Merge pull request #3674 from obscuren/gaz64

params: core, core/vm, miner: 64bit gas instructions
This commit is contained in:
Péter Szilágyi 2017-02-14 18:59:00 +02:00 committed by GitHub
commit a973d1d523
47 changed files with 1088 additions and 827 deletions

@ -156,7 +156,7 @@ func run(ctx *cli.Context) error {
ret, _, err = runtime.Create(input, &runtime.Config{
Origin: sender.Address(),
State: statedb,
GasLimit: common.Big(ctx.GlobalString(GasFlag.Name)),
GasLimit: common.Big(ctx.GlobalString(GasFlag.Name)).Uint64(),
GasPrice: common.Big(ctx.GlobalString(PriceFlag.Name)),
Value: common.Big(ctx.GlobalString(ValueFlag.Name)),
EVMConfig: vm.Config{
@ -172,7 +172,7 @@ func run(ctx *cli.Context) error {
ret, err = runtime.Call(receiver.Address(), common.Hex2Bytes(ctx.GlobalString(InputFlag.Name)), &runtime.Config{
Origin: sender.Address(),
State: statedb,
GasLimit: common.Big(ctx.GlobalString(GasFlag.Name)),
GasLimit: common.Big(ctx.GlobalString(GasFlag.Name)).Uint64(),
GasPrice: common.Big(ctx.GlobalString(PriceFlag.Name)),
Value: common.Big(ctx.GlobalString(ValueFlag.Name)),
EVMConfig: vm.Config{

@ -205,7 +205,7 @@ func makeFullNode(ctx *cli.Context) *node.Node {
if err != nil {
glog.V(logger.Warn).Infoln("error setting canonical miner information:", err)
}
if uint64(len(extra)) > params.MaximumExtraDataSize.Uint64() {
if uint64(len(extra)) > params.MaximumExtraDataSize {
glog.V(logger.Warn).Infoln("error setting canonical miner information: extra exceeds", params.MaximumExtraDataSize)
glog.V(logger.Debug).Infof("extra: %x\n", extra)
extra = nil

25
common/math/integer.go Normal file

@ -0,0 +1,25 @@
package math
import gmath "math"
/*
* NOTE: The following methods need to be optimised using either bit checking or asm
*/
// SafeSub returns subtraction result and whether overflow occurred.
func SafeSub(x, y uint64) (uint64, bool) {
return x - y, x < y
}
// SafeAdd returns the result and whether overflow occurred.
func SafeAdd(x, y uint64) (uint64, bool) {
return x + y, y > gmath.MaxUint64-x
}
// SafeMul returns multiplication result and whether overflow occurred.
func SafeMul(x, y uint64) (uint64, bool) {
if x == 0 {
return 0, false
}
return x * y, x != 0 && y != 0 && y > gmath.MaxUint64/x
}

@ -0,0 +1,50 @@
package math
import (
gmath "math"
"testing"
)
type operation byte
const (
sub operation = iota
add
mul
)
func TestOverflow(t *testing.T) {
for i, test := range []struct {
x uint64
y uint64
overflow bool
op operation
}{
// add operations
{gmath.MaxUint64, 1, true, add},
{gmath.MaxUint64 - 1, 1, false, add},
// sub operations
{0, 1, true, sub},
{0, 0, false, sub},
// mul operations
{10, 10, false, mul},
{gmath.MaxUint64, 2, true, mul},
{gmath.MaxUint64, 1, false, mul},
} {
var overflows bool
switch test.op {
case sub:
_, overflows = SafeSub(test.x, test.y)
case add:
_, overflows = SafeAdd(test.x, test.y)
case mul:
_, overflows = SafeMul(test.x, test.y)
}
if test.overflow != overflows {
t.Errorf("%d failed. Expected test to be %v, got %v", i, test.overflow, overflows)
}
}
}

@ -92,6 +92,7 @@ func genValueTx(nbytes int) func(int, *BlockGen) {
var (
ringKeys = make([]*ecdsa.PrivateKey, 1000)
ringAddrs = make([]common.Address, len(ringKeys))
bigTxGas = new(big.Int).SetUint64(params.TxGas)
)
func init() {
@ -111,8 +112,8 @@ func genTxRing(naccounts int) func(int, *BlockGen) {
return func(i int, gen *BlockGen) {
gas := CalcGasLimit(gen.PrevBlock(i - 1))
for {
gas.Sub(gas, params.TxGas)
if gas.Cmp(params.TxGas) < 0 {
gas.Sub(gas, bigTxGas)
if gas.Cmp(bigTxGas) < 0 {
break
}
to := (from + 1) % naccounts
@ -120,7 +121,7 @@ func genTxRing(naccounts int) func(int, *BlockGen) {
gen.TxNonce(ringAddrs[from]),
ringAddrs[to],
benchRootFunds,
params.TxGas,
bigTxGas,
nil,
nil,
)

@ -204,7 +204,7 @@ func (v *BlockValidator) ValidateHeader(header, parent *types.Header, checkPow b
//
// See YP section 4.3.4. "Block Header Validity"
func ValidateHeader(config *params.ChainConfig, pow pow.PoW, header *types.Header, parent *types.Header, checkPow, uncle bool) error {
if big.NewInt(int64(len(header.Extra))).Cmp(params.MaximumExtraDataSize) == 1 {
if uint64(len(header.Extra)) > params.MaximumExtraDataSize {
return fmt.Errorf("Header extra data too long (%d)", len(header.Extra))
}

@ -720,7 +720,7 @@ func TestFastVsFullChains(t *testing.T) {
// If the block number is multiple of 3, send a few bonus transactions to the miner
if i%3 == 2 {
for j := 0; j < i%4+1; j++ {
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(address), common.Address{0x00}, big.NewInt(1000), params.TxGas, nil, nil), signer, key)
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(address), common.Address{0x00}, big.NewInt(1000), bigTxGas, nil, nil), signer, key)
if err != nil {
panic(err)
}
@ -884,8 +884,8 @@ func TestChainTxReorgs(t *testing.T) {
// Create two transactions shared between the chains:
// - postponed: transaction included at a later block in the forked chain
// - swapped: transaction included at the same block number in the forked chain
postponed, _ := types.SignTx(types.NewTransaction(0, addr1, big.NewInt(1000), params.TxGas, nil, nil), signer, key1)
swapped, _ := types.SignTx(types.NewTransaction(1, addr1, big.NewInt(1000), params.TxGas, nil, nil), signer, key1)
postponed, _ := types.SignTx(types.NewTransaction(0, addr1, big.NewInt(1000), bigTxGas, nil, nil), signer, key1)
swapped, _ := types.SignTx(types.NewTransaction(1, addr1, big.NewInt(1000), bigTxGas, nil, nil), signer, key1)
// Create two transactions that will be dropped by the forked chain:
// - pastDrop: transaction dropped retroactively from a past block
@ -901,13 +901,13 @@ func TestChainTxReorgs(t *testing.T) {
chain, _ := GenerateChain(params.TestChainConfig, genesis, db, 3, func(i int, gen *BlockGen) {
switch i {
case 0:
pastDrop, _ = types.SignTx(types.NewTransaction(gen.TxNonce(addr2), addr2, big.NewInt(1000), params.TxGas, nil, nil), signer, key2)
pastDrop, _ = types.SignTx(types.NewTransaction(gen.TxNonce(addr2), addr2, big.NewInt(1000), bigTxGas, nil, nil), signer, key2)
gen.AddTx(pastDrop) // This transaction will be dropped in the fork from below the split point
gen.AddTx(postponed) // This transaction will be postponed till block #3 in the fork
case 2:
freshDrop, _ = types.SignTx(types.NewTransaction(gen.TxNonce(addr2), addr2, big.NewInt(1000), params.TxGas, nil, nil), signer, key2)
freshDrop, _ = types.SignTx(types.NewTransaction(gen.TxNonce(addr2), addr2, big.NewInt(1000), bigTxGas, nil, nil), signer, key2)
gen.AddTx(freshDrop) // This transaction will be dropped in the fork from exactly at the split point
gen.AddTx(swapped) // This transaction will be swapped out at the exact height
@ -926,18 +926,18 @@ func TestChainTxReorgs(t *testing.T) {
chain, _ = GenerateChain(params.TestChainConfig, genesis, db, 5, func(i int, gen *BlockGen) {
switch i {
case 0:
pastAdd, _ = types.SignTx(types.NewTransaction(gen.TxNonce(addr3), addr3, big.NewInt(1000), params.TxGas, nil, nil), signer, key3)
pastAdd, _ = types.SignTx(types.NewTransaction(gen.TxNonce(addr3), addr3, big.NewInt(1000), bigTxGas, nil, nil), signer, key3)
gen.AddTx(pastAdd) // This transaction needs to be injected during reorg
case 2:
gen.AddTx(postponed) // This transaction was postponed from block #1 in the original chain
gen.AddTx(swapped) // This transaction was swapped from the exact current spot in the original chain
freshAdd, _ = types.SignTx(types.NewTransaction(gen.TxNonce(addr3), addr3, big.NewInt(1000), params.TxGas, nil, nil), signer, key3)
freshAdd, _ = types.SignTx(types.NewTransaction(gen.TxNonce(addr3), addr3, big.NewInt(1000), bigTxGas, nil, nil), signer, key3)
gen.AddTx(freshAdd) // This transaction will be added exactly at reorg time
case 3:
futureAdd, _ = types.SignTx(types.NewTransaction(gen.TxNonce(addr3), addr3, big.NewInt(1000), params.TxGas, nil, nil), signer, key3)
futureAdd, _ = types.SignTx(types.NewTransaction(gen.TxNonce(addr3), addr3, big.NewInt(1000), bigTxGas, nil, nil), signer, key3)
gen.AddTx(futureAdd) // This transaction will be added after a full reorg
}
})

@ -56,13 +56,13 @@ func ExampleGenerateChain() {
switch i {
case 0:
// In block 1, addr1 sends addr2 some ether.
tx, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr1), addr2, big.NewInt(10000), params.TxGas, nil, nil), signer, key1)
tx, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr1), addr2, big.NewInt(10000), bigTxGas, nil, nil), signer, key1)
gen.AddTx(tx)
case 1:
// In block 2, addr1 sends some more ether to addr2.
// addr2 passes it on to addr3.
tx1, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr1), addr2, big.NewInt(1000), params.TxGas, nil, nil), signer, key1)
tx2, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr2), addr3, big.NewInt(1000), params.TxGas, nil, nil), signer, key2)
tx1, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr1), addr2, big.NewInt(1000), bigTxGas, nil, nil), signer, key1)
tx2, _ := types.SignTx(types.NewTransaction(gen.TxNonce(addr2), addr3, big.NewInt(1000), bigTxGas, nil, nil), signer, key2)
gen.AddTx(tx1)
gen.AddTx(tx2)
case 2:

@ -49,15 +49,16 @@ The state transitioning model does all all the necessary work to work out a vali
6) Derive new state root
*/
type StateTransition struct {
gp *GasPool
msg Message
gas, gasPrice *big.Int
initialGas *big.Int
value *big.Int
data []byte
state vm.StateDB
gp *GasPool
msg Message
gas uint64
gasPrice *big.Int
initialGas *big.Int
value *big.Int
data []byte
state vm.StateDB
env *vm.EVM
evm *vm.EVM
}
// Message represents a message sent to a contract.
@ -81,12 +82,14 @@ func MessageCreatesContract(msg Message) bool {
// IntrinsicGas computes the 'intrinsic gas' for a message
// with the given data.
//
// TODO convert to uint64
func IntrinsicGas(data []byte, contractCreation, homestead bool) *big.Int {
igas := new(big.Int)
if contractCreation && homestead {
igas.Set(params.TxGasContractCreation)
igas.SetUint64(params.TxGasContractCreation)
} else {
igas.Set(params.TxGas)
igas.SetUint64(params.TxGas)
}
if len(data) > 0 {
var nz int64
@ -96,27 +99,26 @@ func IntrinsicGas(data []byte, contractCreation, homestead bool) *big.Int {
}
}
m := big.NewInt(nz)
m.Mul(m, params.TxDataNonZeroGas)
m.Mul(m, new(big.Int).SetUint64(params.TxDataNonZeroGas))
igas.Add(igas, m)
m.SetInt64(int64(len(data)) - nz)
m.Mul(m, params.TxDataZeroGas)
m.Mul(m, new(big.Int).SetUint64(params.TxDataZeroGas))
igas.Add(igas, m)
}
return igas
}
// NewStateTransition initialises and returns a new state transition object.
func NewStateTransition(env *vm.EVM, msg Message, gp *GasPool) *StateTransition {
func NewStateTransition(evm *vm.EVM, msg Message, gp *GasPool) *StateTransition {
return &StateTransition{
gp: gp,
env: env,
evm: evm,
msg: msg,
gas: new(big.Int),
gasPrice: msg.GasPrice(),
initialGas: new(big.Int),
value: msg.Value(),
data: msg.Data(),
state: env.StateDB,
state: evm.StateDB,
}
}
@ -127,8 +129,8 @@ func NewStateTransition(env *vm.EVM, msg Message, gp *GasPool) *StateTransition
// the gas used (which includes gas refunds) and an error if it failed. An error always
// indicates a core error meaning that the message would always fail for that particular
// state and would never be accepted within a block.
func ApplyMessage(env *vm.EVM, msg Message, gp *GasPool) ([]byte, *big.Int, error) {
st := NewStateTransition(env, msg, gp)
func ApplyMessage(evm *vm.EVM, msg Message, gp *GasPool) ([]byte, *big.Int, error) {
st := NewStateTransition(evm, msg, gp)
ret, _, gasUsed, err := st.TransitionDb()
return ret, gasUsed, err
@ -157,21 +159,21 @@ func (self *StateTransition) to() vm.Account {
return self.state.GetAccount(*to)
}
func (self *StateTransition) useGas(amount *big.Int) error {
if self.gas.Cmp(amount) < 0 {
func (self *StateTransition) useGas(amount uint64) error {
if self.gas < amount {
return vm.ErrOutOfGas
}
self.gas.Sub(self.gas, amount)
self.gas -= amount
return nil
}
func (self *StateTransition) addGas(amount *big.Int) {
self.gas.Add(self.gas, amount)
}
func (self *StateTransition) buyGas() error {
mgas := self.msg.Gas()
if mgas.BitLen() > 64 {
return vm.ErrOutOfGas
}
mgval := new(big.Int).Mul(mgas, self.gasPrice)
sender := self.from()
@ -181,7 +183,8 @@ func (self *StateTransition) buyGas() error {
if err := self.gp.SubGas(mgas); err != nil {
return err
}
self.addGas(mgas)
self.gas += mgas.Uint64()
self.initialGas.Set(mgas)
sender.SubBalance(mgval)
return nil
@ -209,7 +212,9 @@ func (self *StateTransition) preCheck() (err error) {
return nil
}
// TransitionDb will move the state by applying the message against the given environment.
// TransitionDb will transition the state by applying the current message and returning the result
// including the required gas for the operation as well as the used gas. It returns an error if it
// failed. An error indicates a consensus issue.
func (self *StateTransition) TransitionDb() (ret []byte, requiredGas, usedGas *big.Int, err error) {
if err = self.preCheck(); err != nil {
return
@ -217,26 +222,32 @@ func (self *StateTransition) TransitionDb() (ret []byte, requiredGas, usedGas *b
msg := self.msg
sender := self.from() // err checked in preCheck
homestead := self.env.ChainConfig().IsHomestead(self.env.BlockNumber)
homestead := self.evm.ChainConfig().IsHomestead(self.evm.BlockNumber)
contractCreation := MessageCreatesContract(msg)
// Pay intrinsic gas
if err = self.useGas(IntrinsicGas(self.data, contractCreation, homestead)); err != nil {
// TODO convert to uint64
intrinsicGas := IntrinsicGas(self.data, contractCreation, homestead)
if intrinsicGas.BitLen() > 64 {
return nil, nil, nil, InvalidTxError(vm.ErrOutOfGas)
}
if err = self.useGas(intrinsicGas.Uint64()); err != nil {
return nil, nil, nil, InvalidTxError(err)
}
var (
vmenv = self.env
evm = self.evm
// vm errors do not effect consensus and are therefor
// not assigned to err, except for insufficient balance
// error.
vmerr error
)
if contractCreation {
ret, _, vmerr = vmenv.Create(sender, self.data, self.gas, self.value)
ret, _, self.gas, vmerr = evm.Create(sender, self.data, self.gas, self.value)
} else {
// Increment the nonce for the next transaction
self.state.SetNonce(sender.Address(), self.state.GetNonce(sender.Address())+1)
ret, vmerr = vmenv.Call(sender, self.to().Address(), self.data, self.gas, self.value)
ret, self.gas, vmerr = evm.Call(sender, self.to().Address(), self.data, self.gas, self.value)
}
if vmerr != nil {
glog.V(logger.Core).Infoln("vm returned with error:", err)
@ -251,7 +262,7 @@ func (self *StateTransition) TransitionDb() (ret []byte, requiredGas, usedGas *b
requiredGas = new(big.Int).Set(self.gasUsed())
self.refundGas()
self.state.AddBalance(self.env.Coinbase, new(big.Int).Mul(self.gasUsed(), self.gasPrice))
self.state.AddBalance(self.evm.Coinbase, new(big.Int).Mul(self.gasUsed(), self.gasPrice))
return ret, requiredGas, self.gasUsed(), err
}
@ -260,20 +271,21 @@ func (self *StateTransition) refundGas() {
// Return eth for remaining gas to the sender account,
// exchanged at the original rate.
sender := self.from() // err already checked
remaining := new(big.Int).Mul(self.gas, self.gasPrice)
remaining := new(big.Int).Mul(new(big.Int).SetUint64(self.gas), self.gasPrice)
sender.AddBalance(remaining)
// Apply refund counter, capped to half of the used gas.
uhalf := remaining.Div(self.gasUsed(), common.Big2)
refund := common.BigMin(uhalf, self.state.GetRefund())
self.gas.Add(self.gas, refund)
self.gas += refund.Uint64()
self.state.AddBalance(sender.Address(), refund.Mul(refund, self.gasPrice))
// Also return remaining gas to the block gas counter so it is
// available for the next transaction.
self.gp.AddGas(self.gas)
self.gp.AddGas(new(big.Int).SetUint64(self.gas))
}
func (self *StateTransition) gasUsed() *big.Int {
return new(big.Int).Sub(self.initialGas, self.gas)
return new(big.Int).Sub(self.initialGas, new(big.Int).SetUint64(self.gas))
}

