != nil {
return nil
}
protocol = strings.ToUpper(protocol)
lifetimeS := uint32(lifetime / time.Second)
return n.client.AddPortMapping("", uint16(extport), protocol, uint16(intport), ip.String(), true, desc, lifetimeS)
}
func (n *upnp) internalAddress() (net.IP, error) {
devaddr, err := net.ResolveUDPAddr("udp4", n.dev.URLBase.Host)
if err != nil {
return nil, err
}
ifaces, err := net.Interfaces()
if err != nil {
return nil, err
}
for _, iface := range ifaces {
addrs, err := iface.Addrs()
if err != nil {
return nil, err
}
for _, addr := range addrs {
switch x := addr.(type) {
case *net.IPNet:
if x.Contains(devaddr.IP) {
return x.IP, nil
}
}
}
}
return nil, fmt.Errorf("could not find local address in same net as %v", devaddr)
}
func (n *upnp) DeleteMapping(protocol string, extport, intport int) error {
return n.client.DeletePortMapping("", uint16(extport), strings.ToUpper(protocol))
}
func (n *upnp) String() string {
return "UPNP " + n.service
}
// discoverUPnP searches for Internet Gateway Devices
// and returns the first one it can find on the local network.
func discoverUPnP() Interface {
found := make(chan *upnp, 2)
// IGDv1
go discover(found, internetgateway1.URN_WANConnectionDevice_1, func(dev *goupnp.RootDevice, sc goupnp.ServiceClient) *upnp {
switch sc.Service.ServiceType {
case internetgateway1.URN_WANIPConnection_1:
return &upnp{dev, "IGDv1-IP1", &internetgateway1.WANIPConnection1{sc}}
case internetgateway1.URN_WANPPPConnection_1:
return &upnp{dev, "IGDv1-PPP1", &internetgateway1.WANPPPConnection1{sc}}
}
return nil
})
// IGDv2
go discover(found, internetgateway2.URN_WANConnectionDevice_2, func(dev *goupnp.RootDevice, sc goupnp.ServiceClient) *upnp {
switch sc.Service.ServiceType {
case internetgateway2.URN_WANIPConnection_1:
return &upnp{dev, "IGDv2-IP1", &internetgateway2.WANIPConnection1{sc}}
case internetgateway2.URN_WANIPConnection_2:
return &upnp{dev, "IGDv2-IP2", &internetgateway2.WANIPConnection2{sc}}
case internetgateway2.URN_WANPPPConnection_1:
return &upnp{dev, "IGDv2-PPP1", &internetgateway2.WANPPPConnection1{sc}}
}
return nil
})
for i := 0; i < cap(found); i++ {
if c := <-found; c != nil {
return c
}
}
return nil
}
func discover(out chan<- *upnp, target string, matcher func(*goupnp.RootDevice, goupnp.ServiceClient) *upnp) {
devs, err := goupnp.DiscoverDevices(target)
if err != nil {
return
}
found := false
for i := 0; i < len(devs) && !found; i++ {
if devs[i].Root == nil {
continue
}
devs[i].Root.Device.VisitServices(func(service *goupnp.Service) {
if found {
return
}
// check for a matching IGD service
sc := goupnp.ServiceClient{service.NewSOAPClient(), devs[i].Root, service}
upnp := matcher(devs[i].Root, sc)
if upnp == nil {
return
}
// check whether port mapping is enabled
if _, nat, err := upnp.client.GetNATRSIPStatus(); err != nil || !nat {
return
}
out <- upnp
found = true
})
}
if !found {
out <- nil
}
}

@ -1,55 +0,0 @@
package p2p
import (
"fmt"
"net"
"time"
natpmp "github.com/jackpal/go-nat-pmp"
)
// Adapt the NAT-PMP protocol to the NAT interface
// TODO:
// + Register for changes to the external address.
// + Re-register port mapping when router reboots.
// + A mechanism for keeping a port mapping registered.
// + Discover gateway address automatically.
type natPMPClient struct {
client *natpmp.Client
}
// PMP returns a NAT traverser that uses NAT-PMP. The provided gateway
// address should be the IP of your router.
func PMP(gateway net.IP) (nat NAT) {
return &natPMPClient{natpmp.NewClient(gateway)}
}
func (*natPMPClient) String() string {
return "NAT-PMP"
}
func (n *natPMPClient) GetExternalAddress() (net.IP, error) {
response, err := n.client.GetExternalAddress()
if err != nil {
return nil, err
}
return response.ExternalIPAddress[:], nil
}
func (n *natPMPClient) AddPortMapping(protocol string, extport, intport int, name string, lifetime time.Duration) error {
if lifetime <= 0 {
return fmt.Errorf("lifetime must not be <= 0")
}
// Note order of port arguments is switched between our AddPortMapping and the client's AddPortMapping.
_, err := n.client.AddPortMapping(protocol, intport, extport, int(lifetime/time.Second))
return err
}
func (n *natPMPClient) DeletePortMapping(protocol string, externalPort, internalPort int) (err error) {
// To destroy a mapping, send an add-port with
// an internalPort of the internal port to destroy, an external port of zero and a time of zero.
_, err = n.client.AddPortMapping(protocol, internalPort, 0, 0)
return
}

@ -1,341 +0,0 @@
package p2p
// Just enough UPnP to be able to forward ports
//
import (
"bytes"
"encoding/xml"
"errors"
"fmt"
"net"
"net/http"
"os"
"strconv"
"strings"
"time"
)
const (
upnpDiscoverAttempts = 3
upnpDiscoverTimeout = 5 * time.Second
)
// UPNP returns a NAT port mapper that uses UPnP. It will attempt to
// discover the address of your router using UDP broadcasts.
func UPNP() NAT {
return &upnpNAT{}
}
type upnpNAT struct {
serviceURL string
ourIP string
}
func (n *upnpNAT) String() string {
return "UPNP"
}
func (n *upnpNAT) discover() error {
if n.serviceURL != "" {
// already discovered
return nil
}
ssdp, err := net.ResolveUDPAddr("udp4", "239.255.255.250:1900")
if err != nil {
return err
}
// TODO: try on all network interfaces simultaneously.
// Broadcasting on 0.0.0.0 could select a random interface
// to send on (platform specific).
conn, err := net.ListenPacket("udp4", ":0")
if err != nil {
return err
}
defer conn.Close()
conn.SetDeadline(time.Now().Add(10 * time.Second))
st := "ST: urn:schemas-upnp-org:device:InternetGatewayDevice:1\r\n"
buf := bytes.NewBufferString(
"M-SEARCH * HTTP/1.1\r\n" +
"HOST: 239.255.255.250:1900\r\n" +
st +
"MAN: \"ssdp:discover\"\r\n" +
"MX: 2\r\n\r\n")
message := buf.Bytes()
answerBytes := make([]byte, 1024)
for i := 0; i < upnpDiscoverAttempts; i++ {
_, err = conn.WriteTo(message, ssdp)
if err != nil {
return err
}
nn, _, err := conn.ReadFrom(answerBytes)
if err != nil {
continue
}
answer := string(answerBytes[0:nn])
if strings.Index(answer, "\r\n"+st) < 0 {
continue
}
// HTTP header field names are case-insensitive.
// http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.2
locString := "\r\nlocation: "
answer = strings.ToLower(answer)
locIndex := strings.Index(answer, locString)
if locIndex < 0 {
continue
}
loc := answer[locIndex+len(locString):]
endIndex := strings.Index(loc, "\r\n")
if endIndex < 0 {
continue
}
locURL := loc[0:endIndex]
var serviceURL string
serviceURL, err = getServiceURL(locURL)
if err != nil {
return err
}
var ourIP string
ourIP, err = getOurIP()
if err != nil {
return err
}
n.serviceURL = serviceURL
n.ourIP = ourIP
return nil
}
return errors.New("UPnP port discovery failed.")
}
func (n *upnpNAT) GetExternalAddress() (addr net.IP, err error) {
if err := n.discover(); err != nil {
return nil, err
}
info, err := n.getStatusInfo()
return net.ParseIP(info.externalIpAddress), err
}
func (n *upnpNAT) AddPortMapping(protocol string, extport, intport int, description string, lifetime time.Duration) error {
if err := n.discover(); err != nil {
return err
}
// A single concatenation would break ARM compilation.
message := "<u:AddPortMapping xmlns:u=\"urn:schemas-upnp-org:service:WANIPConnection:1\">\r\n" +
"<NewRemoteHost></NewRemoteHost><NewExternalPort>" + strconv.Itoa(extport)
message += "</NewExternalPort><NewProtocol>" + protocol + "</NewProtocol>"
message += "<NewInternalPort>" + strconv.Itoa(extport) + "</NewInternalPort>" +
"<NewInternalClient>" + n.ourIP + "</NewInternalClient>" +
"<NewEnabled>1</NewEnabled><NewPortMappingDescription>"
message += description +
"</NewPortMappingDescription><NewLeaseDuration>" + fmt.Sprint(lifetime/time.Second) +
"</NewLeaseDuration></u:AddPortMapping>"
// TODO: check response to see if the port was forwarded
_, err := soapRequest(n.serviceURL, "AddPortMapping", message)
return err
}
func (n *upnpNAT) DeletePortMapping(protocol string, externalPort, internalPort int) error {
if err := n.discover(); err != nil {
return err
}
message := "<u:DeletePortMapping xmlns:u=\"urn:schemas-upnp-org:service:WANIPConnection:1\">\r\n" +
"<NewRemoteHost></NewRemoteHost><NewExternalPort>" + strconv.Itoa(externalPort) +
"</NewExternalPort><NewProtocol>" + protocol + "</NewProtocol>" +
"</u:DeletePortMapping>"
// TODO: check response to see if the port was deleted
_, err := soapRequest(n.serviceURL, "DeletePortMapping", message)
return err
}
type statusInfo struct {
externalIpAddress string
}
func (n *upnpNAT) getStatusInfo() (info statusInfo, err error) {
message := "<u:GetStatusInfo xmlns:u=\"urn:schemas-upnp-org:service:WANIPConnection:1\">\r\n" +
"</u:GetStatusInfo>"
var response *http.Response
response, err = soapRequest(n.serviceURL, "GetStatusInfo", message)
if err != nil {
return
}
// TODO: Write a soap reply parser. It has to eat the Body and envelope tags...
response.Body.Close()
return
}
// service represents the Service type in an UPnP xml description.
// Only the parts we care about are present and thus the xml may have more
// fields than present in the structure.
type service struct {
ServiceType string `xml:"serviceType"`
ControlURL string `xml:"controlURL"`
}
// deviceList represents the deviceList type in an UPnP xml description.
// Only the parts we care about are present and thus the xml may have more
// fields than present in the structure.
type deviceList struct {
XMLName xml.Name `xml:"deviceList"`
Device []device `xml:"device"`
}
// serviceList represents the serviceList type in an UPnP xml description.
// Only the parts we care about are present and thus the xml may have more
// fields than present in the structure.
type serviceList struct {
XMLName xml.Name `xml:"serviceList"`
Service []service `xml:"service"`
}
// device represents the device type in an UPnP xml description.
// Only the parts we care about are present and thus the xml may have more
// fields than present in the structure.
type device struct {
XMLName xml.Name `xml:"device"`
DeviceType string `xml:"deviceType"`
DeviceList deviceList `xml:"deviceList"`
ServiceList serviceList `xml:"serviceList"`
}
// specVersion represents the specVersion in a UPnP xml description.
// Only the parts we care about are present and thus the xml may have more
// fields than present in the structure.
type specVersion struct {
XMLName xml.Name `xml:"specVersion"`
Major int `xml:"major"`
Minor int `xml:"minor"`
}
// root represents the Root document for a UPnP xml description.
// Only the parts we care about are present and thus the xml may have more
// fields than present in the structure.
type root struct {
XMLName xml.Name `xml:"root"`
SpecVersion specVersion
Device device
}
func getChildDevice(d *device, deviceType string) *device {
dl := d.DeviceList.Device
for i := 0; i < len(dl); i++ {
if dl[i].DeviceType == deviceType {
return &dl[i]
}
}
return nil
}
func getChildService(d *device, serviceType string) *service {
sl := d.ServiceList.Service
for i := 0; i < len(sl); i++ {
if sl[i].ServiceType == serviceType {
return &sl[i]
}
}
return nil
}
func getOurIP() (ip string, err error) {
hostname, err := os.Hostname()
if err != nil {
return
}
p, err := net.LookupIP(hostname)
if err != nil && len(p) > 0 {
return
}
return p[0].String(), nil
}
func getServiceURL(rootURL string) (url string, err error) {
r, err := http.Get(rootURL)
if err != nil {
return
}
defer r.Body.Close()
if r.StatusCode >= 400 {
err = errors.New(string(r.StatusCode))
return
}
var root root
err = xml.NewDecoder(r.Body).Decode(&root)
if err != nil {
return
}
a := &root.Device
if a.DeviceType != "urn:schemas-upnp-org:device:InternetGatewayDevice:1" {
err = errors.New("No InternetGatewayDevice")
return
}
b := getChildDevice(a, "urn:schemas-upnp-org:device:WANDevice:1")
if b == nil {
err = errors.New("No WANDevice")
return
}
c := getChildDevice(b, "urn:schemas-upnp-org:device:WANConnectionDevice:1")
if c == nil {
err = errors.New("No WANConnectionDevice")
return
}
d := getChildService(c, "urn:schemas-upnp-org:service:WANIPConnection:1")
if d == nil {
err = errors.New("No WANIPConnection")
return
}
url = combineURL(rootURL, d.ControlURL)
return
}
func combineURL(rootURL, subURL string) string {
protocolEnd := "://"
protoEndIndex := strings.Index(rootURL, protocolEnd)
a := rootURL[protoEndIndex+len(protocolEnd):]
rootIndex := strings.Index(a, "/")
return rootURL[0:protoEndIndex+len(protocolEnd)+rootIndex] + subURL
}
func soapRequest(url, function, message string) (r *http.Response, err error) {
fullMessage := "<?xml version=\"1.0\" ?>" +
"<s:Envelope xmlns:s=\"http://schemas.xmlsoap.org/soap/envelope/\" s:encodingStyle=\"http://schemas.xmlsoap.org/soap/encoding/\">\r\n" +
"<s:Body>" + message + "</s:Body></s:Envelope>"
req, err := http.NewRequest("POST", url, strings.NewReader(fullMessage))
if err != nil {
return
}
req.Header.Set("Content-Type", "text/xml ; charset=\"utf-8\"")
req.Header.Set("User-Agent", "Darwin/10.0.0, UPnP/1.0, MiniUPnPc/1.3")
//req.Header.Set("Transfer-Encoding", "chunked")
req.Header.Set("SOAPAction", "\"urn:schemas-upnp-org:service:WANIPConnection:1#"+function+"\"")
req.Header.Set("Connection", "Close")
req.Header.Set("Cache-Control", "no-cache")
req.Header.Set("Pragma", "no-cache")
r, err = http.DefaultClient.Do(req)
if err != nil {
return
}
if r.Body != nil {
defer r.Body.Close()
}
if r.StatusCode >= 400 {
// log.Stderr(function, r.StatusCode)
err = errors.New("Error " + strconv.Itoa(r.StatusCode) + " for " + function)
r = nil
return
}
return
}

