eth: request id dispatcher and direct req/reply APIs (#23576)

* eth: request ID based message dispatcher

* eth: fix dispatcher cancellation, rework fetchers idleness tracker

* eth/downloader: drop peers who refuse to serve advertised chains
This commit is contained in:
Péter Szilágyi 2021-11-26 13:26:03 +02:00 committed by GitHub
parent 3038e480f5
commit c10a0a62c3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
52 changed files with 3213 additions and 3400 deletions

@ -215,7 +215,7 @@ var (
defaultSyncMode = ethconfig.Defaults.SyncMode
SyncModeFlag = TextMarshalerFlag{
Name: "syncmode",
Usage: `Blockchain sync mode ("fast", "full", "snap" or "light")`,
Usage: `Blockchain sync mode ("snap", "full" or "light")`,
Value: &defaultSyncMode,
}
GCModeFlag = cli.StringFlag{

@ -629,9 +629,9 @@ func (bc *BlockChain) setHeadBeyondRoot(head uint64, root common.Hash, repair bo
return rootNumber, bc.loadLastState()
}
// FastSyncCommitHead sets the current head block to the one defined by the hash
// SnapSyncCommitHead sets the current head block to the one defined by the hash
// irrelevant what the chain contents were prior.
func (bc *BlockChain) FastSyncCommitHead(hash common.Hash) error {
func (bc *BlockChain) SnapSyncCommitHead(hash common.Hash) error {
// Make sure that both the block as well at its state trie exists
block := bc.GetBlockByHash(hash)
if block == nil {
@ -736,30 +736,24 @@ func (bc *BlockChain) ExportN(w io.Writer, first uint64, last uint64) error {
//
// Note, this function assumes that the `mu` mutex is held!
func (bc *BlockChain) writeHeadBlock(block *types.Block) {
// If the block is on a side chain or an unknown one, force other heads onto it too
updateHeads := rawdb.ReadCanonicalHash(bc.db, block.NumberU64()) != block.Hash()
// Add the block to the canonical chain number scheme and mark as the head
batch := bc.db.NewBatch()
rawdb.WriteHeadHeaderHash(batch, block.Hash())
rawdb.WriteHeadFastBlockHash(batch, block.Hash())
rawdb.WriteCanonicalHash(batch, block.Hash(), block.NumberU64())
rawdb.WriteTxLookupEntriesByBlock(batch, block)
rawdb.WriteHeadBlockHash(batch, block.Hash())
// If the block is better than our head or is on a different chain, force update heads
if updateHeads {
rawdb.WriteHeadHeaderHash(batch, block.Hash())
rawdb.WriteHeadFastBlockHash(batch, block.Hash())
}
// Flush the whole batch into the disk, exit the node if failed
if err := batch.Write(); err != nil {
log.Crit("Failed to update chain indexes and markers", "err", err)
}
// Update all in-memory chain markers in the last step
if updateHeads {
bc.hc.SetCurrentHeader(block.Header())
bc.currentFastBlock.Store(block)
headFastBlockGauge.Update(int64(block.NumberU64()))
}
bc.currentBlock.Store(block)
headBlockGauge.Update(int64(block.NumberU64()))
}