@ -21,28 +21,11 @@ import (
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/params"
)
// Type is the VM type accepted by **NewVm**
type Type byte
const (
StdVmTy Type = iota // Default standard VM
JitVmTy // LLVM JIT VM
MaxVmTy
)
var (
Pow256 = common.BigPow(2, 256) // Pow256 is 2**256
U256 = common.U256 // Shortcut to common.U256
S256 = common.S256 // Shortcut to common.S256
Zero = common.Big0 // Shortcut to common.Big0
One = common.Big1 // Shortcut to common.Big1
max = big.NewInt(math.MaxInt64) // Maximum 64 bit integer
)
// calculates the memory size required for a step
@ -54,48 +37,6 @@ func calcMemSize(off, l *big.Int) *big.Int {
return new(big.Int).Add(off, l)
}
// calculates the quadratic gas
func quadMemGas(mem *Memory, newMemSize, gas *big.Int) {
if newMemSize.Cmp(common.Big0) > 0 {
newMemSizeWords := toWordSize(newMemSize)
newMemSize.Mul(newMemSizeWords, u256(32))
if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 {
// be careful reusing variables here when changing.
// The order has been optimised to reduce allocation
oldSize := toWordSize(big.NewInt(int64(mem.Len())))
pow := new(big.Int).Exp(oldSize, common.Big2, Zero)
linCoef := oldSize.Mul(oldSize, params.MemoryGas)
quadCoef := new(big.Int).Div(pow, params.QuadCoeffDiv)
oldTotalFee := new(big.Int).Add(linCoef, quadCoef)
pow.Exp(newMemSizeWords, common.Big2, Zero)
linCoef = linCoef.Mul(newMemSizeWords, params.MemoryGas)
quadCoef = quadCoef.Div(pow, params.QuadCoeffDiv)
newTotalFee := linCoef.Add(linCoef, quadCoef)
fee := newTotalFee.Sub(newTotalFee, oldTotalFee)
gas.Add(gas, fee)
}
}
}
// Simple helper
func u256(n int64) *big.Int {
return big.NewInt(n)
}
// Mainly used for print variables and passing to Print*
func toValue(val *big.Int) interface{} {
// Let's assume a string on right padded zero's
b := val.Bytes()
if b[0] != 0 && b[len(b)-1] == 0x0 && b[len(b)-2] == 0x0 {
return string(b)
}
return val
}
// getData returns a slice from the data based on the start and size and pads
// up to size with zero's. This function is overflow safe.
func getData(data []byte, start, size *big.Int) []byte {
@ -106,14 +47,17 @@ func getData(data []byte, start, size *big.Int) []byte {
return common.RightPadBytes(data[s.Uint64():e.Uint64()], int(size.Uint64()))
}
// useGas attempts to subtract the amount of gas and returns whether it was
// successful
func useGas(gas, amount *big.Int) bool {
if gas.Cmp(amount) < 0 {
return false
// bigUint64 returns the integer casted to a uint64 and returns whether it
// overflowed in the process.
func bigUint64(v *big.Int) (uint64, bool) {
return v.Uint64(), v.BitLen() > 64
}
// toWordSize returns the ceiled word size required for memory expansion.
func toWordSize(size uint64) uint64 {
if size > math.MaxUint64-31 {
return math.MaxUint64/32 + 1
}
// Sub the amount of gas from the remaining
gas.Sub(gas, amount)
return true
return (size + 31) / 32
}

@ -24,7 +24,6 @@ import (
// ContractRef is a reference to the contract's backing object
type ContractRef interface {
ReturnGas(*big.Int)
Address() common.Address
Value() *big.Int
SetCode(common.Hash, []byte)
@ -48,7 +47,8 @@ type Contract struct {
CodeAddr *common.Address
Input []byte
value, Gas, UsedGas *big.Int
Gas uint64
value *big.Int
Args []byte
@ -56,7 +56,7 @@ type Contract struct {
}
// NewContract returns a new contract environment for the execution of EVM.
func NewContract(caller ContractRef, object ContractRef, value, gas *big.Int) *Contract {
func NewContract(caller ContractRef, object ContractRef, value *big.Int, gas uint64) *Contract {
c := &Contract{CallerAddress: caller.Address(), caller: caller, self: object, Args: nil}
if parent, ok := caller.(*Contract); ok {
@ -68,9 +68,8 @@ func NewContract(caller ContractRef, object ContractRef, value, gas *big.Int) *C
// Gas should be a pointer so it can safely be reduced through the run
// This pointer will be off the state transition
c.Gas = gas //new(big.Int).Set(gas)
c.Gas = gas
c.value = new(big.Int).Set(value)
c.UsedGas = new(big.Int)
return c
}
@ -107,27 +106,13 @@ func (c *Contract) Caller() common.Address {
return c.CallerAddress
}
// Finalise finalises the contract and returning any remaining gas to the original
// caller.
func (c *Contract) Finalise() {
// Return the remaining gas to the caller
c.caller.ReturnGas(c.Gas)
}
// UseGas attempts the use gas and subtracts it and returns true on success
func (c *Contract) UseGas(gas *big.Int) (ok bool) {
ok = useGas(c.Gas, gas)
if ok {
c.UsedGas.Add(c.UsedGas, gas)
func (c *Contract) UseGas(gas uint64) (ok bool) {
if c.Gas < gas {
return false
}
return
}
// ReturnGas adds the given gas back to itself.
func (c *Contract) ReturnGas(gas *big.Int) {
// Return the gas to the context
c.Gas.Add(c.Gas, gas)
c.UsedGas.Sub(c.UsedGas, gas)
c.Gas -= gas
return true
}
// Address returns the contracts address

@ -17,8 +17,6 @@
package vm
import (
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
@ -30,8 +28,8 @@ import (
// requires a deterministic gas count based on the input size of the Run method of the
// contract.
type PrecompiledContract interface {
RequiredGas(inputSize int) *big.Int // RequiredPrice calculates the contract gas use
Run(input []byte) []byte // Run runs the precompiled contract
RequiredGas(inputSize int) uint64 // RequiredPrice calculates the contract gas use
Run(input []byte) []byte // Run runs the precompiled contract
}
// Precompiled contains the default set of ethereum contracts
@ -57,7 +55,7 @@ func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contr
// ECRECOVER implemented as a native contract
type ecrecover struct{}
func (c *ecrecover) RequiredGas(inputSize int) *big.Int {
func (c *ecrecover) RequiredGas(inputSize int) uint64 {
return params.EcrecoverGas
}
@ -92,10 +90,12 @@ func (c *ecrecover) Run(in []byte) []byte {
// SHA256 implemented as a native contract
type sha256 struct{}
func (c *sha256) RequiredGas(inputSize int) *big.Int {
n := big.NewInt(int64(inputSize+31) / 32)
n.Mul(n, params.Sha256WordGas)
return n.Add(n, params.Sha256Gas)
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *sha256) RequiredGas(inputSize int) uint64 {
return uint64(inputSize+31)/32*params.Sha256WordGas + params.Sha256Gas
}
func (c *sha256) Run(in []byte) []byte {
return crypto.Sha256(in)
@ -104,10 +104,12 @@ func (c *sha256) Run(in []byte) []byte {
// RIPMED160 implemented as a native contract
type ripemd160 struct{}
func (c *ripemd160) RequiredGas(inputSize int) *big.Int {
n := big.NewInt(int64(inputSize+31) / 32)
n.Mul(n, params.Ripemd160WordGas)
return n.Add(n, params.Ripemd160Gas)
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *ripemd160) RequiredGas(inputSize int) uint64 {
return uint64(inputSize+31)/32*params.Ripemd160WordGas + params.Ripemd160Gas
}
func (c *ripemd160) Run(in []byte) []byte {
return common.LeftPadBytes(crypto.Ripemd160(in), 32)
@ -116,11 +118,12 @@ func (c *ripemd160) Run(in []byte) []byte {
// data copy implemented as a native contract
type dataCopy struct{}
func (c *dataCopy) RequiredGas(inputSize int) *big.Int {
n := big.NewInt(int64(inputSize+31) / 32)
n.Mul(n, params.IdentityWordGas)
return n.Add(n, params.IdentityGas)
// RequiredGas returns the gas required to execute the pre-compiled contract.
//
// This method does not require any overflow checking as the input size gas costs
// required for anything significant is so high it's impossible to pay for.
func (c *dataCopy) RequiredGas(inputSize int) uint64 {
return uint64(inputSize+31)/32*params.IdentityWordGas + params.IdentityGas
}
func (c *dataCopy) Run(in []byte) []byte {
return in

@ -17,7 +17,6 @@
package vm
import (
"fmt"
"math/big"
"sync/atomic"
@ -102,24 +101,18 @@ func (evm *EVM) Cancel() {
// Call executes the contract associated with the addr with the given input as parameters. It also handles any
// necessary value transfer required and takes the necessary steps to create accounts and reverses the state in
// case of an execution error or failed value transfer.
func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas, value *big.Int) (ret []byte, err error) {
func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas uint64, value *big.Int) (ret []byte, leftOverGas uint64, err error) {
if evm.vmConfig.NoRecursion && evm.depth > 0 {
caller.ReturnGas(gas)
return nil, nil
return nil, gas, nil
}
// Depth check execution. Fail if we're trying to execute above the
// limit.
if evm.depth > int(params.CallCreateDepth.Int64()) {
caller.ReturnGas(gas)
return nil, ErrDepth
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
caller.ReturnGas(gas)
return nil, ErrInsufficientBalance
return nil, gas, ErrInsufficientBalance
}
var (
@ -128,8 +121,7 @@ func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas,
)
if !evm.StateDB.Exist(addr) {
if PrecompiledContracts[addr] == nil && evm.ChainConfig().IsEIP158(evm.BlockNumber) && value.BitLen() == 0 {
caller.ReturnGas(gas)
return nil, nil
return nil, gas, nil
}
to = evm.StateDB.CreateAccount(addr)
@ -143,7 +135,6 @@ func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas,
// only.
contract := NewContract(caller, to, value, gas)
contract.SetCallCode(&addr, evm.StateDB.GetCodeHash(addr), evm.StateDB.GetCode(addr))
defer contract.Finalise()
ret, err = evm.interpreter.Run(contract, input)
// When an error was returned by the EVM or when setting the creation code
@ -154,7 +145,7 @@ func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas,
evm.StateDB.RevertToSnapshot(snapshot)
}
return ret, err
return ret, contract.Gas, err
}
// CallCode executes the contract associated with the addr with the given input as parameters. It also handles any
@ -162,24 +153,18 @@ func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas,
// case of an execution error or failed value transfer.
//
// CallCode differs from Call in the sense that it executes the given address' code with the caller as context.
func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte, gas, value *big.Int) (ret []byte, err error) {
func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte, gas uint64, value *big.Int) (ret []byte, leftOverGas uint64, err error) {
if evm.vmConfig.NoRecursion && evm.depth > 0 {
caller.ReturnGas(gas)
return nil, nil
return nil, gas, nil
}
// Depth check execution. Fail if we're trying to execute above the
// limit.
if evm.depth > int(params.CallCreateDepth.Int64()) {
caller.ReturnGas(gas)
return nil, ErrDepth
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
if !evm.CanTransfer(evm.StateDB, caller.Address(), value) {
caller.ReturnGas(gas)
return nil, fmt.Errorf("insufficient funds to transfer value. Req %v, has %v", value, evm.StateDB.GetBalance(caller.Address()))
return nil, gas, ErrInsufficientBalance
}
var (
@ -191,7 +176,6 @@ func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte,
// only.
contract := NewContract(caller, to, value, gas)
contract.SetCallCode(&addr, evm.StateDB.GetCodeHash(addr), evm.StateDB.GetCode(addr))
defer contract.Finalise()
ret, err = evm.interpreter.Run(contract, input)
if err != nil {
@ -200,7 +184,7 @@ func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte,
evm.StateDB.RevertToSnapshot(snapshot)
}
return ret, err
return ret, contract.Gas, err
}
// DelegateCall executes the contract associated with the addr with the given input as parameters.
@ -208,18 +192,15 @@ func (evm *EVM) CallCode(caller ContractRef, addr common.Address, input []byte,
//
// DelegateCall differs from CallCode in the sense that it executes the given address' code with the caller as context
// and the caller is set to the caller of the caller.
func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []byte, gas *big.Int) (ret []byte, err error) {
func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []byte, gas uint64) (ret []byte, leftOverGas uint64, err error) {
if evm.vmConfig.NoRecursion && evm.depth > 0 {
caller.ReturnGas(gas)
return nil, nil
return nil, gas, nil
}
// Depth check execution. Fail if we're trying to execute above the
// limit.
if evm.depth > int(params.CallCreateDepth.Int64()) {
caller.ReturnGas(gas)
return nil, ErrDepth
if evm.depth > int(params.CallCreateDepth) {
return nil, gas, ErrDepth
}
var (
@ -230,7 +211,6 @@ func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []by
// Iinitialise a new contract and make initialise the delegate values
contract := NewContract(caller, to, caller.Value(), gas).AsDelegate()
contract.SetCallCode(&addr, evm.StateDB.GetCodeHash(addr), evm.StateDB.GetCode(addr))
defer contract.Finalise()
ret, err = evm.interpreter.Run(contract, input)
if err != nil {
@ -239,28 +219,22 @@ func (evm *EVM) DelegateCall(caller ContractRef, addr common.Address, input []by
evm.StateDB.RevertToSnapshot(snapshot)
}
return ret, err
return ret, contract.Gas, err
}
// Create creates a new contract using code as deployment code.
func (evm *EVM) Create(caller ContractRef, code []byte, gas, value *big.Int) (ret []byte, contractAddr common.Address, err error) {
func (evm *EVM) Create(caller ContractRef, code []byte, gas uint64, value *big.Int) (ret []byte, contractAddr common.Address, leftOverGas uint64, err error) {
if evm.vmConfig.NoRecursion && evm.depth > 0 {
caller.ReturnGas(gas)
return nil, common.Address{}, nil
return nil, common.Address{}, gas, nil
}
// Depth check execution. Fail if we're trying to execute above the
// limit.
if evm.depth > int(params.CallCreateDepth.Int64()) {
caller.ReturnGas(gas)
return nil, common.Address{}, ErrDepth
if evm.depth > int(params.CallCreateDepth) {
return nil, common.Address{}, gas, ErrDepth
}
if !evm.CanTransfer(evm.StateDB, caller.Address(), value) {
caller.ReturnGas(gas)
return nil, common.Address{}, ErrInsufficientBalance
return nil, common.Address{}, gas, ErrInsufficientBalance
}
// Create a new account on the state
@ -280,7 +254,6 @@ func (evm *EVM) Create(caller ContractRef, code []byte, gas, value *big.Int) (re
// only.
contract := NewContract(caller, to, value, gas)
contract.SetCallCode(&contractAddr, crypto.Keccak256Hash(code), code)
defer contract.Finalise()
ret, err = evm.interpreter.Run(contract, nil)
@ -291,9 +264,8 @@ func (evm *EVM) Create(caller ContractRef, code []byte, gas, value *big.Int) (re
// be stored due to not enough gas set an error and let it be handled
// by the error checking condition below.
if err == nil && !maxCodeSizeExceeded {
dataGas := big.NewInt(int64(len(ret)))
dataGas.Mul(dataGas, params.CreateDataGas)
if contract.UseGas(dataGas) {
createDataGas := uint64(len(ret)) * params.CreateDataGas
if contract.UseGas(createDataGas) {
evm.StateDB.SetCode(contractAddr, ret)
} else {
err = ErrCodeStoreOutOfGas
@ -305,11 +277,10 @@ func (evm *EVM) Create(caller ContractRef, code []byte, gas, value *big.Int) (re
// when we're in homestead this also counts for code storage gas errors.
if maxCodeSizeExceeded ||
(err != nil && (evm.ChainConfig().IsHomestead(evm.BlockNumber) || err != ErrCodeStoreOutOfGas)) {
contract.UseGas(contract.Gas)
evm.StateDB.RevertToSnapshot(snapshot)
// Nothing should be returned when an error is thrown.
return nil, contractAddr, err
return nil, contractAddr, 0, err
}
// If the vm returned with an error the return value should be set to nil.
// This isn't consensus critical but merely to for behaviour reasons such as
@ -318,7 +289,7 @@ func (evm *EVM) Create(caller ContractRef, code []byte, gas, value *big.Int) (re
ret = nil
}
return ret, contractAddr, err
return ret, contractAddr, contract.Gas, err
}
// ChainConfig returns the evmironment's chain configuration