@ -1,8 +1,7 @@
package p2p
import (
"bufio"
"bytes"
"errors"
"fmt"
"io"
"io/ioutil"
@ -11,159 +10,109 @@ import (
"sync"
"time"
"github.com/ethereum/go-ethereum/event"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/rlp"
)
// peerAddr is the structure of a peer list element.
// It is also a valid net.Addr.
type peerAddr struct {
IP net.IP
Port uint64
Pubkey []byte // optional
const (
baseProtocolVersion = 3
baseProtocolLength = uint64(16)
baseProtocolMaxMsgSize = 10 * 1024 * 1024
disconnectGracePeriod = 2 * time.Second
)
const (
// devp2p message codes
handshakeMsg = 0x00
discMsg = 0x01
pingMsg = 0x02
pongMsg = 0x03
getPeersMsg = 0x04
peersMsg = 0x05
)
// handshake is the RLP structure of the protocol handshake.
type handshake struct {
Version uint64
Name string
Caps []Cap
ListenPort uint64
NodeID discover.NodeID
}
func newPeerAddr(addr net.Addr, pubkey []byte) *peerAddr {
n := addr.Network()
if n != "tcp" && n != "tcp4" && n != "tcp6" {
// for testing with non-TCP
return &peerAddr{net.ParseIP("127.0.0.1"), 30303, pubkey}
}
ta := addr.(*net.TCPAddr)
return &peerAddr{ta.IP, uint64(ta.Port), pubkey}
}
func (d peerAddr) Network() string {
if d.IP.To4() != nil {
return "tcp4"
} else {
return "tcp6"
}
}
func (d peerAddr) String() string {
return fmt.Sprintf("%v:%d", d.IP, d.Port)
}
func (d *peerAddr) RlpData() interface{} {
return []interface{}{string(d.IP), d.Port, d.Pubkey}
}
// Peer represents a remote peer.
// Peer represents a connected remote node.
type Peer struct {
// Peers have all the log methods.
// Use them to display messages related to the peer.
*logger.Logger
infolock sync.Mutex
identity ClientIdentity
infoMu sync.Mutex
name string
caps []Cap
listenAddr *peerAddr // what remote peer is listening on
dialAddr *peerAddr // non-nil if dialing
// The mutex protects the connection
// so only one protocol can write at a time.
writeMu sync.Mutex
conn net.Conn
bufconn *bufio.ReadWriter
ourID, remoteID *discover.NodeID
ourName string
rw *frameRW
// These fields maintain the running protocols.
protocols []Protocol
runBaseProtocol bool // for testing
runlock sync.RWMutex // protects running
running map[string]*proto
// disables protocol handshake, for testing
noHandshake bool
protoWG sync.WaitGroup
protoErr chan error
closed chan struct{}
disc chan DiscReason
activity event.TypeMux // for activity events
slot int // index into Server peer list
// These fields are kept so base protocol can access them.
// TODO: this should be one or more interfaces
ourID ClientIdentity // client id of the Server
ourListenAddr *peerAddr // listen addr of Server, nil if not listening
newPeerAddr chan<- *peerAddr // tell server about received peers
otherPeers func() []*Peer // should return the list of all peers
pubkeyHook func(*peerAddr) error // called at end of handshake to validate pubkey
}
// NewPeer returns a peer for testing purposes.
func NewPeer(id ClientIdentity, caps []Cap) *Peer {
func NewPeer(id discover.NodeID, name string, caps []Cap) *Peer {
conn, _ := net.Pipe()
peer := newPeer(conn, nil, nil)
peer.setHandshakeInfo(id, nil, caps)
close(peer.closed)
peer := newPeer(conn, nil, "", nil, &id)
peer.setHandshakeInfo(name, caps)
close(peer.closed) // ensures Disconnect doesn't block
return peer
}
func newServerPeer(server *Server, conn net.Conn, dialAddr *peerAddr) *Peer {
p := newPeer(conn, server.Protocols, dialAddr)
p.ourID = server.Identity
p.newPeerAddr = server.peerConnect
p.otherPeers = server.Peers
p.pubkeyHook = server.verifyPeer
p.runBaseProtocol = true
// laddr can be updated concurrently by NAT traversal.
// newServerPeer must be called with the server lock held.
if server.laddr != nil {
p.ourListenAddr = newPeerAddr(server.laddr, server.Identity.Pubkey())
}
return p
// ID returns the node's public key.
func (p *Peer) ID() discover.NodeID {
return *p.remoteID
}
func newPeer(conn net.Conn, protocols []Protocol, dialAddr *peerAddr) *Peer {
p := &Peer{
Logger: logger.NewLogger("P2P " + conn.RemoteAddr().String()),
conn: conn,
dialAddr: dialAddr,
bufconn: bufio.NewReadWriter(bufio.NewReader(conn), bufio.NewWriter(conn)),
protocols: protocols,
running: make(map[string]*proto),
disc: make(chan DiscReason),
protoErr: make(chan error),
closed: make(chan struct{}),
}
return p
}
// Identity returns the client identity of the remote peer. The
// identity can be nil if the peer has not yet completed the
// handshake.
func (p *Peer) Identity() ClientIdentity {
p.infolock.Lock()
defer p.infolock.Unlock()
return p.identity
// Name returns the node name that the remote node advertised.
func (p *Peer) Name() string {
// this needs a lock because the information is part of the
// protocol handshake.
p.infoMu.Lock()
name := p.name
p.infoMu.Unlock()
return name
}
// Caps returns the capabilities (supported subprotocols) of the remote peer.
func (p *Peer) Caps() []Cap {
p.infolock.Lock()
defer p.infolock.Unlock()
return p.caps
}
func (p *Peer) setHandshakeInfo(id ClientIdentity, laddr *peerAddr, caps []Cap) {
p.infolock.Lock()
p.identity = id
p.listenAddr = laddr
p.caps = caps
p.infolock.Unlock()
// this needs a lock because the information is part of the
// protocol handshake.
p.infoMu.Lock()
caps := p.caps
p.infoMu.Unlock()
return caps
}
// RemoteAddr returns the remote address of the network connection.
func (p *Peer) RemoteAddr() net.Addr {
return p.conn.RemoteAddr()
return p.rw.RemoteAddr()
}
// LocalAddr returns the local address of the network connection.
func (p *Peer) LocalAddr() net.Addr {
return p.conn.LocalAddr()
return p.rw.LocalAddr()
}
// Disconnect terminates the peer connection with the given reason.
@ -177,149 +126,177 @@ func (p *Peer) Disconnect(reason DiscReason) {
// String implements fmt.Stringer.
func (p *Peer) String() string {
kind := "inbound"
p.infolock.Lock()
if p.dialAddr != nil {
kind = "outbound"
}
p.infolock.Unlock()
return fmt.Sprintf("Peer(%p %v %s)", p, p.conn.RemoteAddr(), kind)
return fmt.Sprintf("Peer %.8x %v", p.remoteID[:], p.RemoteAddr())
}
const (
// maximum amount of time allowed for reading a message
msgReadTimeout = 5 * time.Second
// maximum amount of time allowed for writing a message
msgWriteTimeout = 5 * time.Second
// messages smaller than this many bytes will be read at
// once before passing them to a protocol.
wholePayloadSize = 64 * 1024
)
func newPeer(conn net.Conn, protocols []Protocol, ourName string, ourID, remoteID *discover.NodeID) *Peer {
logtag := fmt.Sprintf("Peer %.8x %v", remoteID[:], conn.RemoteAddr())
return &Peer{
Logger: logger.NewLogger(logtag),
rw: newFrameRW(conn, msgWriteTimeout),
ourID: ourID,
ourName: ourName,
remoteID: remoteID,
protocols: protocols,
running: make(map[string]*proto),
disc: make(chan DiscReason),
protoErr: make(chan error),
closed: make(chan struct{}),
}
}
var (
inactivityTimeout = 2 * time.Second
disconnectGracePeriod = 2 * time.Second
)
func (p *Peer) setHandshakeInfo(name string, caps []Cap) {
p.infoMu.Lock()
p.name = name
p.caps = caps
p.infoMu.Unlock()
}
func (p *Peer) loop() (reason DiscReason, err error) {
defer p.activity.Stop()
func (p *Peer) run() DiscReason {
var readErr = make(chan error, 1)
defer p.closeProtocols()
defer close(p.closed)
defer p.conn.Close()
// read loop
readMsg := make(chan Msg)
readErr := make(chan error)
readNext := make(chan bool, 1)
protoDone := make(chan struct{}, 1)
go p.readLoop(readMsg, readErr, readNext)
readNext <- true
go func() { readErr <- p.readLoop() }()
if p.runBaseProtocol {
p.startBaseProtocol()
if !p.noHandshake {
if err := writeProtocolHandshake(p.rw, p.ourName, *p.ourID, p.protocols); err != nil {
p.DebugDetailf("Protocol handshake error: %v\n", err)
p.rw.Close()
return DiscProtocolError
}
}
loop:
for {
// Wait for an error or disconnect.
var reason DiscReason
select {
case msg := <-readMsg:
// a new message has arrived.
var wait bool
if wait, err = p.dispatch(msg, protoDone); err != nil {
p.Errorf("msg dispatch error: %v\n", err)
reason = discReasonForError(err)
break loop
}
if !wait {
// Msg has already been read completely, continue with next message.
readNext <- true
}
p.activity.Post(time.Now())
case <-protoDone:
// protocol has consumed the message payload,
// we can continue reading from the socket.
readNext <- true
case err := <-readErr:
// read failed. there is no need to run the
// polite disconnect sequence because the connection
// is probably dead anyway.
// TODO: handle write errors as well
return DiscNetworkError, err
case err = <-p.protoErr:
// We rely on protocols to abort if there is a write error. It
// might be more robust to handle them here as well.
p.DebugDetailf("Read error: %v\n", err)
p.rw.Close()
return DiscNetworkError
case err := <-p.protoErr:
reason = discReasonForError(err)
break loop
case reason = <-p.disc:
break loop
}
p.politeDisconnect(reason)
// Wait for readLoop. It will end because conn is now closed.
<-readErr
p.Debugf("Disconnected: %v\n", reason)
return reason
}
// wait for read loop to return.
close(readNext)
<-readErr
// tell the remote end to disconnect
func (p *Peer) politeDisconnect(reason DiscReason) {
done := make(chan struct{})
go func() {
p.conn.SetDeadline(time.Now().Add(disconnectGracePeriod))
p.writeMsg(NewMsg(discMsg, reason), disconnectGracePeriod)
io.Copy(ioutil.Discard, p.conn)
EncodeMsg(p.rw, discMsg, uint(reason))
// Wait for the other side to close the connection.
// Discard any data that they send until then.
io.Copy(ioutil.Discard, p.rw)
close(done)
}()
select {
case <-done:
case <-time.After(disconnectGracePeriod):
}
return reason, err
p.rw.Close()
}
func (p *Peer) readLoop(msgc chan<- Msg, errc chan<- error, unblock <-chan bool) {
for _ = range unblock {
p.conn.SetReadDeadline(time.Now().Add(msgReadTimeout))
if msg, err := readMsg(p.bufconn); err != nil {
errc <- err
} else {
msgc <- msg
func (p *Peer) readLoop() error {
if !p.noHandshake {
if err := readProtocolHandshake(p, p.rw); err != nil {
return err
}
}
close(errc)
for {
msg, err := p.rw.ReadMsg()
if err != nil {
return err
}
if err = p.handle(msg); err != nil {
return err
}
}
return nil
}
func (p *Peer) dispatch(msg Msg, protoDone chan struct{}) (wait bool, err error) {
func (p *Peer) handle(msg Msg) error {
switch {
case msg.Code == pingMsg:
msg.Discard()
go EncodeMsg(p.rw, pongMsg)
case msg.Code == discMsg:
var reason DiscReason
// no need to discard or for error checking, we'll close the
// connection after this.
rlp.Decode(msg.Payload, &reason)
p.Disconnect(DiscRequested)
return discRequestedError(reason)
case msg.Code < baseProtocolLength:
// ignore other base protocol messages
return msg.Discard()
default:
// it's a subprotocol message
proto, err := p.getProto(msg.Code)
if err != nil {
return false, err
return fmt.Errorf("msg code out of range: %v", msg.Code)
}
if msg.Size <= wholePayloadSize {
// optimization: msg is small enough, read all
// of it and move on to the next message
buf, err := ioutil.ReadAll(msg.Payload)
if err != nil {
return false, err
}
msg.Payload = bytes.NewReader(buf)
proto.in <- msg
} else {
wait = true
pr := &eofSignal{msg.Payload, int64(msg.Size), protoDone}
msg.Payload = pr
proto.in <- msg
}
return wait, nil
return nil
}
func (p *Peer) startBaseProtocol() {
p.runlock.Lock()
defer p.runlock.Unlock()
p.running[""] = p.startProto(0, Protocol{
Length: baseProtocolLength,
Run: runBaseProtocol,
})
func readProtocolHandshake(p *Peer, rw MsgReadWriter) error {
// read and handle remote handshake
msg, err := rw.ReadMsg()
if err != nil {
return err
}
if msg.Code == discMsg {
// disconnect before protocol handshake is valid according to the
// spec and we send it ourself if Server.addPeer fails.
var reason DiscReason
rlp.Decode(msg.Payload, &reason)
return discRequestedError(reason)
}
if msg.Code != handshakeMsg {
return newPeerError(errProtocolBreach, "expected handshake, got %x", msg.Code)
}
if msg.Size > baseProtocolMaxMsgSize {
return newPeerError(errInvalidMsg, "message too big")
}
var hs handshake
if err := msg.Decode(&hs); err != nil {
return err
}
// validate handshake info
if hs.Version != baseProtocolVersion {
return newPeerError(errP2PVersionMismatch, "required version %d, received %d\n",
baseProtocolVersion, hs.Version)
}
if hs.NodeID == *p.remoteID {
return newPeerError(errPubkeyForbidden, "node ID mismatch")
}
// TODO: remove Caps with empty name
p.setHandshakeInfo(hs.Name, hs.Caps)
p.startSubprotocols(hs.Caps)
return nil
}
func writeProtocolHandshake(w MsgWriter, name string, id discover.NodeID, ps []Protocol) error {
var caps []interface{}
for _, proto := range ps {
caps = append(caps, proto.cap())
}
return EncodeMsg(w, handshakeMsg, baseProtocolVersion, name, caps, 0, id)
}
// startProtocols starts matching named subprotocols.
func (p *Peer) startSubprotocols(caps []Cap) {
sort.Sort(capsByName(caps))
p.runlock.Lock()
defer p.runlock.Unlock()
offset := baseProtocolLength
@ -338,20 +315,22 @@ outer:
}
func (p *Peer) startProto(offset uint64, impl Protocol) *proto {
p.DebugDetailf("Starting protocol %s/%d\n", impl.Name, impl.Version)
rw := &proto{
name: impl.Name,
in: make(chan Msg),
offset: offset,
maxcode: impl.Length,
peer: p,
w: p.rw,
}
p.protoWG.Add(1)
go func() {
err := impl.Run(p, rw)
if err == nil {
p.Infof("protocol %q returned", impl.Name)
err = newPeerError(errMisc, "protocol returned")
p.DebugDetailf("Protocol %s/%d returned\n", impl.Name, impl.Version)
err = errors.New("protocol returned")
} else {
p.Errorf("protocol %q error: %v\n", impl.Name, err)
p.DebugDetailf("Protocol %s/%d error: %v\n", impl.Name, impl.Version, err)
}
select {
case p.protoErr <- err:
@ -385,6 +364,7 @@ func (p *Peer) closeProtocols() {
}
// writeProtoMsg sends the given message on behalf of the given named protocol.
// this exists because of Server.Broadcast.
func (p *Peer) writeProtoMsg(protoName string, msg Msg) error {
p.runlock.RLock()
proto, ok := p.running[protoName]
@ -396,25 +376,14 @@ func (p *Peer) writeProtoMsg(protoName string, msg Msg) error {
return newPeerError(errInvalidMsgCode, "code %x is out of range for protocol %q", msg.Code, protoName)
}
msg.Code += proto.offset
return p.writeMsg(msg, msgWriteTimeout)
}
// writeMsg writes a message to the connection.
func (p *Peer) writeMsg(msg Msg, timeout time.Duration) error {
p.writeMu.Lock()
defer p.writeMu.Unlock()
p.conn.SetWriteDeadline(time.Now().Add(timeout))
if err := writeMsg(p.bufconn, msg); err != nil {
return newPeerError(errWrite, "%v", err)
}
return p.bufconn.Flush()
return p.rw.WriteMsg(msg)
}
type proto struct {
name string
in chan Msg
maxcode, offset uint64
peer *Peer
w MsgWriter
}
func (rw *proto) WriteMsg(msg Msg) error {
@ -422,11 +391,7 @@ func (rw *proto) WriteMsg(msg Msg) error {
return newPeerError(errInvalidMsgCode, "not handled")
}
msg.Code += rw.offset
return rw.peer.writeMsg(msg, msgWriteTimeout)
}
func (rw *proto) EncodeMsg(code uint64, data ...interface{}) error {
return rw.WriteMsg(NewMsg(code, data...))
return rw.w.WriteMsg(msg)
}
func (rw *proto) ReadMsg() (Msg, error) {
@ -437,26 +402,3 @@ func (rw *proto) ReadMsg() (Msg, error) {
msg.Code -= rw.offset
return msg, nil
}
// eofSignal wraps a reader with eof signaling. the eof channel is
// closed when the wrapped reader returns an error or when count bytes
// have been read.
//
type eofSignal struct {
wrapped io.Reader
count int64
eof chan<- struct{}
}
// note: when using eofSignal to detect whether a message payload
// has been read, Read might not be called for zero sized messages.
func (r *eofSignal) Read(buf []byte) (int, error) {
n, err := r.wrapped.Read(buf)
r.count -= int64(n)
if (err != nil || r.count <= 0) && r.eof != nil {
r.eof <- struct{}{} // tell Peer that msg has been consumed
r.eof = nil
}
return n, err
}