@ -17,149 +17,42 @@
package vm
import (
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/params"
)
var (
GasQuickStep = big.NewInt(2)
GasFastestStep = big.NewInt(3)
GasFastStep = big.NewInt(5)
GasMidStep = big.NewInt(8)
GasSlowStep = big.NewInt(10)
GasExtStep = big.NewInt(20)
const (
GasQuickStep uint64 = 2
GasFastestStep uint64 = 3
GasFastStep uint64 = 5
GasMidStep uint64 = 8
GasSlowStep uint64 = 10
GasExtStep uint64 = 20
GasReturn = big.NewInt(0)
GasStop = big.NewInt(0)
GasContractByte = big.NewInt(200)
n64 = big.NewInt(64)
GasReturn uint64 = 0
GasStop uint64 = 0
GasContractByte uint64 = 200
)
// calcGas returns the actual gas cost of the call.
//
// The cost of gas was changed during the homestead price change HF. To allow for EIP150
// to be implemented. The returned gas is gas - base * 63 / 64.
func callGas(gasTable params.GasTable, availableGas, base, callCost *big.Int) *big.Int {
if gasTable.CreateBySuicide != nil {
availableGas = new(big.Int).Sub(availableGas, base)
g := new(big.Int).Div(availableGas, n64)
g.Sub(availableGas, g)
if g.Cmp(callCost) < 0 {
return g
func callGas(gasTable params.GasTable, availableGas, base uint64, callCost *big.Int) (uint64, error) {
if gasTable.CreateBySuicide > 0 {
availableGas = availableGas - base
gas := availableGas - availableGas/64
// If the bit length exceeds 64 bit we know that the newly calculated "gas" for EIP150
// is smaller than the requested amount. Therefor we return the new gas instead
// of returning an error.
if callCost.BitLen() > 64 || gas < callCost.Uint64() {
return gas, nil
}
}
return callCost
}
// baseCheck checks for any stack error underflows
func baseCheck(op OpCode, stack *Stack, gas *big.Int) error {
// PUSH and DUP are a bit special. They all cost the same but we do want to have checking on stack push limit
// PUSH is also allowed to calculate the same price for all PUSHes
// DUP requirements are handled elsewhere (except for the stack limit check)
if op >= PUSH1 && op <= PUSH32 {
op = PUSH1
}
if op >= DUP1 && op <= DUP16 {
op = DUP1
if callCost.BitLen() > 64 {
return 0, errGasUintOverflow
}
if r, ok := _baseCheck[op]; ok {
err := stack.require(r.stackPop)
if err != nil {
return err
}
if r.stackPush > 0 && stack.len()-r.stackPop+r.stackPush > int(params.StackLimit.Int64()) {
return fmt.Errorf("stack limit reached %d (%d)", stack.len(), params.StackLimit.Int64())
}
gas.Add(gas, r.gas)
}
return nil
}
// casts a arbitrary number to the amount of words (sets of 32 bytes)
func toWordSize(size *big.Int) *big.Int {
tmp := new(big.Int)
tmp.Add(size, u256(31))
tmp.Div(tmp, u256(32))
return tmp
}
type req struct {
stackPop int
gas *big.Int
stackPush int
}
var _baseCheck = map[OpCode]req{
// opcode | stack pop | gas price | stack push
ADD: {2, GasFastestStep, 1},
LT: {2, GasFastestStep, 1},
GT: {2, GasFastestStep, 1},
SLT: {2, GasFastestStep, 1},
SGT: {2, GasFastestStep, 1},
EQ: {2, GasFastestStep, 1},
ISZERO: {1, GasFastestStep, 1},
SUB: {2, GasFastestStep, 1},
AND: {2, GasFastestStep, 1},
OR: {2, GasFastestStep, 1},
XOR: {2, GasFastestStep, 1},
NOT: {1, GasFastestStep, 1},
BYTE: {2, GasFastestStep, 1},
CALLDATALOAD: {1, GasFastestStep, 1},
CALLDATACOPY: {3, GasFastestStep, 1},
MLOAD: {1, GasFastestStep, 1},
MSTORE: {2, GasFastestStep, 0},
MSTORE8: {2, GasFastestStep, 0},
CODECOPY: {3, GasFastestStep, 0},
MUL: {2, GasFastStep, 1},
DIV: {2, GasFastStep, 1},
SDIV: {2, GasFastStep, 1},
MOD: {2, GasFastStep, 1},
SMOD: {2, GasFastStep, 1},
SIGNEXTEND: {2, GasFastStep, 1},
ADDMOD: {3, GasMidStep, 1},
MULMOD: {3, GasMidStep, 1},
JUMP: {1, GasMidStep, 0},
JUMPI: {2, GasSlowStep, 0},
EXP: {2, GasSlowStep, 1},
ADDRESS: {0, GasQuickStep, 1},
ORIGIN: {0, GasQuickStep, 1},
CALLER: {0, GasQuickStep, 1},
CALLVALUE: {0, GasQuickStep, 1},
CODESIZE: {0, GasQuickStep, 1},
GASPRICE: {0, GasQuickStep, 1},
COINBASE: {0, GasQuickStep, 1},
TIMESTAMP: {0, GasQuickStep, 1},
NUMBER: {0, GasQuickStep, 1},
CALLDATASIZE: {0, GasQuickStep, 1},
DIFFICULTY: {0, GasQuickStep, 1},
GASLIMIT: {0, GasQuickStep, 1},
POP: {1, GasQuickStep, 0},
PC: {0, GasQuickStep, 1},
MSIZE: {0, GasQuickStep, 1},
GAS: {0, GasQuickStep, 1},
BLOCKHASH: {1, GasExtStep, 1},
BALANCE: {1, Zero, 1},
EXTCODESIZE: {1, Zero, 1},
EXTCODECOPY: {4, Zero, 0},
SLOAD: {1, params.SloadGas, 1},
SSTORE: {2, Zero, 0},
SHA3: {2, params.Sha3Gas, 1},
CREATE: {3, params.CreateGas, 1},
// Zero is calculated in the gasSwitch
CALL: {7, Zero, 1},
CALLCODE: {7, Zero, 1},
DELEGATECALL: {6, Zero, 1},
SELFDESTRUCT: {1, Zero, 0},
JUMPDEST: {0, params.JumpdestGas, 0},
RETURN: {2, Zero, 0},
PUSH1: {0, GasFastestStep, 1},
DUP1: {0, Zero, 1},
return callCost.Uint64(), nil
}