@ -12,7 +12,6 @@ const (
errInvalidMsgCode
errInvalidMsg
errP2PVersionMismatch
errPubkeyMissing
errPubkeyInvalid
errPubkeyForbidden
errProtocolBreach
@ -22,20 +21,19 @@ const (
)
var errorToString = map[int]string{
errMagicTokenMismatch: "Magic token mismatch",
errRead: "Read error",
errWrite: "Write error",
errMisc: "Misc error",
errInvalidMsgCode: "Invalid message code",
errInvalidMsg: "Invalid message",
errMagicTokenMismatch: "magic token mismatch",
errRead: "read error",
errWrite: "write error",
errMisc: "misc error",
errInvalidMsgCode: "invalid message code",
errInvalidMsg: "invalid message",
errP2PVersionMismatch: "P2P Version Mismatch",
errPubkeyMissing: "Public key missing",
errPubkeyInvalid: "Public key invalid",
errPubkeyForbidden: "Public key forbidden",
errProtocolBreach: "Protocol Breach",
errPingTimeout: "Ping timeout",
errInvalidNetworkId: "Invalid network id",
errInvalidProtocolVersion: "Invalid protocol version",
errPubkeyInvalid: "public key invalid",
errPubkeyForbidden: "public key forbidden",
errProtocolBreach: "protocol Breach",
errPingTimeout: "ping timeout",
errInvalidNetworkId: "invalid network id",
errInvalidProtocolVersion: "invalid protocol version",
}
type peerError struct {
@ -62,22 +60,22 @@ func (self *peerError) Error() string {
type DiscReason byte
const (
DiscRequested DiscReason = 0x00
DiscNetworkError = 0x01
DiscProtocolError = 0x02
DiscUselessPeer = 0x03
DiscTooManyPeers = 0x04
DiscAlreadyConnected = 0x05
DiscIncompatibleVersion = 0x06
DiscInvalidIdentity = 0x07
DiscQuitting = 0x08
DiscUnexpectedIdentity = 0x09
DiscSelf = 0x0a
DiscReadTimeout = 0x0b
DiscSubprotocolError = 0x10
DiscRequested DiscReason = iota
DiscNetworkError
DiscProtocolError
DiscUselessPeer
DiscTooManyPeers
DiscAlreadyConnected
DiscIncompatibleVersion
DiscInvalidIdentity
DiscQuitting
DiscUnexpectedIdentity
DiscSelf
DiscReadTimeout
DiscSubprotocolError
)
var discReasonToString = [DiscSubprotocolError + 1]string{
var discReasonToString = [...]string{
DiscRequested: "Disconnect requested",
DiscNetworkError: "Network error",
DiscProtocolError: "Breach of protocol",
@ -117,7 +115,7 @@ func discReasonForError(err error) DiscReason {
switch peerError.Code {
case errP2PVersionMismatch:
return DiscIncompatibleVersion
case errPubkeyMissing, errPubkeyInvalid:
case errPubkeyInvalid:
return DiscInvalidIdentity
case errPubkeyForbidden:
return DiscUselessPeer
@ -125,7 +123,7 @@ func discReasonForError(err error) DiscReason {
return DiscProtocolError
case errPingTimeout:
return DiscReadTimeout
case errRead, errWrite, errMisc:
case errRead, errWrite:
return DiscNetworkError
default:
return DiscSubprotocolError

@ -1,15 +1,17 @@
package p2p
import (
"bufio"
"bytes"
"encoding/hex"
"io"
"fmt"
"io/ioutil"
"net"
"reflect"
"sort"
"testing"
"time"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/rlp"
)
var discard = Protocol{
@ -28,17 +30,13 @@ var discard = Protocol{
},
}
func testPeer(protos []Protocol) (net.Conn, *Peer, <-chan error) {
func testPeer(noHandshake bool, protos []Protocol) (*frameRW, *Peer, <-chan DiscReason) {
conn1, conn2 := net.Pipe()
peer := newPeer(conn1, protos, nil)
peer.ourID = &peerId{}
peer.pubkeyHook = func(*peerAddr) error { return nil }
errc := make(chan error, 1)
go func() {
_, err := peer.loop()
errc <- err
}()
return conn2, peer, errc
peer := newPeer(conn1, protos, "name", &discover.NodeID{}, &discover.NodeID{})
peer.noHandshake = noHandshake
errc := make(chan DiscReason, 1)
go func() { errc <- peer.run() }()
return newFrameRW(conn2, msgWriteTimeout), peer, errc
}
func TestPeerProtoReadMsg(t *testing.T) {
@ -49,31 +47,28 @@ func TestPeerProtoReadMsg(t *testing.T) {
Name: "a",
Length: 5,
Run: func(peer *Peer, rw MsgReadWriter) error {
msg, err := rw.ReadMsg()
if err != nil {
t.Errorf("read error: %v", err)
if err := expectMsg(rw, 2, []uint{1}); err != nil {
t.Error(err)
}
if msg.Code != 2 {
t.Errorf("incorrect msg code %d relayed to protocol", msg.Code)
if err := expectMsg(rw, 3, []uint{2}); err != nil {
t.Error(err)
}
data, err := ioutil.ReadAll(msg.Payload)
if err != nil {
t.Errorf("payload read error: %v", err)
}
expdata, _ := hex.DecodeString("0183303030")
if !bytes.Equal(expdata, data) {
t.Errorf("incorrect msg data %x", data)
if err := expectMsg(rw, 4, []uint{3}); err != nil {
t.Error(err)
}
close(done)
return nil
},
}
net, peer, errc := testPeer([]Protocol{proto})
defer net.Close()
rw, peer, errc := testPeer(true, []Protocol{proto})
defer rw.Close()
peer.startSubprotocols([]Cap{proto.cap()})
writeMsg(net, NewMsg(18, 1, "000"))
EncodeMsg(rw, baseProtocolLength+2, 1)
EncodeMsg(rw, baseProtocolLength+3, 2)
EncodeMsg(rw, baseProtocolLength+4, 3)
select {
case <-done:
case err := <-errc:
@ -105,11 +100,11 @@ func TestPeerProtoReadLargeMsg(t *testing.T) {
},
}
net, peer, errc := testPeer([]Protocol{proto})
defer net.Close()
rw, peer, errc := testPeer(true, []Protocol{proto})
defer rw.Close()
peer.startSubprotocols([]Cap{proto.cap()})
writeMsg(net, NewMsg(18, make([]byte, msgsize)))
EncodeMsg(rw, 18, make([]byte, msgsize))
select {
case <-done:
case err := <-errc:
@ -135,32 +130,20 @@ func TestPeerProtoEncodeMsg(t *testing.T) {
return nil
},
}
net, peer, _ := testPeer([]Protocol{proto})
defer net.Close()
rw, peer, _ := testPeer(true, []Protocol{proto})
defer rw.Close()
peer.startSubprotocols([]Cap{proto.cap()})
bufr := bufio.NewReader(net)
msg, err := readMsg(bufr)
if err != nil {
t.Errorf("read error: %v", err)
}
if msg.Code != 17 {
t.Errorf("incorrect message code: got %d, expected %d", msg.Code, 17)
}
var data []string
if err := msg.Decode(&data); err != nil {
t.Errorf("payload decode error: %v", err)
}
if !reflect.DeepEqual(data, []string{"foo", "bar"}) {
t.Errorf("payload RLP mismatch, got %#v, want %#v", data, []string{"foo", "bar"})
if err := expectMsg(rw, 17, []string{"foo", "bar"}); err != nil {
t.Error(err)
}
}
func TestPeerWrite(t *testing.T) {
func TestPeerWriteForBroadcast(t *testing.T) {
defer testlog(t).detach()
net, peer, peerErr := testPeer([]Protocol{discard})
defer net.Close()
rw, peer, peerErr := testPeer(true, []Protocol{discard})
defer rw.Close()
peer.startSubprotocols([]Cap{discard.cap()})
// test write errors
@ -176,18 +159,13 @@ func TestPeerWrite(t *testing.T) {
// setup for reading the message on the other end
read := make(chan struct{})
go func() {
bufr := bufio.NewReader(net)
msg, err := readMsg(bufr)
if err != nil {
t.Errorf("read error: %v", err)
} else if msg.Code != 16 {
t.Errorf("wrong code, got %d, expected %d", msg.Code, 16)
if err := expectMsg(rw, 16, nil); err != nil {
t.Error()
}
msg.Discard()
close(read)
}()
// test succcessful write
// test successful write
if err := peer.writeProtoMsg("discard", NewMsg(0)); err != nil {
t.Errorf("expect no error for known protocol: %v", err)
}
@ -198,104 +176,153 @@ func TestPeerWrite(t *testing.T) {
}
}
func TestPeerActivity(t *testing.T) {
// shorten inactivityTimeout while this test is running
oldT := inactivityTimeout
defer func() { inactivityTimeout = oldT }()
inactivityTimeout = 20 * time.Millisecond
func TestPeerPing(t *testing.T) {
defer testlog(t).detach()
net, peer, peerErr := testPeer([]Protocol{discard})
defer net.Close()
peer.startSubprotocols([]Cap{discard.cap()})
rw, _, _ := testPeer(true, nil)
defer rw.Close()
if err := EncodeMsg(rw, pingMsg); err != nil {
t.Fatal(err)
}
if err := expectMsg(rw, pongMsg, nil); err != nil {
t.Error(err)
}
}
sub := peer.activity.Subscribe(time.Time{})
defer sub.Unsubscribe()
func TestPeerDisconnect(t *testing.T) {
defer testlog(t).detach()
for i := 0; i < 6; i++ {
writeMsg(net, NewMsg(16))
rw, _, disc := testPeer(true, nil)
defer rw.Close()
if err := EncodeMsg(rw, discMsg, DiscQuitting); err != nil {
t.Fatal(err)
}
if err := expectMsg(rw, discMsg, []interface{}{DiscRequested}); err != nil {
t.Error(err)
}
rw.Close() // make test end faster
if reason := <-disc; reason != DiscRequested {
t.Errorf("run returned wrong reason: got %v, want %v", reason, DiscRequested)
}
}
func TestPeerHandshake(t *testing.T) {
defer testlog(t).detach()
// remote has two matching protocols: a and c
remote := NewPeer(randomID(), "", []Cap{{"a", 1}, {"b", 999}, {"c", 3}})
remoteID := randomID()
remote.ourID = &remoteID
remote.ourName = "remote peer"
start := make(chan string)
stop := make(chan struct{})
run := func(p *Peer, rw MsgReadWriter) error {
name := rw.(*proto).name
if name != "a" && name != "c" {
t.Errorf("protocol %q should not be started", name)
} else {
start <- name
}
<-stop
return nil
}
protocols := []Protocol{
{Name: "a", Version: 1, Length: 1, Run: run},
{Name: "b", Version: 2, Length: 1, Run: run},
{Name: "c", Version: 3, Length: 1, Run: run},
{Name: "d", Version: 4, Length: 1, Run: run},
}
rw, p, disc := testPeer(false, protocols)
p.remoteID = remote.ourID
defer rw.Close()
// run the handshake
remoteProtocols := []Protocol{protocols[0], protocols[2]}
if err := writeProtocolHandshake(rw, "remote peer", remoteID, remoteProtocols); err != nil {
t.Fatalf("handshake write error: %v", err)
}
if err := readProtocolHandshake(remote, rw); err != nil {
t.Fatalf("handshake read error: %v", err)
}
// check that all protocols have been started
var started []string
for i := 0; i < 2; i++ {
select {
case <-sub.Chan():
case <-time.After(inactivityTimeout / 2):
t.Fatal("no event within ", inactivityTimeout/2)
case err := <-peerErr:
t.Fatal("peer error", err)
case name := <-start:
started = append(started, name)
case <-time.After(100 * time.Millisecond):
}
}
sort.Strings(started)
if !reflect.DeepEqual(started, []string{"a", "c"}) {
t.Errorf("wrong protocols started: %v", started)
}
select {
case <-time.After(inactivityTimeout * 2):
case <-sub.Chan():
t.Fatal("got activity event while connection was inactive")
case err := <-peerErr:
t.Fatal("peer error", err)
// check that metadata has been set
if p.ID() != remoteID {
t.Errorf("peer has wrong node ID: got %v, want %v", p.ID(), remoteID)
}
if p.Name() != remote.ourName {
t.Errorf("peer has wrong node name: got %q, want %q", p.Name(), remote.ourName)
}
close(stop)
expectMsg(rw, discMsg, nil)
t.Logf("disc reason: %v", <-disc)
}
func TestNewPeer(t *testing.T) {
name := "nodename"
caps := []Cap{{"foo", 2}, {"bar", 3}}
id := &peerId{}
p := NewPeer(id, caps)
id := randomID()
p := NewPeer(id, name, caps)
if p.ID() != id {
t.Errorf("ID mismatch: got %v, expected %v", p.ID(), id)
}
if p.Name() != name {
t.Errorf("Name mismatch: got %v, expected %v", p.Name(), name)
}
if !reflect.DeepEqual(p.Caps(), caps) {
t.Errorf("Caps mismatch: got %v, expected %v", p.Caps(), caps)
}
if p.Identity() != id {
t.Errorf("Identity mismatch: got %v, expected %v", p.Identity(), id)
}
// Should not hang.
p.Disconnect(DiscAlreadyConnected)
p.Disconnect(DiscAlreadyConnected) // Should not hang
}
func TestEOFSignal(t *testing.T) {
rb := make([]byte, 10)
// expectMsg reads a message from r and verifies that its
// code and encoded RLP content match the provided values.
// If content is nil, the payload is discarded and not verified.
func expectMsg(r MsgReader, code uint64, content interface{}) error {
msg, err := r.ReadMsg()
if err != nil {
return err
}
if msg.Code != code {
return fmt.Errorf("message code mismatch: got %d, expected %d", msg.Code, code)
}
if content == nil {
return msg.Discard()
} else {
contentEnc, err := rlp.EncodeToBytes(content)
if err != nil {
panic("content encode error: " + err.Error())
}
// skip over list header in encoded value. this is temporary.
contentEncR := bytes.NewReader(contentEnc)
if k, _, err := rlp.NewStream(contentEncR).Kind(); k != rlp.List || err != nil {
panic("content must encode as RLP list")
}
contentEnc = contentEnc[len(contentEnc)-contentEncR.Len():]
// empty reader
eof := make(chan struct{}, 1)
sig := &eofSignal{new(bytes.Buffer), 0, eof}
if n, err := sig.Read(rb); n != 0 || err != io.EOF {
t.Errorf("Read returned unexpected values: (%v, %v)", n, err)
actualContent, err := ioutil.ReadAll(msg.Payload)
if err != nil {
return err
}
select {
case <-eof:
default:
t.Error("EOF chan not signaled")
}
// count before error
eof = make(chan struct{}, 1)
sig = &eofSignal{bytes.NewBufferString("aaaaaaaa"), 4, eof}
if n, err := sig.Read(rb); n != 8 || err != nil {
t.Errorf("Read returned unexpected values: (%v, %v)", n, err)
}
select {
case <-eof:
default:
t.Error("EOF chan not signaled")
}
// error before count
eof = make(chan struct{}, 1)
sig = &eofSignal{bytes.NewBufferString("aaaa"), 999, eof}
if n, err := sig.Read(rb); n != 4 || err != nil {
t.Errorf("Read returned unexpected values: (%v, %v)", n, err)
}
if n, err := sig.Read(rb); n != 0 || err != io.EOF {
t.Errorf("Read returned unexpected values: (%v, %v)", n, err)
}
select {
case <-eof:
default:
t.Error("EOF chan not signaled")
}
// no signal if neither occurs
eof = make(chan struct{}, 1)
sig = &eofSignal{bytes.NewBufferString("aaaaaaaaaaaaaaaaaaaaa"), 999, eof}
if n, err := sig.Read(rb); n != 10 || err != nil {
t.Errorf("Read returned unexpected values: (%v, %v)", n, err)
}
select {
case <-eof:
t.Error("unexpected EOF signal")
default:
if !bytes.Equal(actualContent, contentEnc) {
return fmt.Errorf("message payload mismatch:\ngot: %x\nwant: %x", actualContent, contentEnc)
}
}
return nil
}