@ -1,56 +1,80 @@
package vm
import (
gmath "math"
"math/big"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/params"
)
func memoryGasCost(mem *Memory, newMemSize *big.Int) *big.Int {
gas := new(big.Int)
if newMemSize.Cmp(common.Big0) > 0 {
newMemSizeWords := toWordSize(newMemSize)
if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 {
// be careful reusing variables here when changing.
// The order has been optimised to reduce allocation
oldSize := toWordSize(big.NewInt(int64(mem.Len())))
pow := new(big.Int).Exp(oldSize, common.Big2, Zero)
linCoef := oldSize.Mul(oldSize, params.MemoryGas)
quadCoef := new(big.Int).Div(pow, params.QuadCoeffDiv)
oldTotalFee := new(big.Int).Add(linCoef, quadCoef)
pow.Exp(newMemSizeWords, common.Big2, Zero)
linCoef = linCoef.Mul(newMemSizeWords, params.MemoryGas)
quadCoef = quadCoef.Div(pow, params.QuadCoeffDiv)
newTotalFee := linCoef.Add(linCoef, quadCoef)
fee := newTotalFee.Sub(newTotalFee, oldTotalFee)
gas.Add(gas, fee)
}
// memoryGasCosts calculates the quadratic gas for memory expansion. It does so
// only for the memory region that is expanded, not the total memory.
func memoryGasCost(mem *Memory, newMemSize uint64) (uint64, error) {
// The maximum that will fit in a uint64 is max_word_count - 1
// anything above that will result in an overflow.
if newMemSize > gmath.MaxUint64-32 {
return 0, errGasUintOverflow
}
return gas
if newMemSize == 0 {
return 0, nil
}
newMemSizeWords := toWordSize(newMemSize)
newMemSize = newMemSizeWords * 32
if newMemSize > uint64(mem.Len()) {
square := newMemSizeWords * newMemSizeWords
linCoef := newMemSizeWords * params.MemoryGas
quadCoef := square / params.QuadCoeffDiv
newTotalFee := linCoef + quadCoef
fee := newTotalFee - mem.lastGasCost
mem.lastGasCost = newTotalFee
return fee, nil
}
return 0, nil
}
func constGasFunc(gas *big.Int) gasFunc {
return func(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return gas
func constGasFunc(gas uint64) gasFunc {
return func(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
return gas, nil
}
}
func gasCalldataCopy(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
gas := memoryGasCost(mem, memorySize)
gas.Add(gas, GasFastestStep)
words := toWordSize(stack.Back(2))
func gasCalldataCopy(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
return gas.Add(gas, words.Mul(words, params.CopyGas))
var overflow bool
if gas, overflow = math.SafeAdd(gas, GasFastestStep); overflow {
return 0, errGasUintOverflow
}
words, overflow := bigUint64(stack.Back(2))
if overflow {
return 0, errGasUintOverflow
}
if words, overflow = math.SafeMul(toWordSize(words), params.CopyGas); overflow {
return 0, errGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, words); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasSStore(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
func gasSStore(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
var (
y, x = stack.Back(1), stack.Back(0)
val = env.StateDB.GetState(contract.Address(), common.BigToHash(x))
val = evm.StateDB.GetState(contract.Address(), common.BigToHash(x))
)
// This checks for 3 scenario's and calculates gas accordingly
// 1. From a zero-value address to a non-zero value (NEW VALUE)
@ -58,189 +82,335 @@ func gasSStore(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, m
// 3. From a non-zero to a non-zero (CHANGE)
if common.EmptyHash(val) && !common.EmptyHash(common.BigToHash(y)) {
// 0 => non 0
return new(big.Int).Set(params.SstoreSetGas)
return params.SstoreSetGas, nil
} else if !common.EmptyHash(val) && common.EmptyHash(common.BigToHash(y)) {
env.StateDB.AddRefund(params.SstoreRefundGas)
evm.StateDB.AddRefund(new(big.Int).SetUint64(params.SstoreRefundGas))
return new(big.Int).Set(params.SstoreClearGas)
return params.SstoreClearGas, nil
} else {
// non 0 => non 0 (or 0 => 0)
return new(big.Int).Set(params.SstoreResetGas)
return params.SstoreResetGas, nil
}
}
func makeGasLog(n uint) gasFunc {
return func(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
mSize := stack.Back(1)
func makeGasLog(n uint64) gasFunc {
return func(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
requestedSize, overflow := bigUint64(stack.Back(1))
if overflow {
return 0, errGasUintOverflow
}
gas := new(big.Int).Add(memoryGasCost(mem, memorySize), params.LogGas)
gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(n)), params.LogTopicGas))
gas.Add(gas, new(big.Int).Mul(mSize, params.LogDataGas))
return gas
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
if gas, overflow = math.SafeAdd(gas, params.LogGas); overflow {
return 0, errGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, n*params.LogTopicGas); overflow {
return 0, errGasUintOverflow
}
var memorySizeGas uint64
if memorySizeGas, overflow = math.SafeMul(requestedSize, params.LogDataGas); overflow {
return 0, errGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, memorySizeGas); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
}
func gasSha3(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
gas := memoryGasCost(mem, memorySize)
gas.Add(gas, params.Sha3Gas)
words := toWordSize(stack.Back(1))
return gas.Add(gas, words.Mul(words, params.Sha3WordGas))
func gasSha3(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
var overflow bool
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
if gas, overflow = math.SafeAdd(gas, params.Sha3Gas); overflow {
return 0, errGasUintOverflow
}
wordGas, overflow := bigUint64(stack.Back(1))
if overflow {
return 0, errGasUintOverflow
}
if wordGas, overflow = math.SafeMul(toWordSize(wordGas), params.Sha3WordGas); overflow {
return 0, errGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, wordGas); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasCodeCopy(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
gas := memoryGasCost(mem, memorySize)
gas.Add(gas, GasFastestStep)
words := toWordSize(stack.Back(2))
func gasCodeCopy(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
return gas.Add(gas, words.Mul(words, params.CopyGas))
var overflow bool
if gas, overflow = math.SafeAdd(gas, GasFastestStep); overflow {
return 0, errGasUintOverflow
}
wordGas, overflow := bigUint64(stack.Back(2))
if overflow {
return 0, errGasUintOverflow
}
if wordGas, overflow = math.SafeMul(toWordSize(wordGas), params.CopyGas); overflow {
return 0, errGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, wordGas); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasExtCodeCopy(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
gas := memoryGasCost(mem, memorySize)
gas.Add(gas, gt.ExtcodeCopy)
words := toWordSize(stack.Back(3))
func gasExtCodeCopy(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
return gas.Add(gas, words.Mul(words, params.CopyGas))
var overflow bool
if gas, overflow = math.SafeAdd(gas, gt.ExtcodeCopy); overflow {
return 0, errGasUintOverflow
}
wordGas, overflow := bigUint64(stack.Back(3))
if overflow {
return 0, errGasUintOverflow
}
if wordGas, overflow = math.SafeMul(toWordSize(wordGas), params.CopyGas); overflow {
return 0, errGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, wordGas); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasMLoad(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return new(big.Int).Add(GasFastestStep, memoryGasCost(mem, memorySize))
func gasMLoad(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
var overflow bool
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, errGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, GasFastestStep); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasMStore8(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return new(big.Int).Add(GasFastestStep, memoryGasCost(mem, memorySize))
func gasMStore8(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
var overflow bool
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, errGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, GasFastestStep); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasMStore(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return new(big.Int).Add(GasFastestStep, memoryGasCost(mem, memorySize))
func gasMStore(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
var overflow bool
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, errGasUintOverflow
}
if gas, overflow = math.SafeAdd(gas, GasFastestStep); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasCreate(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return new(big.Int).Add(params.CreateGas, memoryGasCost(mem, memorySize))
func gasCreate(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
var overflow bool
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
if gas, overflow = math.SafeAdd(gas, params.CreateGas); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasBalance(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return gt.Balance
func gasBalance(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
return gt.Balance, nil
}
func gasExtCodeSize(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return gt.ExtcodeSize
func gasExtCodeSize(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
return gt.ExtcodeSize, nil
}
func gasSLoad(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return gt.SLoad
func gasSLoad(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
return gt.SLoad, nil
}
func gasExp(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
expByteLen := int64((stack.data[stack.len()-2].BitLen() + 7) / 8)
gas := big.NewInt(expByteLen)
gas.Mul(gas, gt.ExpByte)
return gas.Add(gas, GasSlowStep)
}
func gasExp(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
expByteLen := uint64((stack.data[stack.len()-2].BitLen() + 7) / 8)
func gasCall(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
gas := new(big.Int).Set(gt.Calls)
transfersValue := stack.Back(2).BitLen() > 0
var (
address = common.BigToAddress(stack.Back(1))
eip158 = env.ChainConfig().IsEIP158(env.BlockNumber)
gas = expByteLen * gt.ExpByte // no overflow check required. Max is 256 * ExpByte gas
overflow bool
)
if gas, overflow = math.SafeAdd(gas, GasSlowStep); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasCall(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
var (
gas = gt.Calls
transfersValue = stack.Back(2).BitLen() > 0
address = common.BigToAddress(stack.Back(1))
eip158 = evm.ChainConfig().IsEIP158(evm.BlockNumber)
)
if eip158 {
if env.StateDB.Empty(address) && transfersValue {
gas.Add(gas, params.CallNewAccountGas)
if evm.StateDB.Empty(address) && transfersValue {
gas += params.CallNewAccountGas
}
} else if !env.StateDB.Exist(address) {
gas.Add(gas, params.CallNewAccountGas)
} else if !evm.StateDB.Exist(address) {
gas += params.CallNewAccountGas
}
if transfersValue {
gas.Add(gas, params.CallValueTransferGas)
gas += params.CallValueTransferGas
}
memoryGas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
var overflow bool
if gas, overflow = math.SafeAdd(gas, memoryGas); overflow {
return 0, errGasUintOverflow
}
gas.Add(gas, memoryGasCost(mem, memorySize))
cg := callGas(gt, contract.Gas, gas, stack.data[stack.len()-1])
cg, err := callGas(gt, contract.Gas, gas, stack.Back(0))
if err != nil {
return 0, err
}
// Replace the stack item with the new gas calculation. This means that
// either the original item is left on the stack or the item is replaced by:
// (availableGas - gas) * 63 / 64
// We replace the stack item so that it's available when the opCall instruction is
// called. This information is otherwise lost due to the dependency on *current*
// available gas.
stack.data[stack.len()-1] = cg
stack.data[stack.len()-1] = new(big.Int).SetUint64(cg)
return gas.Add(gas, cg)
if gas, overflow = math.SafeAdd(gas, cg); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasCallCode(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
gas := new(big.Int).Set(gt.Calls)
func gasCallCode(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas := gt.Calls
if stack.Back(2).BitLen() > 0 {
gas.Add(gas, params.CallValueTransferGas)
gas += params.CallValueTransferGas
}
memoryGas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
var overflow bool
if gas, overflow = math.SafeAdd(gas, memoryGas); overflow {
return 0, errGasUintOverflow
}
gas.Add(gas, memoryGasCost(mem, memorySize))
cg := callGas(gt, contract.Gas, gas, stack.data[stack.len()-1])
cg, err := callGas(gt, contract.Gas, gas, stack.Back(0))
if err != nil {
return 0, err
}
// Replace the stack item with the new gas calculation. This means that
// either the original item is left on the stack or the item is replaced by:
// (availableGas - gas) * 63 / 64
// We replace the stack item so that it's available when the opCall instruction is
// called. This information is otherwise lost due to the dependency on *current*
// available gas.
stack.data[stack.len()-1] = cg
stack.data[stack.len()-1] = new(big.Int).SetUint64(cg)
return gas.Add(gas, cg)
if gas, overflow = math.SafeAdd(gas, cg); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasReturn(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
func gasReturn(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
return memoryGasCost(mem, memorySize)
}
func gasSuicide(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
gas := new(big.Int)
func gasSuicide(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
var gas uint64
// EIP150 homestead gas reprice fork:
if env.ChainConfig().IsEIP150(env.BlockNumber) {
gas.Set(gt.Suicide)
if evm.ChainConfig().IsEIP150(evm.BlockNumber) {
gas = gt.Suicide
var (
address = common.BigToAddress(stack.Back(0))
eip158 = env.ChainConfig().IsEIP158(env.BlockNumber)
eip158 = evm.ChainConfig().IsEIP158(evm.BlockNumber)
)
if eip158 {
// if empty and transfers value
if env.StateDB.Empty(address) && env.StateDB.GetBalance(contract.Address()).BitLen() > 0 {
gas.Add(gas, gt.CreateBySuicide)
if evm.StateDB.Empty(address) && evm.StateDB.GetBalance(contract.Address()).BitLen() > 0 {
gas += gt.CreateBySuicide
}
} else if !env.StateDB.Exist(address) {
gas.Add(gas, gt.CreateBySuicide)
} else if !evm.StateDB.Exist(address) {
gas += gt.CreateBySuicide
}
}
if !env.StateDB.HasSuicided(contract.Address()) {
env.StateDB.AddRefund(params.SuicideRefundGas)
if !evm.StateDB.HasSuicided(contract.Address()) {
evm.StateDB.AddRefund(new(big.Int).SetUint64(params.SuicideRefundGas))
}
return gas
return gas, nil
}
func gasDelegateCall(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
gas := new(big.Int).Add(gt.Calls, memoryGasCost(mem, memorySize))
func gasDelegateCall(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
gas, err := memoryGasCost(mem, memorySize)
if err != nil {
return 0, err
}
var overflow bool
if gas, overflow = math.SafeAdd(gas, gt.Calls); overflow {
return 0, errGasUintOverflow
}
cg := callGas(gt, contract.Gas, gas, stack.data[stack.len()-1])
cg, err := callGas(gt, contract.Gas, gas, stack.Back(0))
if err != nil {
return 0, err
}
// Replace the stack item with the new gas calculation. This means that
// either the original item is left on the stack or the item is replaced by:
// (availableGas - gas) * 63 / 64
// We replace the stack item so that it's available when the opCall instruction is
// called.
stack.data[stack.len()-1] = cg
stack.data[stack.len()-1] = new(big.Int).SetUint64(cg)
return gas.Add(gas, cg)
if gas, overflow = math.SafeAdd(gas, cg); overflow {
return 0, errGasUintOverflow
}
return gas, nil
}
func gasPush(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return GasFastestStep
func gasPush(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
return GasFastestStep, nil
}
func gasSwap(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return GasFastestStep
func gasSwap(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
return GasFastestStep, nil
}
func gasDup(gt params.GasTable, env *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize *big.Int) *big.Int {
return GasFastestStep
func gasDup(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
return GasFastestStep, nil
}

24
core/vm/gas_table_test.go Normal file

@ -0,0 +1,24 @@
package vm
import (
"math"
"testing"
)
func TestMemoryGasCost(t *testing.T) {
size := uint64(math.MaxUint64 - 64)
_, err := memoryGasCost(&Memory{}, size)
if err != nil {
t.Error("didn't expect error:", err)
}
_, err = memoryGasCost(&Memory{}, size+32)
if err != nil {
t.Error("didn't expect error:", err)
}
_, err = memoryGasCost(&Memory{}, size+33)
if err == nil {
t.Error("expected error")
}
}

@ -27,42 +27,56 @@ import (
"github.com/ethereum/go-ethereum/params"
)
func opAdd(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
var bigZero = new(big.Int)
func opAdd(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
stack.push(U256(x.Add(x, y)))
evm.interpreter.intPool.put(y)
return nil, nil
}
func opSub(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opSub(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
stack.push(U256(x.Sub(x, y)))
evm.interpreter.intPool.put(y)
return nil, nil
}
func opMul(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opMul(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
stack.push(U256(x.Mul(x, y)))
evm.interpreter.intPool.put(y)
return nil, nil
}
func opDiv(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opDiv(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
if y.Cmp(common.Big0) != 0 {
stack.push(U256(x.Div(x, y)))
} else {
stack.push(new(big.Int))
}
evm.interpreter.intPool.put(y)
return nil, nil
}
func opSdiv(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opSdiv(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := S256(stack.pop()), S256(stack.pop())
if y.Cmp(common.Big0) == 0 {
stack.push(new(big.Int))
return nil, nil
} else {
n := new(big.Int)
if new(big.Int).Mul(x, y).Cmp(common.Big0) < 0 {
if evm.interpreter.intPool.get().Mul(x, y).Cmp(common.Big0) < 0 {
n.SetInt64(-1)
} else {
n.SetInt64(1)
@ -73,20 +87,22 @@ func opSdiv(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Sta
stack.push(U256(res))
}
evm.interpreter.intPool.put(y)
return nil, nil
}
func opMod(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opMod(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
if y.Cmp(common.Big0) == 0 {
stack.push(new(big.Int))
} else {
stack.push(U256(x.Mod(x, y)))
}
evm.interpreter.intPool.put(y)
return nil, nil
}
func opSmod(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opSmod(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := S256(stack.pop()), S256(stack.pop())
if y.Cmp(common.Big0) == 0 {
@ -104,16 +120,20 @@ func opSmod(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Sta
stack.push(U256(res))
}
evm.interpreter.intPool.put(y)
return nil, nil
}
func opExp(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opExp(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
base, exponent := stack.pop(), stack.pop()
stack.push(math.Exp(base, exponent))
evm.interpreter.intPool.put(base, exponent)
return nil, nil
}
func opSignExtend(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opSignExtend(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
back := stack.pop()
if back.Cmp(big.NewInt(31)) < 0 {
bit := uint(back.Uint64()*8 + 7)
@ -128,198 +148,231 @@ func opSignExtend(pc *uint64, env *EVM, contract *Contract, memory *Memory, stac
stack.push(U256(num))
}
evm.interpreter.intPool.put(back)
return nil, nil
}
func opNot(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opNot(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x := stack.pop()
stack.push(U256(x.Not(x)))
return nil, nil
}
func opLt(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opLt(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
if x.Cmp(y) < 0 {
stack.push(big.NewInt(1))
stack.push(evm.interpreter.intPool.get().SetUint64(1))
} else {
stack.push(new(big.Int))
}
evm.interpreter.intPool.put(x, y)
return nil, nil
}
func opGt(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opGt(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
if x.Cmp(y) > 0 {
stack.push(big.NewInt(1))
stack.push(evm.interpreter.intPool.get().SetUint64(1))
} else {
stack.push(new(big.Int))
}
evm.interpreter.intPool.put(x, y)
return nil, nil
}
func opSlt(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opSlt(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := S256(stack.pop()), S256(stack.pop())
if x.Cmp(S256(y)) < 0 {
stack.push(big.NewInt(1))
stack.push(evm.interpreter.intPool.get().SetUint64(1))
} else {
stack.push(new(big.Int))
}
evm.interpreter.intPool.put(x, y)
return nil, nil
}
func opSgt(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opSgt(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := S256(stack.pop()), S256(stack.pop())
if x.Cmp(y) > 0 {
stack.push(big.NewInt(1))
stack.push(evm.interpreter.intPool.get().SetUint64(1))
} else {
stack.push(new(big.Int))
}
evm.interpreter.intPool.put(x, y)
return nil, nil
}
func opEq(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opEq(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
if x.Cmp(y) == 0 {
stack.push(big.NewInt(1))
stack.push(evm.interpreter.intPool.get().SetUint64(1))
} else {
stack.push(new(big.Int))
}
evm.interpreter.intPool.put(x, y)
return nil, nil
}
func opIszero(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opIszero(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x := stack.pop()
if x.Cmp(common.Big0) > 0 {
stack.push(new(big.Int))
} else {
stack.push(big.NewInt(1))
stack.push(evm.interpreter.intPool.get().SetUint64(1))
}
evm.interpreter.intPool.put(x)
return nil, nil
}
func opAnd(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opAnd(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
stack.push(x.And(x, y))
evm.interpreter.intPool.put(y)
return nil, nil
}
func opOr(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opOr(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
stack.push(x.Or(x, y))
evm.interpreter.intPool.put(y)
return nil, nil
}
func opXor(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opXor(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y := stack.pop(), stack.pop()
stack.push(x.Xor(x, y))
evm.interpreter.intPool.put(y)
return nil, nil
}
func opByte(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opByte(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
th, val := stack.pop(), stack.pop()
if th.Cmp(big.NewInt(32)) < 0 {
byte := big.NewInt(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()]))
byte := evm.interpreter.intPool.get().SetInt64(int64(common.LeftPadBytes(val.Bytes(), 32)[th.Int64()]))
stack.push(byte)
} else {
stack.push(new(big.Int))
}
evm.interpreter.intPool.put(th, val)
return nil, nil
}
func opAddmod(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opAddmod(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y, z := stack.pop(), stack.pop(), stack.pop()
if z.Cmp(Zero) > 0 {
if z.Cmp(bigZero) > 0 {
add := x.Add(x, y)
add.Mod(add, z)
stack.push(U256(add))
} else {
stack.push(new(big.Int))
}
evm.interpreter.intPool.put(y, z)
return nil, nil
}
func opMulmod(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opMulmod(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
x, y, z := stack.pop(), stack.pop(), stack.pop()
if z.Cmp(Zero) > 0 {
if z.Cmp(bigZero) > 0 {
mul := x.Mul(x, y)
mul.Mod(mul, z)
stack.push(U256(mul))
} else {
stack.push(new(big.Int))
}
evm.interpreter.intPool.put(y, z)
return nil, nil
}
func opSha3(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opSha3(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
offset, size := stack.pop(), stack.pop()
data := memory.Get(offset.Int64(), size.Int64())
hash := crypto.Keccak256(data)
if env.vmConfig.EnablePreimageRecording {
env.StateDB.AddPreimage(common.BytesToHash(hash), data)
if evm.vmConfig.EnablePreimageRecording {
evm.StateDB.AddPreimage(common.BytesToHash(hash), data)
}
stack.push(common.BytesToBig(hash))
evm.interpreter.intPool.put(offset, size)
return nil, nil
}
func opAddress(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opAddress(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(common.Bytes2Big(contract.Address().Bytes()))
return nil, nil
}
func opBalance(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opBalance(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
addr := common.BigToAddress(stack.pop())
balance := env.StateDB.GetBalance(addr)
balance := evm.StateDB.GetBalance(addr)
stack.push(new(big.Int).Set(balance))
return nil, nil
}
func opOrigin(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(env.Origin.Big())
func opOrigin(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(evm.Origin.Big())
return nil, nil
}
func opCaller(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opCaller(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(contract.Caller().Big())
return nil, nil
}
func opCallValue(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(new(big.Int).Set(contract.value))
func opCallValue(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(evm.interpreter.intPool.get().Set(contract.value))
return nil, nil
}
func opCalldataLoad(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opCalldataLoad(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(common.Bytes2Big(getData(contract.Input, stack.pop(), common.Big32)))
return nil, nil
}
func opCalldataSize(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(big.NewInt(int64(len(contract.Input))))
func opCalldataSize(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(evm.interpreter.intPool.get().SetInt64(int64(len(contract.Input))))
return nil, nil
}
func opCalldataCopy(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opCalldataCopy(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
var (
mOff = stack.pop()
cOff = stack.pop()
l = stack.pop()
)
memory.Set(mOff.Uint64(), l.Uint64(), getData(contract.Input, cOff, l))
evm.interpreter.intPool.put(mOff, cOff, l)
return nil, nil
}
func opExtCodeSize(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
addr := common.BigToAddress(stack.pop())
l := big.NewInt(int64(env.StateDB.GetCodeSize(addr)))
func opExtCodeSize(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
a := stack.pop()
addr := common.BigToAddress(a)
a.SetInt64(int64(evm.StateDB.GetCodeSize(addr)))
stack.push(a)
return nil, nil
}
func opCodeSize(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
l := evm.interpreter.intPool.get().SetInt64(int64(len(contract.Code)))
stack.push(l)
return nil, nil
}
func opCodeSize(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
l := big.NewInt(int64(len(contract.Code)))
stack.push(l)
return nil, nil
}
func opCodeCopy(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opCodeCopy(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
var (
mOff = stack.pop()
cOff = stack.pop()
@ -328,113 +381,129 @@ func opCodeCopy(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack
codeCopy := getData(contract.Code, cOff, l)
memory.Set(mOff.Uint64(), l.Uint64(), codeCopy)
evm.interpreter.intPool.put(mOff, cOff, l)
return nil, nil
}
func opExtCodeCopy(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opExtCodeCopy(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
var (
addr = common.BigToAddress(stack.pop())
mOff = stack.pop()
cOff = stack.pop()
l = stack.pop()
)
codeCopy := getData(env.StateDB.GetCode(addr), cOff, l)
codeCopy := getData(evm.StateDB.GetCode(addr), cOff, l)
memory.Set(mOff.Uint64(), l.Uint64(), codeCopy)
evm.interpreter.intPool.put(mOff, cOff, l)
return nil, nil
}
func opGasprice(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(new(big.Int).Set(env.GasPrice))
func opGasprice(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(evm.interpreter.intPool.get().Set(evm.GasPrice))
return nil, nil
}
func opBlockhash(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opBlockhash(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
num := stack.pop()
n := new(big.Int).Sub(env.BlockNumber, common.Big257)
if num.Cmp(n) > 0 && num.Cmp(env.BlockNumber) < 0 {
stack.push(env.GetHash(num.Uint64()).Big())
n := evm.interpreter.intPool.get().Sub(evm.BlockNumber, common.Big257)
if num.Cmp(n) > 0 && num.Cmp(evm.BlockNumber) < 0 {
stack.push(evm.GetHash(num.Uint64()).Big())
} else {
stack.push(new(big.Int))
}
evm.interpreter.intPool.put(num, n)
return nil, nil
}
func opCoinbase(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(env.Coinbase.Big())
func opCoinbase(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(evm.Coinbase.Big())
return nil, nil
}
func opTimestamp(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(U256(new(big.Int).Set(env.Time)))
func opTimestamp(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(U256(new(big.Int).Set(evm.Time)))
return nil, nil
}
func opNumber(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(U256(new(big.Int).Set(env.BlockNumber)))
func opNumber(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(U256(new(big.Int).Set(evm.BlockNumber)))
return nil, nil
}
func opDifficulty(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(U256(new(big.Int).Set(env.Difficulty)))
func opDifficulty(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(U256(new(big.Int).Set(evm.Difficulty)))
return nil, nil
}
func opGasLimit(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(U256(new(big.Int).Set(env.GasLimit)))
func opGasLimit(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(U256(new(big.Int).Set(evm.GasLimit)))
return nil, nil
}
func opPop(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.pop()
func opPop(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
evm.interpreter.intPool.put(stack.pop())
return nil, nil
}
func opMload(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opMload(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
offset := stack.pop()
val := common.BigD(memory.Get(offset.Int64(), 32))
stack.push(val)
evm.interpreter.intPool.put(offset)
return nil, nil
}
func opMstore(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opMstore(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
// pop value of the stack
mStart, val := stack.pop(), stack.pop()
memory.Set(mStart.Uint64(), 32, common.BigToBytes(val, 256))
evm.interpreter.intPool.put(mStart, val)
return nil, nil
}
func opMstore8(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opMstore8(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
off, val := stack.pop().Int64(), stack.pop().Int64()
memory.store[off] = byte(val & 0xff)
return nil, nil
}
func opSload(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opSload(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
loc := common.BigToHash(stack.pop())
val := env.StateDB.GetState(contract.Address(), loc).Big()
val := evm.StateDB.GetState(contract.Address(), loc).Big()
stack.push(val)
return nil, nil
}
func opSstore(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opSstore(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
loc := common.BigToHash(stack.pop())
val := stack.pop()
env.StateDB.SetState(contract.Address(), loc, common.BigToHash(val))
evm.StateDB.SetState(contract.Address(), loc, common.BigToHash(val))
evm.interpreter.intPool.put(val)
return nil, nil
}
func opJump(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opJump(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
pos := stack.pop()
if !contract.jumpdests.has(contract.CodeHash, contract.Code, pos) {
nop := contract.GetOp(pos.Uint64())
return nil, fmt.Errorf("invalid jump destination (%v) %v", nop, pos)
}
*pc = pos.Uint64()
evm.interpreter.intPool.put(pos)
return nil, nil
}
func opJumpi(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opJumpi(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
pos, cond := stack.pop(), stack.pop()
if cond.Cmp(common.BigTrue) >= 0 {
if !contract.jumpdests.has(contract.CodeHash, contract.Code, pos) {
@ -445,57 +514,62 @@ func opJumpi(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *St
} else {
*pc++
}
evm.interpreter.intPool.put(pos, cond)
return nil, nil
}
func opJumpdest(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opJumpdest(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
return nil, nil
}
func opPc(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(new(big.Int).SetUint64(*pc))
func opPc(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(evm.interpreter.intPool.get().SetUint64(*pc))
return nil, nil
}
func opMsize(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(big.NewInt(int64(memory.Len())))
func opMsize(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(evm.interpreter.intPool.get().SetInt64(int64(memory.Len())))
return nil, nil
}
func opGas(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(new(big.Int).Set(contract.Gas))
func opGas(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.push(evm.interpreter.intPool.get().SetUint64(contract.Gas))
return nil, nil
}
func opCreate(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opCreate(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
var (
value = stack.pop()
offset, size = stack.pop(), stack.pop()
input = memory.Get(offset.Int64(), size.Int64())
gas = new(big.Int).Set(contract.Gas)
gas = contract.Gas
)
if env.ChainConfig().IsEIP150(env.BlockNumber) {
gas.Div(gas, n64)
gas = gas.Sub(contract.Gas, gas)
if evm.ChainConfig().IsEIP150(evm.BlockNumber) {
gas -= gas / 64
}
contract.UseGas(gas)
_, addr, suberr := env.Create(contract, input, gas, value)
_, addr, returnGas, suberr := evm.Create(contract, input, gas, value)
// Push item on the stack based on the returned error. If the ruleset is
// homestead we must check for CodeStoreOutOfGasError (homestead only
// rule) and treat as an error, if the ruleset is frontier we must
// ignore this error and pretend the operation was successful.
if env.ChainConfig().IsHomestead(env.BlockNumber) && suberr == ErrCodeStoreOutOfGas {
if evm.ChainConfig().IsHomestead(evm.BlockNumber) && suberr == ErrCodeStoreOutOfGas {
stack.push(new(big.Int))
} else if suberr != nil && suberr != ErrCodeStoreOutOfGas {
stack.push(new(big.Int))
} else {
stack.push(addr.Big())
}
contract.Gas += returnGas
evm.interpreter.intPool.put(value, offset, size)
return nil, nil
}
func opCall(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
gas := stack.pop()
func opCall(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
gas := stack.pop().Uint64()
// pop gas and value of the stack.
addr, value := stack.pop(), stack.pop()
value = U256(value)
@ -509,25 +583,26 @@ func opCall(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Sta
// Get the arguments from the memory
args := memory.Get(inOffset.Int64(), inSize.Int64())
if len(value.Bytes()) > 0 {
gas.Add(gas, params.CallStipend)
if value.BitLen() > 0 {
gas += params.CallStipend
}
ret, err := env.Call(contract, address, args, gas, value)
ret, returnGas, err := evm.Call(contract, address, args, gas, value)
if err != nil {
stack.push(new(big.Int))
} else {
stack.push(big.NewInt(1))
memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
contract.Gas += returnGas
evm.interpreter.intPool.put(addr, value, inOffset, inSize, retOffset, retSize)
return nil, nil
}
func opCallCode(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
gas := stack.pop()
func opCallCode(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
gas := stack.pop().Uint64()
// pop gas and value of the stack.
addr, value := stack.pop(), stack.pop()
value = U256(value)
@ -541,12 +616,11 @@ func opCallCode(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack
// Get the arguments from the memory
args := memory.Get(inOffset.Int64(), inSize.Int64())
if len(value.Bytes()) > 0 {
gas.Add(gas, params.CallStipend)
if value.BitLen() > 0 {
gas += params.CallStipend
}
ret, err := env.CallCode(contract, address, args, gas, value)
ret, returnGas, err := evm.CallCode(contract, address, args, gas, value)
if err != nil {
stack.push(new(big.Int))
@ -555,46 +629,54 @@ func opCallCode(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack
memory.Set(retOffset.Uint64(), retSize.Uint64(), ret)
}
contract.Gas += returnGas
evm.interpreter.intPool.put(addr, value, inOffset, inSize, retOffset, retSize)
return nil, nil
}
func opDelegateCall(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opDelegateCall(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
// if not homestead return an error. DELEGATECALL is not supported
// during pre-homestead.
if !env.ChainConfig().IsHomestead(env.BlockNumber) {
if !evm.ChainConfig().IsHomestead(evm.BlockNumber) {
return nil, fmt.Errorf("invalid opcode %x", DELEGATECALL)
}
gas, to, inOffset, inSize, outOffset, outSize := stack.pop(), stack.pop(), stack.pop(), stack.pop(), stack.pop(), stack.pop()
gas, to, inOffset, inSize, outOffset, outSize := stack.pop().Uint64(), stack.pop(), stack.pop(), stack.pop(), stack.pop(), stack.pop()
toAddr := common.BigToAddress(to)
args := memory.Get(inOffset.Int64(), inSize.Int64())
ret, err := env.DelegateCall(contract, toAddr, args, gas)
ret, returnGas, err := evm.DelegateCall(contract, toAddr, args, gas)
if err != nil {
stack.push(new(big.Int))
} else {
stack.push(big.NewInt(1))
memory.Set(outOffset.Uint64(), outSize.Uint64(), ret)
}
contract.Gas += returnGas
evm.interpreter.intPool.put(to, inOffset, inSize, outOffset, outSize)
return nil, nil
}
func opReturn(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opReturn(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
offset, size := stack.pop(), stack.pop()
ret := memory.GetPtr(offset.Int64(), size.Int64())
evm.interpreter.intPool.put(offset, size)
return ret, nil
}
func opStop(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
func opStop(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
return nil, nil
}
func opSuicide(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
balance := env.StateDB.GetBalance(contract.Address())
env.StateDB.AddBalance(common.BigToAddress(stack.pop()), balance)
func opSuicide(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
balance := evm.StateDB.GetBalance(contract.Address())
evm.StateDB.AddBalance(common.BigToAddress(stack.pop()), balance)
env.StateDB.Suicide(contract.Address())
evm.StateDB.Suicide(contract.Address())
return nil, nil
}
@ -603,7 +685,7 @@ func opSuicide(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *
// make log instruction function
func makeLog(size int) executionFunc {
return func(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
return func(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
topics := make([]common.Hash, size)
mStart, mSize := stack.pop(), stack.pop()
for i := 0; i < size; i++ {
@ -611,22 +693,24 @@ func makeLog(size int) executionFunc {
}
d := memory.Get(mStart.Int64(), mSize.Int64())
env.StateDB.AddLog(&types.Log{
evm.StateDB.AddLog(&types.Log{
Address: contract.Address(),
Topics: topics,
Data: d,
// This is a non-consensus field, but assigned here because
// core/state doesn't know the current block number.
BlockNumber: env.BlockNumber.Uint64(),
BlockNumber: evm.BlockNumber.Uint64(),
})
evm.interpreter.intPool.put(mStart, mSize)
return nil, nil
}
}
// make push instruction function
func makePush(size uint64, bsize *big.Int) executionFunc {
return func(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
byts := getData(contract.Code, new(big.Int).SetUint64(*pc+1), bsize)
return func(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
byts := getData(contract.Code, evm.interpreter.intPool.get().SetUint64(*pc+1), bsize)
stack.push(common.Bytes2Big(byts))
*pc += size
return nil, nil
@ -635,7 +719,7 @@ func makePush(size uint64, bsize *big.Int) executionFunc {
// make push instruction function
func makeDup(size int64) executionFunc {
return func(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
return func(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.dup(int(size))
return nil, nil
}
@ -645,7 +729,7 @@ func makeDup(size int64) executionFunc {
func makeSwap(size int64) executionFunc {
// switch n + 1 otherwise n would be swapped with n
size += 1
return func(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
return func(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
stack.swap(int(size))
return nil, nil
}

@ -0,0 +1,15 @@
// +build VERIFY_EVM_INTEGER_POOL
package vm
import "fmt"
const verifyPool = true
func verifyIntegerPool(ip *intPool) {
for i, item := range ip.pool.data {
if item.Cmp(checkVal) != 0 {
panic(fmt.Sprintf("%d'th item failed aggressive pool check. Value was modified", i))
}
}
}

@ -0,0 +1,7 @@
// +build !VERIFY_EVM_INTEGER_POOL
package vm
const verifyPool = false
func verifyIntegerPool(ip *intPool) {}

@ -23,6 +23,7 @@ import (
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/math"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/logger"
"github.com/ethereum/go-ethereum/logger/glog"
@ -60,6 +61,7 @@ type Interpreter struct {
env *EVM
cfg Config
gasTable params.GasTable
intPool *intPool
}
// NewInterpreter returns a new instance of the Interpreter.
@ -75,6 +77,7 @@ func NewInterpreter(env *EVM, cfg Config) *Interpreter {
env: env,
cfg: cfg,
gasTable: env.ChainConfig().GasTable(env.BlockNumber),
intPool: newIntPool(),
}
}
@ -106,14 +109,18 @@ func (evm *Interpreter) Run(contract *Contract, input []byte) (ret []byte, err e
// For optimisation reason we're using uint64 as the program counter.
// It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Practically much less so feasible.
pc = uint64(0) // program counter
cost *big.Int
cost uint64
)
contract.Input = input
// User defer pattern to check for an error and, based on the error being nil or not, use all gas and return.
defer func() {
if err != nil && evm.cfg.Debug {
evm.cfg.Tracer.CaptureState(evm.env, pc, op, contract.Gas, cost, mem, stack, contract, evm.env.depth, err)
// XXX For debugging
//fmt.Printf("%04d: %8v cost = %-8d stack = %-8d ERR = %v\n", pc, op, cost, stack.len(), err)
// TODO update the tracer
g, c := new(big.Int).SetUint64(contract.Gas), new(big.Int).SetUint64(cost)
evm.cfg.Tracer.CaptureState(evm.env, pc, op, g, c, mem, stack, contract, evm.env.depth, err)
}
}()
@ -147,34 +154,47 @@ func (evm *Interpreter) Run(contract *Contract, input []byte) (ret []byte, err e
return nil, err
}
var memorySize *big.Int
var memorySize uint64
// calculate the new memory size and expand the memory to fit
// the operation
if operation.memorySize != nil {
memorySize = operation.memorySize(stack)
memSize, overflow := bigUint64(operation.memorySize(stack))
if overflow {
return nil, errGasUintOverflow
}
// memory is expanded in words of 32 bytes. Gas
// is also calculated in words.
memorySize.Mul(toWordSize(memorySize), big.NewInt(32))
if memorySize, overflow = math.SafeMul(toWordSize(memSize), 32); overflow {
return nil, errGasUintOverflow
}
}
if !evm.cfg.DisableGasMetering {
// consume the gas and return an error if not enough gas is available.
// cost is explicitly set so that the capture state defer method cas get the proper cost
cost = operation.gasCost(evm.gasTable, evm.env, contract, stack, mem, memorySize)
if !contract.UseGas(cost) {
cost, err = operation.gasCost(evm.gasTable, evm.env, contract, stack, mem, memorySize)
if err != nil || !contract.UseGas(cost) {
return nil, ErrOutOfGas
}
}
if memorySize != nil {
mem.Resize(memorySize.Uint64())
if memorySize > 0 {
mem.Resize(memorySize)
}
if evm.cfg.Debug {
evm.cfg.Tracer.CaptureState(evm.env, pc, op, contract.Gas, cost, mem, stack, contract, evm.env.depth, err)
g, c := new(big.Int).SetUint64(contract.Gas), new(big.Int).SetUint64(cost)
evm.cfg.Tracer.CaptureState(evm.env, pc, op, g, c, mem, stack, contract, evm.env.depth, err)
}
// XXX For debugging
//fmt.Printf("%04d: %8v cost = %-8d stack = %-8d\n", pc, op, cost, stack.len())
// execute the operation
res, err := operation.execute(&pc, evm.env, contract, mem, stack)
// verifyPool is a build flag. Pool verification makes sure the integrity
// of the integer pool by comparing values to a default value.
if verifyPool {
verifyIntegerPool(evm.intPool)
}
switch {
case err != nil:
return nil, err