@ -1,10 +1,5 @@
package p2p
import (
"bytes"
"time"
)
// Protocol represents a P2P subprotocol implementation.
type Protocol struct {
// Name should contain the official protocol name,
@ -32,38 +27,6 @@ func (p Protocol) cap() Cap {
return Cap{p.Name, p.Version}
}
const (
baseProtocolVersion = 2
baseProtocolLength = uint64(16)
baseProtocolMaxMsgSize = 10 * 1024 * 1024
)
const (
// devp2p message codes
handshakeMsg = 0x00
discMsg = 0x01
pingMsg = 0x02
pongMsg = 0x03
getPeersMsg = 0x04
peersMsg = 0x05
)
// handshake is the structure of a handshake list.
type handshake struct {
Version uint64
ID string
Caps []Cap
ListenPort uint64
NodeID []byte
}
func (h *handshake) String() string {
return h.ID
}
func (h *handshake) Pubkey() []byte {
return h.NodeID
}
// Cap is the structure of a peer capability.
type Cap struct {
Name string
@ -79,210 +42,3 @@ type capsByName []Cap
func (cs capsByName) Len() int { return len(cs) }
func (cs capsByName) Less(i, j int) bool { return cs[i].Name < cs[j].Name }
func (cs capsByName) Swap(i, j int) { cs[i], cs[j] = cs[j], cs[i] }
type baseProtocol struct {
rw MsgReadWriter
peer *Peer
}
func runBaseProtocol(peer *Peer, rw MsgReadWriter) error {
bp := &baseProtocol{rw, peer}
errc := make(chan error, 1)
go func() { errc <- rw.WriteMsg(bp.handshakeMsg()) }()
if err := bp.readHandshake(); err != nil {
return err
}
// handle write error
if err := <-errc; err != nil {
return err
}
// run main loop
go func() {
for {
if err := bp.handle(rw); err != nil {
errc <- err
break
}
}
}()
return bp.loop(errc)
}
var pingTimeout = 2 * time.Second
func (bp *baseProtocol) loop(quit <-chan error) error {
ping := time.NewTimer(pingTimeout)
activity := bp.peer.activity.Subscribe(time.Time{})
lastActive := time.Time{}
defer ping.Stop()
defer activity.Unsubscribe()
getPeersTick := time.NewTicker(10 * time.Second)
defer getPeersTick.Stop()
err := EncodeMsg(bp.rw, getPeersMsg)
for err == nil {
select {
case err = <-quit:
return err
case <-getPeersTick.C:
err = EncodeMsg(bp.rw, getPeersMsg)
case event := <-activity.Chan():
ping.Reset(pingTimeout)
lastActive = event.(time.Time)
case t := <-ping.C:
if lastActive.Add(pingTimeout * 2).Before(t) {
err = newPeerError(errPingTimeout, "")
} else if lastActive.Add(pingTimeout).Before(t) {
err = EncodeMsg(bp.rw, pingMsg)
}
}
}
return err
}
func (bp *baseProtocol) handle(rw MsgReadWriter) error {
msg, err := rw.ReadMsg()
if err != nil {
return err
}
if msg.Size > baseProtocolMaxMsgSize {
return newPeerError(errMisc, "message too big")
}
// make sure that the payload has been fully consumed
defer msg.Discard()
switch msg.Code {
case handshakeMsg:
return newPeerError(errProtocolBreach, "extra handshake received")
case discMsg:
var reason [1]DiscReason
if err := msg.Decode(&reason); err != nil {
return err
}
return discRequestedError(reason[0])
case pingMsg:
return EncodeMsg(bp.rw, pongMsg)
case pongMsg:
case getPeersMsg:
peers := bp.peerList()
// this is dangerous. the spec says that we should _delay_
// sending the response if no new information is available.
// this means that would need to send a response later when
// new peers become available.
//
// TODO: add event mechanism to notify baseProtocol for new peers
if len(peers) > 0 {
return EncodeMsg(bp.rw, peersMsg, peers...)
}
case peersMsg:
var peers []*peerAddr
if err := msg.Decode(&peers); err != nil {
return err
}
for _, addr := range peers {
bp.peer.Debugf("received peer suggestion: %v", addr)
bp.peer.newPeerAddr <- addr
}
default:
return newPeerError(errInvalidMsgCode, "unknown message code %v", msg.Code)
}
return nil
}
func (bp *baseProtocol) readHandshake() error {
// read and handle remote handshake
msg, err := bp.rw.ReadMsg()
if err != nil {
return err
}
if msg.Code != handshakeMsg {
return newPeerError(errProtocolBreach, "first message must be handshake, got %x", msg.Code)
}
if msg.Size > baseProtocolMaxMsgSize {
return newPeerError(errMisc, "message too big")
}
var hs handshake
if err := msg.Decode(&hs); err != nil {
return err
}
// validate handshake info
if hs.Version != baseProtocolVersion {
return newPeerError(errP2PVersionMismatch, "Require protocol %d, received %d\n",
baseProtocolVersion, hs.Version)
}
if len(hs.NodeID) == 0 {
return newPeerError(errPubkeyMissing, "")
}
if len(hs.NodeID) != 64 {
return newPeerError(errPubkeyInvalid, "require 512 bit, got %v", len(hs.NodeID)*8)
}
if da := bp.peer.dialAddr; da != nil {
// verify that the peer we wanted to connect to
// actually holds the target public key.
if da.Pubkey != nil && !bytes.Equal(da.Pubkey, hs.NodeID) {
return newPeerError(errPubkeyForbidden, "dial address pubkey mismatch")
}
}
pa := newPeerAddr(bp.peer.conn.RemoteAddr(), hs.NodeID)
if err := bp.peer.pubkeyHook(pa); err != nil {
return newPeerError(errPubkeyForbidden, "%v", err)
}
// TODO: remove Caps with empty name
var addr *peerAddr
if hs.ListenPort != 0 {
addr = newPeerAddr(bp.peer.conn.RemoteAddr(), hs.NodeID)
addr.Port = hs.ListenPort
}
bp.peer.setHandshakeInfo(&hs, addr, hs.Caps)
bp.peer.startSubprotocols(hs.Caps)
return nil
}
func (bp *baseProtocol) handshakeMsg() Msg {
var (
port uint64
caps []interface{}
)
if bp.peer.ourListenAddr != nil {
port = bp.peer.ourListenAddr.Port
}
for _, proto := range bp.peer.protocols {
caps = append(caps, proto.cap())
}
return NewMsg(handshakeMsg,
baseProtocolVersion,
bp.peer.ourID.String(),
caps,
port,
bp.peer.ourID.Pubkey()[1:],
)
}
func (bp *baseProtocol) peerList() []interface{} {
peers := bp.peer.otherPeers()
ds := make([]interface{}, 0, len(peers))
for _, p := range peers {
p.infolock.Lock()
addr := p.listenAddr
p.infolock.Unlock()
// filter out this peer and peers that are not listening or
// have not completed the handshake.
// TODO: track previously sent peers and exclude them as well.
if p == bp.peer || addr == nil {
continue
}
ds = append(ds, addr)
}
ourAddr := bp.peer.ourListenAddr
if ourAddr != nil && !ourAddr.IP.IsLoopback() && !ourAddr.IP.IsUnspecified() {
ds = append(ds, ourAddr)
}
return ds
}