@ -1,4 +1,4 @@
// Copyright 2014 The go-ethereum Authors
// Copyright 2017 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
@ -16,7 +16,34 @@
package vm
// VirtualMachine is an EVM interface
type VirtualMachine interface {
Run(*Contract, []byte) ([]byte, error)
import "math/big"
var checkVal = big.NewInt(-42)
// intPool is a pool of big integers that
// can be reused for all big.Int operations.
type intPool struct {
pool *Stack
}
func newIntPool() *intPool {
return &intPool{pool: newstack()}
}
func (p *intPool) get() *big.Int {
if p.pool.len() > 0 {
return p.pool.pop()
}
return new(big.Int)
}
func (p *intPool) put(is ...*big.Int) {
for _, i := range is {
// verifyPool is a build flag. Pool verification makes sure the integrity
// of the integer pool by comparing values to a default value.
if verifyPool {
i.Set(checkVal)
}
p.pool.push(i)
}
}

@ -17,6 +17,7 @@
package vm
import (
"errors"
"math/big"
"github.com/ethereum/go-ethereum/params"
@ -24,11 +25,13 @@ import (
type (
executionFunc func(pc *uint64, env *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error)
gasFunc func(params.GasTable, *EVM, *Contract, *Stack, *Memory, *big.Int) *big.Int
gasFunc func(params.GasTable, *EVM, *Contract, *Stack, *Memory, uint64) (uint64, error) // last parameter is the requested memory size as a uint64
stackValidationFunc func(*Stack) error
memorySizeFunc func(*Stack) *big.Int
)
var errGasUintOverflow = errors.New("gas uint64 overflow")
type operation struct {
// op is the operation function
execute executionFunc
@ -54,7 +57,7 @@ func NewJumpTable() [256]operation {
return [256]operation{
STOP: {
execute: opStop,
gasCost: constGasFunc(new(big.Int)),
gasCost: constGasFunc(0),
validateStack: makeStackFunc(0, 0),
halts: true,
valid: true,
@ -62,139 +65,139 @@ func NewJumpTable() [256]operation {
ADD: {
execute: opAdd,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
MUL: {
execute: opMul,
gasCost: constGasFunc(GasFastStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
SUB: {
execute: opSub,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
DIV: {
execute: opDiv,
gasCost: constGasFunc(GasFastStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
SDIV: {
execute: opSdiv,
gasCost: constGasFunc(GasFastStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
MOD: {
execute: opMod,
gasCost: constGasFunc(GasFastStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
SMOD: {
execute: opSmod,
gasCost: constGasFunc(GasFastStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
ADDMOD: {
execute: opAddmod,
gasCost: constGasFunc(GasMidStep),
validateStack: makeStackFunc(3, -2),
validateStack: makeStackFunc(3, 1),
valid: true,
},
MULMOD: {
execute: opMulmod,
gasCost: constGasFunc(GasMidStep),
validateStack: makeStackFunc(3, -2),
validateStack: makeStackFunc(3, 1),
valid: true,
},
EXP: {
execute: opExp,
gasCost: gasExp,
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
SIGNEXTEND: {
execute: opSignExtend,
gasCost: constGasFunc(GasFastStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
LT: {
execute: opLt,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
GT: {
execute: opGt,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
SLT: {
execute: opSlt,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
SGT: {
execute: opSgt,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
EQ: {
execute: opEq,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
ISZERO: {
execute: opIszero,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(1, 0),
validateStack: makeStackFunc(1, 1),
valid: true,
},
AND: {
execute: opAnd,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
XOR: {
execute: opXor,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
OR: {
execute: opOr,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
NOT: {
execute: opNot,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(1, 0),
validateStack: makeStackFunc(1, 1),
valid: true,
},
BYTE: {
execute: opByte,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
valid: true,
},
SHA3: {
execute: opSha3,
gasCost: gasSha3,
validateStack: makeStackFunc(2, -1),
validateStack: makeStackFunc(2, 1),
memorySize: memorySha3,
valid: true,
},
@ -207,7 +210,7 @@ func NewJumpTable() [256]operation {
BALANCE: {
execute: opBalance,
gasCost: gasBalance,
validateStack: makeStackFunc(1, 0),
validateStack: makeStackFunc(1, 1),
valid: true,
},
ORIGIN: {
@ -231,7 +234,7 @@ func NewJumpTable() [256]operation {
CALLDATALOAD: {
execute: opCalldataLoad,
gasCost: constGasFunc(GasFastestStep),
validateStack: makeStackFunc(1, 0),
validateStack: makeStackFunc(1, 1),
valid: true,
},
CALLDATASIZE: {
@ -243,7 +246,7 @@ func NewJumpTable() [256]operation {
CALLDATACOPY: {
execute: opCalldataCopy,
gasCost: gasCalldataCopy,
validateStack: makeStackFunc(3, -3),
validateStack: makeStackFunc(3, 0),
memorySize: memoryCalldataCopy,
valid: true,
},
@ -256,7 +259,7 @@ func NewJumpTable() [256]operation {
CODECOPY: {
execute: opCodeCopy,
gasCost: gasCodeCopy,
validateStack: makeStackFunc(3, -3),
validateStack: makeStackFunc(3, 0),
memorySize: memoryCodeCopy,
valid: true,
},
@ -269,20 +272,20 @@ func NewJumpTable() [256]operation {
EXTCODESIZE: {
execute: opExtCodeSize,
gasCost: gasExtCodeSize,
validateStack: makeStackFunc(1, 0),
validateStack: makeStackFunc(1, 1),
valid: true,
},
EXTCODECOPY: {
execute: opExtCodeCopy,
gasCost: gasExtCodeCopy,
validateStack: makeStackFunc(4, -4),
validateStack: makeStackFunc(4, 0),
memorySize: memoryExtCodeCopy,
valid: true,
},
BLOCKHASH: {
execute: opBlockhash,
gasCost: constGasFunc(GasExtStep),
validateStack: makeStackFunc(1, 0),
validateStack: makeStackFunc(1, 1),
valid: true,
},
COINBASE: {
@ -318,20 +321,20 @@ func NewJumpTable() [256]operation {
POP: {
execute: opPop,
gasCost: constGasFunc(GasQuickStep),
validateStack: makeStackFunc(1, -1),
validateStack: makeStackFunc(1, 0),
valid: true,
},
MLOAD: {
execute: opMload,
gasCost: gasMLoad,
validateStack: makeStackFunc(1, 0),
validateStack: makeStackFunc(1, 1),
memorySize: memoryMLoad,
valid: true,
},
MSTORE: {
execute: opMstore,
gasCost: gasMStore,
validateStack: makeStackFunc(2, -2),
validateStack: makeStackFunc(2, 0),
memorySize: memoryMStore,
valid: true,
},
@ -339,33 +342,33 @@ func NewJumpTable() [256]operation {
execute: opMstore8,
gasCost: gasMStore8,
memorySize: memoryMStore8,
validateStack: makeStackFunc(2, -2),
validateStack: makeStackFunc(2, 0),
valid: true,
},
SLOAD: {
execute: opSload,
gasCost: gasSLoad,
validateStack: makeStackFunc(1, 0),
validateStack: makeStackFunc(1, 1),
valid: true,
},
SSTORE: {
execute: opSstore,
gasCost: gasSStore,
validateStack: makeStackFunc(2, -2),
validateStack: makeStackFunc(2, 0),
valid: true,
},
JUMP: {
execute: opJump,
gasCost: constGasFunc(GasMidStep),
validateStack: makeStackFunc(1, -1),
validateStack: makeStackFunc(1, 0),
jumps: true,
valid: true,
},
JUMPI: {
execute: opJumpi,
gasCost: constGasFunc(GasSlowStep),
validateStack: makeStackFunc(2, -2),
validateStack: makeStackFunc(2, 0),
jumps: true,
valid: true,
},
@ -780,63 +783,63 @@ func NewJumpTable() [256]operation {
LOG0: {
execute: makeLog(0),
gasCost: makeGasLog(0),
validateStack: makeStackFunc(2, -2),
validateStack: makeStackFunc(2, 0),
memorySize: memoryLog,
valid: true,
},
LOG1: {
execute: makeLog(1),
gasCost: makeGasLog(1),
validateStack: makeStackFunc(3, -3),
validateStack: makeStackFunc(3, 0),
memorySize: memoryLog,
valid: true,
},
LOG2: {
execute: makeLog(2),
gasCost: makeGasLog(2),
validateStack: makeStackFunc(4, -4),
validateStack: makeStackFunc(4, 0),
memorySize: memoryLog,
valid: true,
},
LOG3: {
execute: makeLog(3),
gasCost: makeGasLog(3),
validateStack: makeStackFunc(5, -5),
validateStack: makeStackFunc(5, 0),
memorySize: memoryLog,
valid: true,
},
LOG4: {
execute: makeLog(4),
gasCost: makeGasLog(4),
validateStack: makeStackFunc(6, -6),
validateStack: makeStackFunc(6, 0),
memorySize: memoryLog,
valid: true,
},
CREATE: {
execute: opCreate,
gasCost: gasCreate,
validateStack: makeStackFunc(3, -2),
validateStack: makeStackFunc(3, 1),
memorySize: memoryCreate,
valid: true,
},
CALL: {
execute: opCall,
gasCost: gasCall,
validateStack: makeStackFunc(7, -6),
validateStack: makeStackFunc(7, 1),
memorySize: memoryCall,
valid: true,
},
CALLCODE: {
execute: opCallCode,
gasCost: gasCallCode,
validateStack: makeStackFunc(7, -6),
validateStack: makeStackFunc(7, 1),
memorySize: memoryCall,
valid: true,
},
RETURN: {
execute: opReturn,
gasCost: gasReturn,
validateStack: makeStackFunc(2, -2),
validateStack: makeStackFunc(2, 0),
memorySize: memoryReturn,
halts: true,
valid: true,
@ -844,14 +847,14 @@ func NewJumpTable() [256]operation {
DELEGATECALL: {
execute: opDelegateCall,
gasCost: gasDelegateCall,
validateStack: makeStackFunc(6, -5),
validateStack: makeStackFunc(6, 1),
memorySize: memoryDelegateCall,
valid: true,
},
SELFDESTRUCT: {
execute: opSuicide,
gasCost: gasSuicide,
validateStack: makeStackFunc(1, -1),
validateStack: makeStackFunc(1, 0),
halts: true,
valid: true,
},

@ -56,7 +56,7 @@ func TestStoreCapture(t *testing.T) {
logger = NewStructLogger(nil)
mem = NewMemory()
stack = newstack()
contract = NewContract(&dummyContractRef{}, &dummyContractRef{}, new(big.Int), new(big.Int))
contract = NewContract(&dummyContractRef{}, &dummyContractRef{}, new(big.Int), 0)
)
stack.push(big.NewInt(1))
stack.push(big.NewInt(0))
@ -78,7 +78,7 @@ func TestStorageCapture(t *testing.T) {
t.Skip("implementing this function is difficult. it requires all sort of interfaces to be implemented which isn't trivial. The value (the actual test) isn't worth it")
var (
ref = &dummyContractRef{}
contract = NewContract(ref, ref, new(big.Int), new(big.Int))
contract = NewContract(ref, ref, new(big.Int), 0)
env = NewEVM(Context{}, dummyStateDB{ref: ref}, params.TestChainConfig, Config{EnableJit: false, ForceJit: false})
logger = NewStructLogger(nil)
mem = NewMemory()

@ -20,11 +20,12 @@ import "fmt"
// Memory implements a simple memory model for the ethereum virtual machine.
type Memory struct {
store []byte
store []byte
lastGasCost uint64
}
func NewMemory() *Memory {
return &Memory{nil}
return &Memory{}
}
// Set sets offset + size to value

@ -36,7 +36,7 @@ func NewEnv(cfg *Config, state *state.StateDB) *vm.EVM {
BlockNumber: cfg.BlockNumber,
Time: cfg.Time,
Difficulty: cfg.Difficulty,
GasLimit: cfg.GasLimit,
GasLimit: new(big.Int).SetUint64(cfg.GasLimit),
GasPrice: new(big.Int),
}

@ -17,6 +17,7 @@
package runtime
import (
"math"
"math/big"
"time"
@ -37,7 +38,7 @@ type Config struct {
Coinbase common.Address
BlockNumber *big.Int
Time *big.Int
GasLimit *big.Int
GasLimit uint64
GasPrice *big.Int
Value *big.Int
DisableJit bool // "disable" so it's enabled by default
@ -68,8 +69,8 @@ func setDefaults(cfg *Config) {
if cfg.Time == nil {
cfg.Time = big.NewInt(time.Now().Unix())
}
if cfg.GasLimit == nil {
cfg.GasLimit = new(big.Int).Set(common.MaxBig)
if cfg.GasLimit == 0 {
cfg.GasLimit = math.MaxUint64
}
if cfg.GasPrice == nil {
cfg.GasPrice = new(big.Int)
@ -112,7 +113,7 @@ func Execute(code, input []byte, cfg *Config) ([]byte, *state.StateDB, error) {
receiver.SetCode(crypto.Keccak256Hash(code), code)
// Call the code with the given configuration.
ret, err := vmenv.Call(
ret, _, err := vmenv.Call(
sender,
receiver.Address(),
input,
@ -140,12 +141,13 @@ func Create(input []byte, cfg *Config) ([]byte, common.Address, error) {
)
// Call the code with the given configuration.
return vmenv.Create(
code, address, _, err := vmenv.Create(
sender,
input,
cfg.GasLimit,
cfg.Value,
)
return code, address, err
}
// Call executes the code given by the contract's address. It will return the
@ -160,7 +162,7 @@ func Call(address common.Address, input []byte, cfg *Config) ([]byte, error) {
sender := cfg.State.GetOrNewStateObject(cfg.Origin)
// Call the code with the given configuration.
ret, err := vmenv.Call(
ret, _, err := vmenv.Call(
sender,
address,
input,

@ -39,8 +39,8 @@ func TestDefaults(t *testing.T) {
if cfg.Time == nil {
t.Error("expected time to be non nil")
}
if cfg.GasLimit == nil {
t.Error("expected time to be non nil")
if cfg.GasLimit == 0 {
t.Error("didn't expect gaslimit to be zero")
}
if cfg.GasPrice == nil {
t.Error("expected time to be non nil")