@ -1,158 +0,0 @@
package p2p
import (
"fmt"
"net"
"reflect"
"sync"
"testing"
"github.com/ethereum/go-ethereum/crypto"
)
type peerId struct {
pubkey []byte
}
func (self *peerId) String() string {
return fmt.Sprintf("test peer %x", self.Pubkey()[:4])
}
func (self *peerId) Pubkey() (pubkey []byte) {
pubkey = self.pubkey
if len(pubkey) == 0 {
pubkey = crypto.GenerateNewKeyPair().PublicKey
self.pubkey = pubkey
}
return
}
func newTestPeer() (peer *Peer) {
peer = NewPeer(&peerId{}, []Cap{})
peer.pubkeyHook = func(*peerAddr) error { return nil }
peer.ourID = &peerId{}
peer.listenAddr = &peerAddr{}
peer.otherPeers = func() []*Peer { return nil }
return
}
func TestBaseProtocolPeers(t *testing.T) {
peerList := []*peerAddr{
{IP: net.ParseIP("1.2.3.4"), Port: 2222, Pubkey: []byte{}},
{IP: net.ParseIP("5.6.7.8"), Port: 3333, Pubkey: []byte{}},
}
listenAddr := &peerAddr{IP: net.ParseIP("1.3.5.7"), Port: 1111, Pubkey: []byte{}}
rw1, rw2 := MsgPipe()
defer rw1.Close()
wg := new(sync.WaitGroup)
// run matcher, close pipe when addresses have arrived
numPeers := len(peerList) + 1
addrChan := make(chan *peerAddr)
wg.Add(1)
go func() {
i := 0
for got := range addrChan {
var want *peerAddr
switch {
case i < len(peerList):
want = peerList[i]
case i == len(peerList):
want = listenAddr // listenAddr should be the last thing sent
}
t.Logf("got peer %d/%d: %v", i+1, numPeers, got)
if !reflect.DeepEqual(want, got) {
t.Errorf("mismatch: got %+v, want %+v", got, want)
}
i++
if i == numPeers {
break
}
}
if i != numPeers {
t.Errorf("wrong number of peers received: got %d, want %d", i, numPeers)
}
rw1.Close()
wg.Done()
}()
// run first peer (in background)
peer1 := newTestPeer()
peer1.ourListenAddr = listenAddr
peer1.otherPeers = func() []*Peer {
pl := make([]*Peer, len(peerList))
for i, addr := range peerList {
pl[i] = &Peer{listenAddr: addr}
}
return pl
}
wg.Add(1)
go func() {
runBaseProtocol(peer1, rw1)
wg.Done()
}()
// run second peer
peer2 := newTestPeer()
peer2.newPeerAddr = addrChan // feed peer suggestions into matcher
if err := runBaseProtocol(peer2, rw2); err != ErrPipeClosed {
t.Errorf("peer2 terminated with unexpected error: %v", err)
}
// terminate matcher
close(addrChan)
wg.Wait()
}
func TestBaseProtocolDisconnect(t *testing.T) {
peer := NewPeer(&peerId{}, nil)
peer.ourID = &peerId{}
peer.pubkeyHook = func(*peerAddr) error { return nil }
rw1, rw2 := MsgPipe()
done := make(chan struct{})
go func() {
if err := expectMsg(rw2, handshakeMsg); err != nil {
t.Error(err)
}
err := EncodeMsg(rw2, handshakeMsg,
baseProtocolVersion,
"",
[]interface{}{},
0,
make([]byte, 64),
)
if err != nil {
t.Error(err)
}
if err := expectMsg(rw2, getPeersMsg); err != nil {
t.Error(err)
}
if err := EncodeMsg(rw2, discMsg, DiscQuitting); err != nil {
t.Error(err)
}
close(done)
}()
if err := runBaseProtocol(peer, rw1); err == nil {
t.Errorf("base protocol returned without error")
} else if reason, ok := err.(discRequestedError); !ok || reason != DiscQuitting {
t.Errorf("base protocol returned wrong error: %v", err)
}
<-done
}
func expectMsg(r MsgReader, code uint64) error {
msg, err := r.ReadMsg()
if err != nil {
return err
}
if err := msg.Discard(); err != nil {
return err
}
if msg.Code != code {
return fmt.Errorf("wrong message code: got %d, expected %d", msg.Code, code)
}
return nil
}