@ -6,13 +6,13 @@ import (
"github.com/ethereum/go-ethereum/params"
)
func makeStackFunc(pop, diff int) stackValidationFunc {
func makeStackFunc(pop, push int) stackValidationFunc {
return func(stack *Stack) error {
if err := stack.require(pop); err != nil {
return err
}
if int64(stack.len()+diff) > params.StackLimit.Int64() {
if stack.len()+push-pop > int(params.StackLimit) {
return fmt.Errorf("stack limit reached %d (%d)", stack.len(), params.StackLimit)
}
return nil
@ -20,9 +20,9 @@ func makeStackFunc(pop, diff int) stackValidationFunc {
}
func makeDupStackFunc(n int) stackValidationFunc {
return makeStackFunc(n, 1)
return makeStackFunc(n, n+1)
}
func makeSwapStackFunc(n int) stackValidationFunc {
return makeStackFunc(n, 0)
return makeStackFunc(n, n)
}

@ -106,14 +106,14 @@ func (b *EthApiBackend) GetTd(blockHash common.Hash) *big.Int {
return b.eth.blockchain.GetTdByHash(blockHash)
}
func (b *EthApiBackend) GetVMEnv(ctx context.Context, msg core.Message, state ethapi.State, header *types.Header) (*vm.EVM, func() error, error) {
func (b *EthApiBackend) GetEVM(ctx context.Context, msg core.Message, state ethapi.State, header *types.Header, vmCfg vm.Config) (*vm.EVM, func() error, error) {
statedb := state.(EthApiState).state
from := statedb.GetOrNewStateObject(msg.From())
from.SetBalance(common.MaxBig)
vmError := func() error { return nil }
context := core.NewEVMContext(msg, header, b.eth.BlockChain())
return vm.NewEVM(context, statedb, b.eth.chainConfig, vm.Config{}), vmError, nil
return vm.NewEVM(context, statedb, b.eth.chainConfig, vmCfg), vmError, nil
}
func (b *EthApiBackend) SendTx(ctx context.Context, signedTx *types.Transaction) error {

@ -69,7 +69,7 @@ func (b *ContractBackend) PendingCodeAt(ctx context.Context, contract common.Add
// against the pending block, not the stable head of the chain.
func (b *ContractBackend) CallContract(ctx context.Context, msg ethereum.CallMsg, blockNum *big.Int) ([]byte, error) {
out, err := b.bcapi.Call(ctx, toCallArgs(msg), toBlockNumber(blockNum))
return common.FromHex(out), err
return out, err
}
// ContractCall implements bind.ContractCaller executing an Ethereum contract
@ -77,7 +77,7 @@ func (b *ContractBackend) CallContract(ctx context.Context, msg ethereum.CallMsg
// against the pending block, not the stable head of the chain.
func (b *ContractBackend) PendingCallContract(ctx context.Context, msg ethereum.CallMsg) ([]byte, error) {
out, err := b.bcapi.Call(ctx, toCallArgs(msg), rpc.PendingBlockNumber)
return common.FromHex(out), err
return out, err
}
func toCallArgs(msg ethereum.CallMsg) ethapi.CallArgs {

@ -49,12 +49,12 @@ var (
MaxReceiptFetch = 256 // Amount of transaction receipts to allow fetching per request
MaxStateFetch = 384 // Amount of node state values to allow fetching per request
MaxForkAncestry = 3 * params.EpochDuration.Uint64() // Maximum chain reorganisation
rttMinEstimate = 2 * time.Second // Minimum round-trip time to target for download requests
rttMaxEstimate = 20 * time.Second // Maximum rount-trip time to target for download requests
rttMinConfidence = 0.1 // Worse confidence factor in our estimated RTT value
ttlScaling = 3 // Constant scaling factor for RTT -> TTL conversion
ttlLimit = time.Minute // Maximum TTL allowance to prevent reaching crazy timeouts
MaxForkAncestry = 3 * params.EpochDuration // Maximum chain reorganisation
rttMinEstimate = 2 * time.Second // Minimum round-trip time to target for download requests
rttMaxEstimate = 20 * time.Second // Maximum rount-trip time to target for download requests
rttMinConfidence = 0.1 // Worse confidence factor in our estimated RTT value
ttlScaling = 3 // Constant scaling factor for RTT -> TTL conversion
ttlLimit = time.Minute // Maximum TTL allowance to prevent reaching crazy timeouts
qosTuningPeers = 5 // Number of peers to tune based on (best peers)
qosConfidenceCap = 10 // Number of peers above which not to modify RTT confidence

@ -119,7 +119,7 @@ func (dl *downloadTester) makeChain(n int, seed byte, parent *types.Block, paren
// If the block number is multiple of 3, send a bonus transaction to the miner
if parent == dl.genesis && i%3 == 0 {
signer := types.MakeSigner(params.TestChainConfig, block.Number())
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, nil, nil), signer, testKey)
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), new(big.Int).SetUint64(params.TxGas), nil, nil), signer, testKey)
if err != nil {
panic(err)
}

@ -51,7 +51,7 @@ func makeChain(n int, seed byte, parent *types.Block) ([]common.Hash, map[common
// If the block number is multiple of 3, send a bonus transaction to the miner
if parent == genesis && i%3 == 0 {
signer := types.MakeSigner(params.TestChainConfig, block.Number())
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, nil, nil), signer, testKey)
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), new(big.Int).SetUint64(params.TxGas), nil, nil), signer, testKey)
if err != nil {
panic(err)
}

@ -36,6 +36,8 @@ import (
"github.com/ethereum/go-ethereum/params"
)
var bigTxGas = new(big.Int).SetUint64(params.TxGas)
// Tests that protocol versions and modes of operations are matched up properly.
func TestProtocolCompatibility(t *testing.T) {
// Define the compatibility chart
@ -312,13 +314,13 @@ func testGetNodeData(t *testing.T, protocol int) {
switch i {
case 0:
// In block 1, the test bank sends account #1 some ether.
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank.Address), acc1Addr, big.NewInt(10000), params.TxGas, nil, nil), signer, testBankKey)
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank.Address), acc1Addr, big.NewInt(10000), bigTxGas, nil, nil), signer, testBankKey)
block.AddTx(tx)
case 1:
// In block 2, the test bank sends some more ether to account #1.
// acc1Addr passes it on to account #2.
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank.Address), acc1Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, testBankKey)
tx2, _ := types.SignTx(types.NewTransaction(block.TxNonce(acc1Addr), acc2Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, acc1Key)
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank.Address), acc1Addr, big.NewInt(1000), bigTxGas, nil, nil), signer, testBankKey)
tx2, _ := types.SignTx(types.NewTransaction(block.TxNonce(acc1Addr), acc2Addr, big.NewInt(1000), bigTxGas, nil, nil), signer, acc1Key)
block.AddTx(tx1)
block.AddTx(tx2)
case 2:
@ -404,13 +406,13 @@ func testGetReceipt(t *testing.T, protocol int) {
switch i {
case 0:
// In block 1, the test bank sends account #1 some ether.
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank.Address), acc1Addr, big.NewInt(10000), params.TxGas, nil, nil), signer, testBankKey)
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank.Address), acc1Addr, big.NewInt(10000), bigTxGas, nil, nil), signer, testBankKey)
block.AddTx(tx)
case 1:
// In block 2, the test bank sends some more ether to account #1.
// acc1Addr passes it on to account #2.
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank.Address), acc1Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, testBankKey)
tx2, _ := types.SignTx(types.NewTransaction(block.TxNonce(acc1Addr), acc2Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, acc1Key)
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBank.Address), acc1Addr, big.NewInt(1000), bigTxGas, nil, nil), signer, testBankKey)
tx2, _ := types.SignTx(types.NewTransaction(block.TxNonce(acc1Addr), acc2Addr, big.NewInt(1000), bigTxGas, nil, nil), signer, acc1Key)
block.AddTx(tx1)
block.AddTx(tx2)
case 2:

@ -48,6 +48,8 @@ import (
const defaultGas = 90000
var emptyHex = "0x"
// PublicEthereumAPI provides an API to access Ethereum related information.
// It offers only methods that operate on public data that is freely available to anyone.
type PublicEthereumAPI struct {
@ -574,12 +576,12 @@ type CallArgs struct {
Data hexutil.Bytes `json:"data"`
}
func (s *PublicBlockChainAPI) doCall(ctx context.Context, args CallArgs, blockNr rpc.BlockNumber) (string, *big.Int, error) {
func (s *PublicBlockChainAPI) doCall(ctx context.Context, args CallArgs, blockNr rpc.BlockNumber, vmCfg vm.Config) ([]byte, *big.Int, error) {
defer func(start time.Time) { glog.V(logger.Debug).Infof("call took %v", time.Since(start)) }(time.Now())
state, header, err := s.b.StateAndHeaderByNumber(ctx, blockNr)
if state == nil || err != nil {
return "0x", common.Big0, err
return nil, common.Big0, err
}
// Set sender address or use a default if none specified
addr := args.From
@ -589,40 +591,60 @@ func (s *PublicBlockChainAPI) doCall(ctx context.Context, args CallArgs, blockNr
addr = accounts[0].Address
}
}
} else {
addr = args.From
}
// Set default gas & gas price if none were set
gas, gasPrice := args.Gas.ToInt(), args.GasPrice.ToInt()
if gas.Cmp(common.Big0) == 0 {
if gas.BitLen() == 0 {
gas = big.NewInt(50000000)
}
if gasPrice.Cmp(common.Big0) == 0 {
if gasPrice.BitLen() == 0 {
gasPrice = new(big.Int).Mul(big.NewInt(50), common.Shannon)
}
// Create new call message
msg := types.NewMessage(addr, args.To, 0, args.Value.ToInt(), gas, gasPrice, args.Data, false)
// Execute the call and return
vmenv, vmError, err := s.b.GetVMEnv(ctx, msg, state, header)
// Setup context so it may be cancelled the call has completed
// or, in case of unmetered gas, setup a context with a timeout.
var cancel context.CancelFunc
if vmCfg.DisableGasMetering {
ctx, cancel = context.WithTimeout(ctx, time.Second*5)
} else {
ctx, cancel = context.WithCancel(ctx)
}
// Make sure the context is cancelled when the call has completed
// this makes sure resources are cleaned up.
defer func() { cancel() }()
// Get a new instance of the EVM.
evm, vmError, err := s.b.GetEVM(ctx, msg, state, header, vmCfg)
if err != nil {
return "0x", common.Big0, err
return nil, common.Big0, err
}
// Wait for the context to be done and cancel the evm. Even if the
// EVM has finished, cancelling may be done (repeatedly)
go func() {
select {
case <-ctx.Done():
evm.Cancel()
}
}()
// Setup the gas pool (also for unmetered requests)
// and apply the message.
gp := new(core.GasPool).AddGas(common.MaxBig)
res, gas, err := core.ApplyMessage(vmenv, msg, gp)
res, gas, err := core.ApplyMessage(evm, msg, gp)
if err := vmError(); err != nil {
return "0x", common.Big0, err
return nil, common.Big0, err
}
if len(res) == 0 { // backwards compatibility
return "0x", gas, err
}
return common.ToHex(res), gas, err
return res, gas, err
}
// Call executes the given transaction on the state for the given block number.
// It doesn't make and changes in the state/blockchain and is useful to execute and retrieve values.
func (s *PublicBlockChainAPI) Call(ctx context.Context, args CallArgs, blockNr rpc.BlockNumber) (string, error) {
result, _, err := s.doCall(ctx, args, blockNr)
return result, err
func (s *PublicBlockChainAPI) Call(ctx context.Context, args CallArgs, blockNr rpc.BlockNumber) (hexutil.Bytes, error) {
result, _, err := s.doCall(ctx, args, blockNr, vm.Config{DisableGasMetering: true})
return (hexutil.Bytes)(result), err
}
// EstimateGas returns an estimate of the amount of gas needed to execute the given transaction.
@ -644,7 +666,7 @@ func (s *PublicBlockChainAPI) EstimateGas(ctx context.Context, args CallArgs) (*
mid := (hi + lo) / 2
(*big.Int)(&args.Gas).SetUint64(mid)
_, gas, err := s.doCall(ctx, args, rpc.PendingBlockNumber)
_, gas, err := s.doCall(ctx, args, rpc.PendingBlockNumber, vm.Config{})
// If the transaction became invalid or used all the gas (failed), raise the gas limit
if err != nil || gas.Cmp((*big.Int)(&args.Gas)) == 0 {

@ -51,7 +51,7 @@ type Backend interface {
GetBlock(ctx context.Context, blockHash common.Hash) (*types.Block, error)
GetReceipts(ctx context.Context, blockHash common.Hash) (types.Receipts, error)
GetTd(blockHash common.Hash) *big.Int
GetVMEnv(ctx context.Context, msg core.Message, state State, header *types.Header) (*vm.EVM, func() error, error)
GetEVM(ctx context.Context, msg core.Message, state State, header *types.Header, vmCfg vm.Config) (*vm.EVM, func() error, error)
// TxPool API
SendTx(ctx context.Context, signedTx *types.Transaction) error
RemoveTx(txHash common.Hash)

@ -45,7 +45,7 @@ func (account) ForEachStorage(cb func(key, value common.Hash) bool) {}
func runTrace(tracer *JavascriptTracer) (interface{}, error) {
env := vm.NewEVM(vm.Context{}, nil, params.TestChainConfig, vm.Config{Debug: true, Tracer: tracer})
contract := vm.NewContract(account{}, account{}, big.NewInt(0), big.NewInt(10000))
contract := vm.NewContract(account{}, account{}, big.NewInt(0), 10000)
contract.Code = []byte{byte(vm.PUSH1), 0x1, byte(vm.PUSH1), 0x1, 0x0}
_, err := env.Interpreter().Run(contract, []byte{})
@ -134,7 +134,7 @@ func TestHaltBetweenSteps(t *testing.T) {
}
env := vm.NewEVM(vm.Context{}, nil, params.TestChainConfig, vm.Config{Debug: true, Tracer: tracer})
contract := vm.NewContract(&account{}, &account{}, big.NewInt(0), big.NewInt(0))
contract := vm.NewContract(&account{}, &account{}, big.NewInt(0), 0)
tracer.CaptureState(env, 0, 0, big.NewInt(0), big.NewInt(0), nil, nil, contract, 0, nil)
timeout := errors.New("stahp")

@ -88,7 +88,7 @@ func (b *LesApiBackend) GetTd(blockHash common.Hash) *big.Int {
return b.eth.blockchain.GetTdByHash(blockHash)
}
func (b *LesApiBackend) GetVMEnv(ctx context.Context, msg core.Message, state ethapi.State, header *types.Header) (*vm.EVM, func() error, error) {
func (b *LesApiBackend) GetEVM(ctx context.Context, msg core.Message, state ethapi.State, header *types.Header, vmCfg vm.Config) (*vm.EVM, func() error, error) {
stateDb := state.(*light.LightState).Copy()
addr := msg.From()
from, err := stateDb.GetOrNewStateObject(ctx, addr)
@ -99,7 +99,7 @@ func (b *LesApiBackend) GetVMEnv(ctx context.Context, msg core.Message, state et
vmstate := light.NewVMState(ctx, stateDb)
context := core.NewEVMContext(msg, header, b.eth.blockchain)
return vm.NewEVM(context, vmstate, b.eth.chainConfig, vm.Config{}), vmstate.Error, nil
return vm.NewEVM(context, vmstate, b.eth.chainConfig, vmCfg), vmstate.Error, nil
}
func (b *LesApiBackend) SendTx(ctx context.Context, signedTx *types.Transaction) error {

@ -57,6 +57,8 @@ var (
testContractDeployed = uint64(2)
testBufLimit = uint64(100)
bigTxGas = new(big.Int).SetUint64(params.TxGas)
)
/*
@ -80,15 +82,15 @@ func testChainGen(i int, block *core.BlockGen) {
switch i {
case 0:
// In block 1, the test bank sends account #1 some ether.
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(10000), params.TxGas, nil, nil), signer, testBankKey)
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(10000), bigTxGas, nil, nil), signer, testBankKey)
block.AddTx(tx)
case 1:
// In block 2, the test bank sends some more ether to account #1.
// acc1Addr passes it on to account #2.
// acc1Addr creates a test contract.
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, testBankKey)
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(1000), bigTxGas, nil, nil), signer, testBankKey)
nonce := block.TxNonce(acc1Addr)
tx2, _ := types.SignTx(types.NewTransaction(nonce, acc2Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, acc1Key)
tx2, _ := types.SignTx(types.NewTransaction(nonce, acc2Addr, big.NewInt(1000), bigTxGas, nil, nil), signer, acc1Key)
nonce++
tx3, _ := types.SignTx(types.NewContractCreation(nonce, big.NewInt(0), big.NewInt(200000), big.NewInt(0), testContractCode), signer, acc1Key)
testContractAddr = crypto.CreateAddress(acc1Addr, nonce)