@ -2,37 +2,56 @@ package p2p
import (
"bytes"
"crypto/ecdsa"
"errors"
"fmt"
"io"
"net"
"runtime"
"sync"
"time"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p/discover"
"github.com/ethereum/go-ethereum/p2p/nat"
)
const (
outboundAddressPoolSize = 500
handshakeTimeout = 5 * time.Second
defaultDialTimeout = 10 * time.Second
portMappingUpdateInterval = 15 * time.Minute
portMappingTimeout = 20 * time.Minute
refreshPeersInterval = 30 * time.Second
)
var srvlog = logger.NewLogger("P2P Server")
// MakeName creates a node name that follows the ethereum convention
// for such names. It adds the operation system name and Go runtime version
// the name.
func MakeName(name, version string) string {
return fmt.Sprintf("%s/v%s/%s/%s", name, version, runtime.GOOS, runtime.Version())
}
// Server manages all peer connections.
//
// The fields of Server are used as configuration parameters.
// You should set them before starting the Server. Fields may not be
// modified while the server is running.
type Server struct {
// This field must be set to a valid client identity.
Identity ClientIdentity
// This field must be set to a valid secp256k1 private key.
PrivateKey *ecdsa.PrivateKey
// MaxPeers is the maximum number of peers that can be
// connected. It must be greater than zero.
MaxPeers int
// Name sets the node name of this server.
// Use MakeName to create a name that follows existing conventions.
Name string
// Bootstrap nodes are used to establish connectivity
// with the rest of the network.
BootstrapNodes []*discover.Node
// Protocols should contain the protocols supported
// by the server. Matching protocols are launched for
// each peer.
@ -53,7 +72,7 @@ type Server struct {
// If set to a non-nil value, the given NAT port mapper
// is used to make the listening port available to the
// Internet.
NAT NAT
NAT nat.Interface
// If Dialer is set to a non-nil value, the given Dialer
// is used to dial outbound peer connections.
@ -62,35 +81,26 @@ type Server struct {
// If NoDial is true, the server will not dial any peers.
NoDial bool
// Hook for testing. This is useful because we can inhibit
// Hooks for testing. These are useful because we can inhibit
// the whole protocol stack.
newPeerFunc peerFunc
handshakeFunc
newPeerHook
lock sync.RWMutex
running bool
listener net.Listener
laddr *net.TCPAddr // real listen addr
peers []*Peer
peerSlots chan int
peerCount int
peers map[discover.NodeID]*Peer
ntab *discover.Table
quit chan struct{}
wg sync.WaitGroup
peerConnect chan *peerAddr
peerDisconnect chan *Peer
loopWG sync.WaitGroup // {dial,listen,nat}Loop
peerWG sync.WaitGroup // active peer goroutines
peerConnect chan *discover.Node
}
// NAT is implemented by NAT traversal methods.
type NAT interface {
GetExternalAddress() (net.IP, error)
AddPortMapping(protocol string, extport, intport int, name string, lifetime time.Duration) error
DeletePortMapping(protocol string, extport, intport int) error
// Should return name of the method.
String() string
}
type peerFunc func(srv *Server, c net.Conn, dialAddr *peerAddr) *Peer
type handshakeFunc func(io.ReadWriter, *ecdsa.PrivateKey, *discover.Node) (discover.NodeID, []byte, error)
type newPeerHook func(*Peer)
// Peers returns all connected peers.
func (srv *Server) Peers() (peers []*Peer) {
@ -107,18 +117,15 @@ func (srv *Server) Peers() (peers []*Peer) {
// PeerCount returns the number of connected peers.
func (srv *Server) PeerCount() int {
srv.lock.RLock()
defer srv.lock.RUnlock()
return srv.peerCount
n := len(srv.peers)
srv.lock.RUnlock()
return n
}
// SuggestPeer injects an address into the outbound address pool.
func (srv *Server) SuggestPeer(ip net.IP, port int, nodeID []byte) {
addr := &peerAddr{ip, uint64(port), nodeID}
select {
case srv.peerConnect <- addr:
default: // don't block
srvlog.Warnf("peer suggestion %v ignored", addr)
}
// SuggestPeer creates a connection to the given Node if it
// is not already connected.
func (srv *Server) SuggestPeer(n *discover.Node) {
srv.peerConnect <- n
}
// Broadcast sends an RLP-encoded message to all connected peers.
@ -152,47 +159,46 @@ func (srv *Server) Start() (err error) {
}
srvlog.Infoln("Starting Server")
// initialize fields
if srv.Identity == nil {
return fmt.Errorf("Server.Identity must be set to a non-nil identity")
// initialize all the fields
if srv.PrivateKey == nil {
return fmt.Errorf("Server.PrivateKey must be set to a non-nil key")
}
if srv.MaxPeers <= 0 {
return fmt.Errorf("Server.MaxPeers must be > 0")
}
srv.quit = make(chan struct{})
srv.peers = make([]*Peer, srv.MaxPeers)
srv.peerSlots = make(chan int, srv.MaxPeers)
srv.peerConnect = make(chan *peerAddr, outboundAddressPoolSize)
srv.peerDisconnect = make(chan *Peer)
if srv.newPeerFunc == nil {
srv.newPeerFunc = newServerPeer
srv.peers = make(map[discover.NodeID]*Peer)
srv.peerConnect = make(chan *discover.Node)
if srv.handshakeFunc == nil {
srv.handshakeFunc = encHandshake
}
if srv.Blacklist == nil {
srv.Blacklist = NewBlacklist()
}
if srv.Dialer == nil {
srv.Dialer = &net.Dialer{Timeout: defaultDialTimeout}
}
if srv.ListenAddr != "" {
if err := srv.startListening(); err != nil {
return err
}
}
// dial stuff
dt, err := discover.ListenUDP(srv.PrivateKey, srv.ListenAddr, srv.NAT)
if err != nil {
return err
}
srv.ntab = dt
if srv.Dialer == nil {
srv.Dialer = &net.Dialer{Timeout: defaultDialTimeout}
}
if !srv.NoDial {
srv.wg.Add(1)
srv.loopWG.Add(1)
go srv.dialLoop()
}
if srv.NoDial && srv.ListenAddr == "" {
srvlog.Warnln("I will be kind-of useless, neither dialing nor listening.")
}
// make all slots available
for i := range srv.peers {
srv.peerSlots <- i
}
// note: discLoop is not part of WaitGroup
go srv.discLoop()
srv.running = true
return nil
}
@ -202,14 +208,17 @@ func (srv *Server) startListening() error {
if err != nil {
return err
}
srv.ListenAddr = listener.Addr().String()
srv.laddr = listener.Addr().(*net.TCPAddr)
laddr := listener.Addr().(*net.TCPAddr)
srv.ListenAddr = laddr.String()
srv.listener = listener
srv.wg.Add(1)
srv.loopWG.Add(1)
go srv.listenLoop()
if !srv.laddr.IP.IsLoopback() && srv.NAT != nil {
srv.wg.Add(1)
go srv.natLoop(srv.laddr.Port)
if !laddr.IP.IsLoopback() && srv.NAT != nil {
srv.loopWG.Add(1)
go func() {
nat.Map(srv.NAT, srv.quit, "tcp", laddr.Port, laddr.Port, "ethereum p2p")
srv.loopWG.Done()
}()
}
return nil
}
@ -225,197 +234,171 @@ func (srv *Server) Stop() {
srv.running = false
srv.lock.Unlock()
srvlog.Infoln("Stopping server")
srvlog.Infoln("Stopping Server")
srv.ntab.Close()
if srv.listener != nil {
// this unblocks listener Accept
srv.listener.Close()
}
close(srv.quit)
for _, peer := range srv.Peers() {
srv.loopWG.Wait()
// No new peers can be added at this point because dialLoop and
// listenLoop are down. It is safe to call peerWG.Wait because
// peerWG.Add is not called outside of those loops.
for _, peer := range srv.peers {
peer.Disconnect(DiscQuitting)
}
srv.wg.Wait()
// wait till they actually disconnect
// this is checked by claiming all peerSlots.
// slots become available as the peers disconnect.
for i := 0; i < cap(srv.peerSlots); i++ {
<-srv.peerSlots
}
// terminate discLoop
close(srv.peerDisconnect)
}
func (srv *Server) discLoop() {
for peer := range srv.peerDisconnect {
srv.removePeer(peer)
}
srv.peerWG.Wait()
}
// main loop for adding connections via listening
func (srv *Server) listenLoop() {
defer srv.wg.Done()
defer srv.loopWG.Done()
srvlog.Infoln("Listening on", srv.listener.Addr())
for {
select {
case slot := <-srv.peerSlots:
srvlog.Debugf("grabbed slot %v for listening", slot)
conn, err := srv.listener.Accept()
if err != nil {
srv.peerSlots <- slot
return
}
srvlog.Debugf("Accepted conn %v (slot %d)\n", conn.RemoteAddr(), slot)
srv.addPeer(conn, nil, slot)
case <-srv.quit:
return
srvlog.Debugf("Accepted conn %v\n", conn.RemoteAddr())
srv.peerWG.Add(1)
go srv.startPeer(conn, nil)
}
}
}
func (srv *Server) natLoop(port int) {
defer srv.wg.Done()
for {
srv.updatePortMapping(port)
select {
case <-time.After(portMappingUpdateInterval):
// one more round
case <-srv.quit:
srv.removePortMapping(port)
return
}
}
}
func (srv *Server) updatePortMapping(port int) {
srvlog.Infoln("Attempting to map port", port, "with", srv.NAT)
err := srv.NAT.AddPortMapping("tcp", port, port, "ethereum p2p", portMappingTimeout)
if err != nil {
srvlog.Errorln("Port mapping error:", err)
return
}
extip, err := srv.NAT.GetExternalAddress()
if err != nil {
srvlog.Errorln("Error getting external IP:", err)
return
}
srv.lock.Lock()
extaddr := *(srv.listener.Addr().(*net.TCPAddr))
extaddr.IP = extip
srvlog.Infoln("Mapped port, external addr is", &extaddr)
srv.laddr = &extaddr
srv.lock.Unlock()
}
func (srv *Server) removePortMapping(port int) {
srvlog.Infoln("Removing port mapping for", port, "with", srv.NAT)
srv.NAT.DeletePortMapping("tcp", port, port)
}
func (srv *Server) dialLoop() {
defer srv.wg.Done()
var (
suggest chan *peerAddr
slot *int
slots = srv.peerSlots
)
defer srv.loopWG.Done()
refresh := time.NewTicker(refreshPeersInterval)
defer refresh.Stop()
srv.ntab.Bootstrap(srv.BootstrapNodes)
go srv.findPeers()
dialed := make(chan *discover.Node)
dialing := make(map[discover.NodeID]bool)
// TODO: limit number of active dials
// TODO: ensure only one findPeers goroutine is running
// TODO: pause findPeers when we're at capacity
for {
select {
case i := <-slots:
// we need a peer in slot i, slot reserved
slot = &i
// now we can watch for candidate peers in the next loop
suggest = srv.peerConnect
// do not consume more until candidate peer is found
slots = nil
case <-refresh.C:
case desc := <-suggest:
// candidate peer found, will dial out asyncronously
// if connection fails slot will be released
srvlog.DebugDetailf("dial %v (%v)", desc, *slot)
go srv.dialPeer(desc, *slot)
// we can watch if more peers needed in the next loop
slots = srv.peerSlots
// until then we dont care about candidate peers
suggest = nil
go srv.findPeers()
case dest := <-srv.peerConnect:
// avoid dialing nodes that are already connected.
// there is another check for this in addPeer,
// which runs after the handshake.
srv.lock.Lock()
_, isconnected := srv.peers[dest.ID]
srv.lock.Unlock()
if isconnected || dialing[dest.ID] || dest.ID == srv.ntab.Self() {
continue
}
dialing[dest.ID] = true
srv.peerWG.Add(1)
go func() {
srv.dialNode(dest)
// at this point, the peer has been added
// or discarded. either way, we're not dialing it anymore.
dialed <- dest
}()
case dest := <-dialed:
delete(dialing, dest.ID)
case <-srv.quit:
// give back the currently reserved slot
if slot != nil {
srv.peerSlots <- *slot
}
// TODO: maybe wait for active dials
return
}
}
}
// connect to peer via dial out
func (srv *Server) dialPeer(desc *peerAddr, slot int) {
srvlog.Debugf("Dialing %v (slot %d)\n", desc, slot)
conn, err := srv.Dialer.Dial(desc.Network(), desc.String())
func (srv *Server) dialNode(dest *discover.Node) {
addr := &net.TCPAddr{IP: dest.IP, Port: dest.TCPPort}
srvlog.Debugf("Dialing %v\n", dest)
conn, err := srv.Dialer.Dial("tcp", addr.String())
if err != nil {
srvlog.DebugDetailf("dial error: %v", err)
srv.peerSlots <- slot
return
}
go srv.addPeer(conn, desc, slot)
srv.startPeer(conn, dest)
}
// creates the new peer object and inserts it into its slot
func (srv *Server) addPeer(conn net.Conn, desc *peerAddr, slot int) *Peer {
srv.lock.Lock()
defer srv.lock.Unlock()
if !srv.running {
func (srv *Server) findPeers() {
far := srv.ntab.Self()
for i := range far {
far[i] = ^far[i]
}
closeToSelf := srv.ntab.Lookup(srv.ntab.Self())
farFromSelf := srv.ntab.Lookup(far)
for i := 0; i < len(closeToSelf) || i < len(farFromSelf); i++ {
if i < len(closeToSelf) {
srv.peerConnect <- closeToSelf[i]
}
if i < len(farFromSelf) {
srv.peerConnect <- farFromSelf[i]
}
}
}
func (srv *Server) startPeer(conn net.Conn, dest *discover.Node) {
// TODO: handle/store session token
conn.SetDeadline(time.Now().Add(handshakeTimeout))
remoteID, _, err := srv.handshakeFunc(conn, srv.PrivateKey, dest)
if err != nil {
conn.Close()
srv.peerSlots <- slot // release slot
return nil
}
peer := srv.newPeerFunc(srv, conn, desc)
peer.slot = slot
srv.peers[slot] = peer
srv.peerCount++
go func() { peer.loop(); srv.peerDisconnect <- peer }()
return peer
}
// removes peer: sending disconnect msg, stop peer, remove rom list/table, release slot
func (srv *Server) removePeer(peer *Peer) {
srv.lock.Lock()
defer srv.lock.Unlock()
srvlog.Debugf("Removing %v (slot %v)\n", peer, peer.slot)
if srv.peers[peer.slot] != peer {
srvlog.Warnln("Invalid peer to remove:", peer)
srvlog.Debugf("Encryption Handshake with %v failed: %v", conn.RemoteAddr(), err)
return
}
// remove from list and index
srv.peerCount--
srv.peers[peer.slot] = nil
// release slot to signal need for a new peer, last!
srv.peerSlots <- peer.slot
ourID := srv.ntab.Self()
p := newPeer(conn, srv.Protocols, srv.Name, &ourID, &remoteID)
if ok, reason := srv.addPeer(remoteID, p); !ok {
srvlog.DebugDetailf("Not adding %v (%v)\n", p, reason)
p.politeDisconnect(reason)
return
}
srvlog.Debugf("Added %v\n", p)
if srv.newPeerHook != nil {
srv.newPeerHook(p)
}
discreason := p.run()
srv.removePeer(p)
srvlog.Debugf("Removed %v (%v)\n", p, discreason)
}
func (srv *Server) verifyPeer(addr *peerAddr) error {
if srv.Blacklist.Exists(addr.Pubkey) {
return errors.New("blacklisted")
func (srv *Server) addPeer(id discover.NodeID, p *Peer) (bool, DiscReason) {
srv.lock.Lock()
defer srv.lock.Unlock()
switch {
case !srv.running:
return false, DiscQuitting
case len(srv.peers) >= srv.MaxPeers:
return false, DiscTooManyPeers
case srv.peers[id] != nil:
return false, DiscAlreadyConnected
case srv.Blacklist.Exists(id[:]):
return false, DiscUselessPeer
case id == srv.ntab.Self():
return false, DiscSelf
}
if bytes.Equal(srv.Identity.Pubkey()[1:], addr.Pubkey) {
return newPeerError(errPubkeyForbidden, "not allowed to connect to srv")
}
srv.lock.RLock()
defer srv.lock.RUnlock()
for _, peer := range srv.peers {
if peer != nil {
id := peer.Identity()
if id != nil && bytes.Equal(id.Pubkey(), addr.Pubkey) {
return errors.New("already connected")
}
}
}
return nil
srv.peers[id] = p
return true, 0
}
func (srv *Server) removePeer(p *Peer) {
srv.lock.Lock()
delete(srv.peers, *p.remoteID)
srv.lock.Unlock()
srv.peerWG.Done()
}
// TODO replace with "Set"
type Blacklist interface {
Get([]byte) (bool, error)
Put([]byte) error