@ -49,6 +49,8 @@ var (
testContractCode = common.Hex2Bytes("606060405260cc8060106000396000f360606040526000357c01000000000000000000000000000000000000000000000000000000009004806360cd2685146041578063c16431b914606b57603f565b005b6055600480803590602001909190505060a9565b6040518082815260200191505060405180910390f35b60886004808035906020019091908035906020019091905050608a565b005b80600060005083606481101560025790900160005b50819055505b5050565b6000600060005082606481101560025790900160005b5054905060c7565b91905056")
testContractAddr common.Address
bigTxGas = new(big.Int).SetUint64(params.TxGas)
)
type testOdr struct {
@ -205,15 +207,15 @@ func testChainGen(i int, block *core.BlockGen) {
switch i {
case 0:
// In block 1, the test bank sends account #1 some ether.
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(10000), params.TxGas, nil, nil), signer, testBankKey)
tx, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(10000), bigTxGas, nil, nil), signer, testBankKey)
block.AddTx(tx)
case 1:
// In block 2, the test bank sends some more ether to account #1.
// acc1Addr passes it on to account #2.
// acc1Addr creates a test contract.
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, testBankKey)
tx1, _ := types.SignTx(types.NewTransaction(block.TxNonce(testBankAddress), acc1Addr, big.NewInt(1000), bigTxGas, nil, nil), signer, testBankKey)
nonce := block.TxNonce(acc1Addr)
tx2, _ := types.SignTx(types.NewTransaction(nonce, acc2Addr, big.NewInt(1000), params.TxGas, nil, nil), signer, acc1Key)
tx2, _ := types.SignTx(types.NewTransaction(nonce, acc2Addr, big.NewInt(1000), bigTxGas, nil, nil), signer, acc1Key)
nonce++
tx3, _ := types.SignTx(types.NewContractCreation(nonce, big.NewInt(0), big.NewInt(1000000), big.NewInt(0), testContractCode), signer, acc1Key)
testContractAddr = crypto.CreateAddress(acc1Addr, nonce)

@ -77,7 +77,7 @@ func txPoolTestChainGen(i int, block *core.BlockGen) {
func TestTxPool(t *testing.T) {
for i := range testTx {
testTx[i], _ = types.SignTx(types.NewTransaction(uint64(i), acc1Addr, big.NewInt(10000), params.TxGas, nil, nil), types.HomesteadSigner{}, testBankKey)
testTx[i], _ = types.SignTx(types.NewTransaction(uint64(i), acc1Addr, big.NewInt(10000), bigTxGas, nil, nil), types.HomesteadSigner{}, testBankKey)
}
var (

@ -171,7 +171,7 @@ func (self *Miner) HashRate() (tot int64) {
}
func (self *Miner) SetExtra(extra []byte) error {
if uint64(len(extra)) > params.MaximumExtraDataSize.Uint64() {
if uint64(len(extra)) > params.MaximumExtraDataSize {
return fmt.Errorf("Extra exceeds max length. %d > %v", len(extra), params.MaximumExtraDataSize)
}
self.worker.setExtra(extra)

@ -16,41 +16,35 @@
package params
import "math/big"
type GasTable struct {
ExtcodeSize *big.Int
ExtcodeCopy *big.Int
Balance *big.Int
SLoad *big.Int
Calls *big.Int
Suicide *big.Int
ExtcodeSize uint64
ExtcodeCopy uint64
Balance uint64
SLoad uint64
Calls uint64
Suicide uint64
ExpByte *big.Int
ExpByte uint64
// CreateBySuicide occurs when the
// refunded account is one that does
// not exist. This logic is similar
// to call. May be left nil. Nil means
// not charged.
CreateBySuicide *big.Int
CreateBySuicide uint64
}
var (
// GasTableHomestead contain the gas prices for
// the homestead phase.
GasTableHomestead = GasTable{
ExtcodeSize: big.NewInt(20),
ExtcodeCopy: big.NewInt(20),
Balance: big.NewInt(20),
SLoad: big.NewInt(50),
Calls: big.NewInt(40),
Suicide: big.NewInt(0),
ExpByte: big.NewInt(10),
// explicitly set to nil to indicate
// this rule does not apply to homestead.
CreateBySuicide: nil,
ExtcodeSize: 20,
ExtcodeCopy: 20,
Balance: 20,
SLoad: 50,
Calls: 40,
Suicide: 0,
ExpByte: 10,
}
// GasTableHomestead contain the gas re-prices for
@ -58,26 +52,26 @@ var (
//
// TODO rename to GasTableEIP150
GasTableHomesteadGasRepriceFork = GasTable{
ExtcodeSize: big.NewInt(700),
ExtcodeCopy: big.NewInt(700),
Balance: big.NewInt(400),
SLoad: big.NewInt(200),
Calls: big.NewInt(700),
Suicide: big.NewInt(5000),
ExpByte: big.NewInt(10),
ExtcodeSize: 700,
ExtcodeCopy: 700,
Balance: 400,
SLoad: 200,
Calls: 700,
Suicide: 5000,
ExpByte: 10,
CreateBySuicide: big.NewInt(25000),
CreateBySuicide: 25000,
}
GasTableEIP158 = GasTable{
ExtcodeSize: big.NewInt(700),
ExtcodeCopy: big.NewInt(700),
Balance: big.NewInt(400),
SLoad: big.NewInt(200),
Calls: big.NewInt(700),
Suicide: big.NewInt(5000),
ExpByte: big.NewInt(50),
ExtcodeSize: 700,
ExtcodeCopy: 700,
Balance: 400,
SLoad: 200,
Calls: 700,
Suicide: 5000,
ExpByte: 50,
CreateBySuicide: big.NewInt(25000),
CreateBySuicide: 25000,
}
)

@ -18,56 +18,58 @@ package params
import "math/big"
var (
MaximumExtraDataSize = big.NewInt(32) // Maximum size extra data may be after Genesis.
ExpByteGas = big.NewInt(10) // Times ceil(log256(exponent)) for the EXP instruction.
SloadGas = big.NewInt(50) // Multiplied by the number of 32-byte words that are copied (round up) for any *COPY operation and added.
CallValueTransferGas = big.NewInt(9000) // Paid for CALL when the value transfer is non-zero.
CallNewAccountGas = big.NewInt(25000) // Paid for CALL when the destination address didn't exist prior.
TxGas = big.NewInt(21000) // Per transaction not creating a contract. NOTE: Not payable on data of calls between transactions.
TxGasContractCreation = big.NewInt(53000) // Per transaction that creates a contract. NOTE: Not payable on data of calls between transactions.
TxDataZeroGas = big.NewInt(4) // Per byte of data attached to a transaction that equals zero. NOTE: Not payable on data of calls between transactions.
DifficultyBoundDivisor = big.NewInt(2048) // The bound divisor of the difficulty, used in the update calculations.
QuadCoeffDiv = big.NewInt(512) // Divisor for the quadratic particle of the memory cost equation.
GenesisDifficulty = big.NewInt(131072) // Difficulty of the Genesis block.
DurationLimit = big.NewInt(13) // The decision boundary on the blocktime duration used to determine whether difficulty should go up or not.
SstoreSetGas = big.NewInt(20000) // Once per SLOAD operation.
LogDataGas = big.NewInt(8) // Per byte in a LOG* operation's data.
CallStipend = big.NewInt(2300) // Free gas given at beginning of call.
EcrecoverGas = big.NewInt(3000) //
Sha256WordGas = big.NewInt(12) //
const (
MaximumExtraDataSize uint64 = 32 // Maximum size extra data may be after Genesis.
ExpByteGas uint64 = 10 // Times ceil(log256(exponent)) for the EXP instruction.
SloadGas uint64 = 50 // Multiplied by the number of 32-byte words that are copied (round up) for any *COPY operation and added.
CallValueTransferGas uint64 = 9000 // Paid for CALL when the value transfer is non-zero.
CallNewAccountGas uint64 = 25000 // Paid for CALL when the destination address didn't exist prior.
TxGas uint64 = 21000 // Per transaction not creating a contract. NOTE: Not payable on data of calls between transactions.
TxGasContractCreation uint64 = 53000 // Per transaction that creates a contract. NOTE: Not payable on data of calls between transactions.
TxDataZeroGas uint64 = 4 // Per byte of data attached to a transaction that equals zero. NOTE: Not payable on data of calls between transactions.
QuadCoeffDiv uint64 = 512 // Divisor for the quadratic particle of the memory cost equation.
SstoreSetGas uint64 = 20000 // Once per SLOAD operation.
LogDataGas uint64 = 8 // Per byte in a LOG* operation's data.
CallStipend uint64 = 2300 // Free gas given at beginning of call.
EcrecoverGas uint64 = 3000 //
Sha256WordGas uint64 = 12 //
MinGasLimit = big.NewInt(5000) // Minimum the gas limit may ever be.
GenesisGasLimit = big.NewInt(4712388) // Gas limit of the Genesis block.
TargetGasLimit = new(big.Int).Set(GenesisGasLimit) // The artificial target
Sha3Gas = big.NewInt(30) // Once per SHA3 operation.
Sha256Gas = big.NewInt(60) //
IdentityWordGas = big.NewInt(3) //
Sha3WordGas = big.NewInt(6) // Once per word of the SHA3 operation's data.
SstoreResetGas = big.NewInt(5000) // Once per SSTORE operation if the zeroness changes from zero.
SstoreClearGas = big.NewInt(5000) // Once per SSTORE operation if the zeroness doesn't change.
SstoreRefundGas = big.NewInt(15000) // Once per SSTORE operation if the zeroness changes to zero.
JumpdestGas = big.NewInt(1) // Refunded gas, once per SSTORE operation if the zeroness changes to zero.
IdentityGas = big.NewInt(15) //
GasLimitBoundDivisor = big.NewInt(1024) // The bound divisor of the gas limit, used in update calculations.
EpochDuration = big.NewInt(30000) // Duration between proof-of-work epochs.
CallGas = big.NewInt(40) // Once per CALL operation & message call transaction.
CreateDataGas = big.NewInt(200) //
Ripemd160Gas = big.NewInt(600) //
Ripemd160WordGas = big.NewInt(120) //
MinimumDifficulty = big.NewInt(131072) // The minimum that the difficulty may ever be.
CallCreateDepth = big.NewInt(1024) // Maximum depth of call/create stack.
ExpGas = big.NewInt(10) // Once per EXP instruction.
LogGas = big.NewInt(375) // Per LOG* operation.
CopyGas = big.NewInt(3) //
StackLimit = big.NewInt(1024) // Maximum size of VM stack allowed.
TierStepGas = big.NewInt(0) // Once per operation, for a selection of them.
LogTopicGas = big.NewInt(375) // Multiplied by the * of the LOG*, per LOG transaction. e.g. LOG0 incurs 0 * c_txLogTopicGas, LOG4 incurs 4 * c_txLogTopicGas.
CreateGas = big.NewInt(32000) // Once per CREATE operation & contract-creation transaction.
SuicideRefundGas = big.NewInt(24000) // Refunded following a suicide operation.
MemoryGas = big.NewInt(3) // Times the address of the (highest referenced byte in memory + 1). NOTE: referencing happens on read, write and in instructions such as RETURN and CALL.
TxDataNonZeroGas = big.NewInt(68) // Per byte of data attached to a transaction that is not equal to zero. NOTE: Not payable on data of calls between transactions.
Sha3Gas uint64 = 30 // Once per SHA3 operation.
Sha256Gas uint64 = 60 //
IdentityWordGas uint64 = 3 //
Sha3WordGas uint64 = 6 // Once per word of the SHA3 operation's data.
SstoreResetGas uint64 = 5000 // Once per SSTORE operation if the zeroness changes from zero.
SstoreClearGas uint64 = 5000 // Once per SSTORE operation if the zeroness doesn't change.
SstoreRefundGas uint64 = 15000 // Once per SSTORE operation if the zeroness changes to zero.
JumpdestGas uint64 = 1 // Refunded gas, once per SSTORE operation if the zeroness changes to zero.
IdentityGas uint64 = 15 //
EpochDuration uint64 = 30000 // Duration between proof-of-work epochs.
CallGas uint64 = 40 // Once per CALL operation & message call transaction.
CreateDataGas uint64 = 200 //
Ripemd160Gas uint64 = 600 //
Ripemd160WordGas uint64 = 120 //
CallCreateDepth uint64 = 1024 // Maximum depth of call/create stack.
ExpGas uint64 = 10 // Once per EXP instruction
LogGas uint64 = 375 // Per LOG* operation.
CopyGas uint64 = 3 //
StackLimit uint64 = 1024 // Maximum size of VM stack allowed.
TierStepGas uint64 = 0 // Once per operation, for a selection of them.
LogTopicGas uint64 = 375 // Multiplied by the * of the LOG*, per LOG transaction. e.g. LOG0 incurs 0 * c_txLogTopicGas, LOG4 incurs 4 * c_txLogTopicGas.
CreateGas uint64 = 32000 // Once per CREATE operation & contract-creation transaction.
SuicideRefundGas uint64 = 24000 // Refunded following a suicide operation.
MemoryGas uint64 = 3 // Times the address of the (highest referenced byte in memory + 1). NOTE: referencing happens on read, write and in instructions such as RETURN and CALL.
TxDataNonZeroGas uint64 = 68 // Per byte of data attached to a transaction that is not equal to zero. NOTE: Not payable on data of calls between transactions.
MaxCodeSize = 24576
)
var (
GasLimitBoundDivisor = big.NewInt(1024) // The bound divisor of the gas limit, used in update calculations.
MinGasLimit = big.NewInt(5000) // Minimum the gas limit may ever be.
GenesisGasLimit = big.NewInt(4712388) // Gas limit of the Genesis block.
TargetGasLimit = new(big.Int).Set(GenesisGasLimit) // The artificial target
DifficultyBoundDivisor = big.NewInt(2048) // The bound divisor of the difficulty, used in the update calculations.
GenesisDifficulty = big.NewInt(131072) // Difficulty of the Genesis block.
MinimumDifficulty = big.NewInt(131072) // The minimum that the difficulty may ever be.
DurationLimit = big.NewInt(13) // The decision boundary on the blocktime duration used to determine whether difficulty should go up or not.
)

@ -146,7 +146,7 @@ func runBlockTests(homesteadBlock, daoForkBlock, gasPriceFork *big.Int, bt map[s
}
for name, test := range bt {
if skipTest[name] {
if skipTest[name] /*|| name != "CallingCanonicalContractFromFork_CALLCODE"*/ {
glog.Infoln("Skipping block test", name)
continue
}

@ -108,7 +108,7 @@ func runStateTests(chainConfig *params.ChainConfig, tests map[string]VmTest, ski
}
for name, test := range tests {
if skipTest[name] {
if skipTest[name] /*|| name != "JUMPDEST_Attack"*/ {
glog.Infoln("Skipping state test", name)
continue
}

@ -129,7 +129,7 @@ func runVmTests(tests map[string]VmTest, skipTests []string) error {
}
for name, test := range tests {
if skipTest[name] /*|| name != "loop_stacklimit_1021"*/ {
if skipTest[name] /*|| name != "exp0"*/ {
glog.Infoln("Skipping VM test", name)
continue
}
@ -229,6 +229,6 @@ func RunVm(statedb *state.StateDB, env, exec map[string]string) ([]byte, []*type
vm.PrecompiledContracts = make(map[common.Address]vm.PrecompiledContract)
environment, _ := NewEVMEnvironment(true, chainConfig, statedb, env, exec)
ret, err := environment.Call(caller, to, data, gas, value)
return ret, statedb.Logs(), gas, err
ret, g, err := environment.Call(caller, to, data, gas.Uint64(), value)
return ret, statedb.Logs(), new(big.Int).SetUint64(g), err
}