@ -2,19 +2,28 @@ package p2p
import (
"bytes"
"crypto/ecdsa"
"io"
"math/rand"
"net"
"sync"
"testing"
"time"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/p2p/discover"
)
func startTestServer(t *testing.T, pf peerFunc) *Server {
func startTestServer(t *testing.T, pf newPeerHook) *Server {
server := &Server{
Identity: &peerId{},
Name: "test",
MaxPeers: 10,
ListenAddr: "127.0.0.1:0",
newPeerFunc: pf,
PrivateKey: newkey(),
newPeerHook: pf,
handshakeFunc: func(io.ReadWriter, *ecdsa.PrivateKey, *discover.Node) (id discover.NodeID, st []byte, err error) {
return randomID(), nil, err
},
}
if err := server.Start(); err != nil {
t.Fatalf("Could not start server: %v", err)
@ -27,16 +36,11 @@ func TestServerListen(t *testing.T) {
// start the test server
connected := make(chan *Peer)
srv := startTestServer(t, func(srv *Server, conn net.Conn, dialAddr *peerAddr) *Peer {
if conn == nil {
srv := startTestServer(t, func(p *Peer) {
if p == nil {
t.Error("peer func called with nil conn")
}
if dialAddr != nil {
t.Error("peer func called with non-nil dialAddr")
}
peer := newPeer(conn, nil, dialAddr)
connected <- peer
return peer
connected <- p
})
defer close(connected)
defer srv.Stop()
@ -50,9 +54,9 @@ func TestServerListen(t *testing.T) {
select {
case peer := <-connected:
if peer.conn.LocalAddr().String() != conn.RemoteAddr().String() {
if peer.LocalAddr().String() != conn.RemoteAddr().String() {
t.Errorf("peer started with wrong conn: got %v, want %v",
peer.conn.LocalAddr(), conn.RemoteAddr())
peer.LocalAddr(), conn.RemoteAddr())
}
case <-time.After(1 * time.Second):
t.Error("server did not accept within one second")
@ -62,7 +66,7 @@ func TestServerListen(t *testing.T) {
func TestServerDial(t *testing.T) {
defer testlog(t).detach()
// run a fake TCP server to handle the connection.
// run a one-shot TCP server to handle the connection.
listener, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
t.Fatalf("could not setup listener: %v")
@ -72,41 +76,32 @@ func TestServerDial(t *testing.T) {
go func() {
conn, err := listener.Accept()
if err != nil {
t.Error("acccept error:", err)
t.Error("accept error:", err)
return
}
conn.Close()
accepted <- conn
}()
// start the test server
// start the server
connected := make(chan *Peer)
srv := startTestServer(t, func(srv *Server, conn net.Conn, dialAddr *peerAddr) *Peer {
if conn == nil {
t.Error("peer func called with nil conn")
}
peer := newPeer(conn, nil, dialAddr)
connected <- peer
return peer
})
srv := startTestServer(t, func(p *Peer) { connected <- p })
defer close(connected)
defer srv.Stop()
// tell the server to connect.
connAddr := newPeerAddr(listener.Addr(), nil)
srv.peerConnect <- connAddr
// tell the server to connect
tcpAddr := listener.Addr().(*net.TCPAddr)
srv.SuggestPeer(&discover.Node{IP: tcpAddr.IP, TCPPort: tcpAddr.Port})
select {
case conn := <-accepted:
select {
case peer := <-connected:
if peer.conn.RemoteAddr().String() != conn.LocalAddr().String() {
if peer.RemoteAddr().String() != conn.LocalAddr().String() {
t.Errorf("peer started with wrong conn: got %v, want %v",
peer.conn.RemoteAddr(), conn.LocalAddr())
}
if peer.dialAddr != connAddr {
t.Errorf("peer started with wrong dialAddr: got %v, want %v",
peer.dialAddr, connAddr)
peer.RemoteAddr(), conn.LocalAddr())
}
// TODO: validate more fields
case <-time.After(1 * time.Second):
t.Error("server did not launch peer within one second")
}
@ -118,16 +113,17 @@ func TestServerDial(t *testing.T) {
func TestServerBroadcast(t *testing.T) {
defer testlog(t).detach()
var connected sync.WaitGroup
srv := startTestServer(t, func(srv *Server, c net.Conn, dialAddr *peerAddr) *Peer {
peer := newPeer(c, []Protocol{discard}, dialAddr)
peer.startSubprotocols([]Cap{discard.cap()})
srv := startTestServer(t, func(p *Peer) {
p.protocols = []Protocol{discard}
p.startSubprotocols([]Cap{discard.cap()})
p.noHandshake = true
connected.Done()
return peer
})
defer srv.Stop()
// dial a bunch of conns
// create a few peers
var conns = make([]net.Conn, 8)
connected.Add(len(conns))
deadline := time.Now().Add(3 * time.Second)
@ -159,3 +155,18 @@ func TestServerBroadcast(t *testing.T) {
}
}
}
func newkey() *ecdsa.PrivateKey {
key, err := crypto.GenerateKey()
if err != nil {
panic("couldn't generate key: " + err.Error())
}
return key
}
func randomID() (id discover.NodeID) {
for i := range id {
id[i] = byte(rand.Intn(255))
}
return id
}

@ -15,7 +15,7 @@ func testlog(t *testing.T) testLogger {
return l
}
func (testLogger) GetLogLevel() logger.LogLevel { return logger.DebugLevel }
func (testLogger) GetLogLevel() logger.LogLevel { return logger.DebugDetailLevel }
func (testLogger) SetLogLevel(logger.LogLevel) {}
func (l testLogger) LogPrint(level logger.LogLevel, msg string) {

@ -1,40 +0,0 @@
// +build none
package main
import (
"fmt"
"log"
"net"
"os"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/p2p"
)
func main() {
logger.AddLogSystem(logger.NewStdLogSystem(os.Stdout, log.LstdFlags, logger.DebugLevel))
pub, _ := secp256k1.GenerateKeyPair()
srv := p2p.Server{
MaxPeers: 10,
Identity: p2p.NewSimpleClientIdentity("test", "1.0", "", string(pub)),
ListenAddr: ":30303",
NAT: p2p.PMP(net.ParseIP("10.0.0.1")),
}
if err := srv.Start(); err != nil {
fmt.Println("could not start server:", err)
os.Exit(1)
}
// add seed peers
seed, err := net.ResolveTCPAddr("tcp", "poc-7.ethdev.com:30303")
if err != nil {
fmt.Println("couldn't resolve:", err)
os.Exit(1)
}
srv.SuggestPeer(seed.IP, seed.Port, nil)
select {}
}

@ -350,8 +350,10 @@ func makeWriter(typ reflect.Type) (writer, error) {
return writeUint, nil
case kind == reflect.String:
return writeString, nil
case kind == reflect.Slice && typ.Elem().Kind() == reflect.Uint8 && !typ.Elem().Implements(encoderInterface):
case kind == reflect.Slice && isByte(typ.Elem()):
return writeBytes, nil
case kind == reflect.Array && isByte(typ.Elem()):
return writeByteArray, nil
case kind == reflect.Slice || kind == reflect.Array:
return makeSliceWriter(typ)
case kind == reflect.Struct:
@ -363,6 +365,10 @@ func makeWriter(typ reflect.Type) (writer, error) {
}
}
func isByte(typ reflect.Type) bool {
return typ.Kind() == reflect.Uint8 && !typ.Implements(encoderInterface)
}
func writeUint(val reflect.Value, w *encbuf) error {
i := val.Uint()
if i == 0 {
@ -407,6 +413,20 @@ func writeBytes(val reflect.Value, w *encbuf) error {
return nil
}
func writeByteArray(val reflect.Value, w *encbuf) error {
if !val.CanAddr() {
// Slice requires the value to be addressable.
// Make it addressable by copying.
copy := reflect.New(val.Type()).Elem()
copy.Set(val)
val = copy
}
size := val.Len()
slice := val.Slice(0, size).Bytes()
w.encodeString(slice)
return nil
}
func writeString(val reflect.Value, w *encbuf) error {
s := val.String()
w.encodeStringHeader(len(s))

@ -40,6 +40,8 @@ func (e *encodableReader) Read(b []byte) (int, error) {
panic("called")
}
type namedByteType byte
var (
_ = Encoder(&testEncoder{})
_ = Encoder(byteEncoder(0))
@ -102,6 +104,10 @@ var encTests = []encTest{
// byte slices, strings
{val: []byte{}, output: "80"},
{val: []byte{1, 2, 3}, output: "83010203"},
{val: []namedByteType{1, 2, 3}, output: "83010203"},
{val: [...]namedByteType{1, 2, 3}, output: "83010203"},
{val: "", output: "80"},
{val: "dog", output: "83646F67"},
{

@ -214,7 +214,7 @@ func NewPeer(peer *p2p.Peer) *Peer {
return &Peer{
ref: peer,
Ip: fmt.Sprintf("%v", peer.RemoteAddr()),
Version: fmt.Sprintf("%v", peer.Identity()),
Version: fmt.Sprintf("%v", peer.ID()),
Caps: fmt.Sprintf("%v", caps),
}
}
@ -234,33 +234,3 @@ func NewReciept(contractCreation bool, creationAddress, hash, address []byte) *R
toHex(address),
}
}
type Message struct {
To string `json:"to"`
From string `json:"from"`
Input string `json:"input"`
Output string `json:"output"`
Path int32 `json:"path"`
Origin string `json:"origin"`
Timestamp int32 `json:"timestamp"`
Coinbase string `json:"coinbase"`
Block string `json:"block"`
Number int32 `json:"number"`
Value string `json:"value"`
}
func NewMessage(message *state.Message) Message {
return Message{
To: toHex(message.To),
From: toHex(message.From),
Input: toHex(message.Input),
Output: toHex(message.Output),
Path: int32(message.Path),
Origin: toHex(message.Origin),
Timestamp: int32(message.Timestamp),
Coinbase: toHex(message.Origin),
Block: toHex(message.Block),
Number: int32(message.Number.Int64()),
Value: message.Value.String(),
}
}

@ -31,7 +31,6 @@ type Backend interface {
IsListening() bool
Peers() []*p2p.Peer
KeyManager() *crypto.KeyManager
ClientIdentity() p2p.ClientIdentity
Db() ethutil.Database
EventMux() *event.TypeMux
Whisper() *whisper.Whisper
@ -192,15 +191,6 @@ func (self *XEth) FromNumber(str string) string {
return ethutil.BigD(fromHex(str)).String()
}
func ToMessages(messages state.Messages) *ethutil.List {
var msgs []Message
for _, m := range messages {
msgs = append(msgs, NewMessage(m))
}
return ethutil.NewList(msgs)
}
func (self *XEth) PushTx(encodedTx string) (string, error) {
tx := types.NewTransactionFromBytes(fromHex(encodedTx))
err := self.eth.TxPool().Add(tx)