@ -79,10 +79,10 @@ func testShortRepair(t *testing.T, snapshots bool) {
// already committed, after which the process crashed. In this case we expect the full
// chain to be rolled back to the committed block, but the chain data itself left in
// the database for replaying.
func TestShortFastSyncedRepair(t *testing.T) { testShortFastSyncedRepair(t, false) }
func TestShortFastSyncedRepairWithSnapshots(t *testing.T) { testShortFastSyncedRepair(t, true) }
func TestShortSnapSyncedRepair(t *testing.T) { testShortSnapSyncedRepair(t, false) }
func TestShortSnapSyncedRepairWithSnapshots(t *testing.T) { testShortSnapSyncedRepair(t, true) }
func testShortFastSyncedRepair(t *testing.T, snapshots bool) {
func testShortSnapSyncedRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
//
@ -119,10 +119,10 @@ func testShortFastSyncedRepair(t *testing.T, snapshots bool) {
// not yet committed, but the process crashed. In this case we expect the chain to
// detect that it was fast syncing and not delete anything, since we can just pick
// up directly where we left off.
func TestShortFastSyncingRepair(t *testing.T) { testShortFastSyncingRepair(t, false) }
func TestShortFastSyncingRepairWithSnapshots(t *testing.T) { testShortFastSyncingRepair(t, true) }
func TestShortSnapSyncingRepair(t *testing.T) { testShortSnapSyncingRepair(t, false) }
func TestShortSnapSyncingRepairWithSnapshots(t *testing.T) { testShortSnapSyncingRepair(t, true) }
func testShortFastSyncingRepair(t *testing.T, snapshots bool) {
func testShortSnapSyncingRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
//
@ -203,14 +203,14 @@ func testShortOldForkedRepair(t *testing.T, snapshots bool) {
// crashed. In this test scenario the side chain is below the committed block. In
// this case we expect the canonical chain to be rolled back to the committed block,
// but the chain data itself left in the database for replaying.
func TestShortOldForkedFastSyncedRepair(t *testing.T) {
testShortOldForkedFastSyncedRepair(t, false)
func TestShortOldForkedSnapSyncedRepair(t *testing.T) {
testShortOldForkedSnapSyncedRepair(t, false)
}
func TestShortOldForkedFastSyncedRepairWithSnapshots(t *testing.T) {
testShortOldForkedFastSyncedRepair(t, true)
func TestShortOldForkedSnapSyncedRepairWithSnapshots(t *testing.T) {
testShortOldForkedSnapSyncedRepair(t, true)
}
func testShortOldForkedFastSyncedRepair(t *testing.T, snapshots bool) {
func testShortOldForkedSnapSyncedRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
// └->S1->S2->S3
@ -250,14 +250,14 @@ func testShortOldForkedFastSyncedRepair(t *testing.T, snapshots bool) {
// test scenario the side chain is below the committed block. In this case we expect
// the chain to detect that it was fast syncing and not delete anything, since we
// can just pick up directly where we left off.
func TestShortOldForkedFastSyncingRepair(t *testing.T) {
testShortOldForkedFastSyncingRepair(t, false)
func TestShortOldForkedSnapSyncingRepair(t *testing.T) {
testShortOldForkedSnapSyncingRepair(t, false)
}
func TestShortOldForkedFastSyncingRepairWithSnapshots(t *testing.T) {
testShortOldForkedFastSyncingRepair(t, true)
func TestShortOldForkedSnapSyncingRepairWithSnapshots(t *testing.T) {
testShortOldForkedSnapSyncingRepair(t, true)
}
func testShortOldForkedFastSyncingRepair(t *testing.T, snapshots bool) {
func testShortOldForkedSnapSyncingRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
// └->S1->S2->S3
@ -340,14 +340,14 @@ func testShortNewlyForkedRepair(t *testing.T, snapshots bool) {
// crashed. In this test scenario the side chain reaches above the committed block.
// In this case we expect the canonical chain to be rolled back to the committed
// block, but the chain data itself left in the database for replaying.
func TestShortNewlyForkedFastSyncedRepair(t *testing.T) {
testShortNewlyForkedFastSyncedRepair(t, false)
func TestShortNewlyForkedSnapSyncedRepair(t *testing.T) {
testShortNewlyForkedSnapSyncedRepair(t, false)
}
func TestShortNewlyForkedFastSyncedRepairWithSnapshots(t *testing.T) {
testShortNewlyForkedFastSyncedRepair(t, true)
func TestShortNewlyForkedSnapSyncedRepairWithSnapshots(t *testing.T) {
testShortNewlyForkedSnapSyncedRepair(t, true)
}
func testShortNewlyForkedFastSyncedRepair(t *testing.T, snapshots bool) {
func testShortNewlyForkedSnapSyncedRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
// └->S1->S2->S3->S4->S5->S6
@ -387,14 +387,14 @@ func testShortNewlyForkedFastSyncedRepair(t *testing.T, snapshots bool) {
// this test scenario the side chain reaches above the committed block. In this
// case we expect the chain to detect that it was fast syncing and not delete
// anything, since we can just pick up directly where we left off.
func TestShortNewlyForkedFastSyncingRepair(t *testing.T) {
testShortNewlyForkedFastSyncingRepair(t, false)
func TestShortNewlyForkedSnapSyncingRepair(t *testing.T) {
testShortNewlyForkedSnapSyncingRepair(t, false)
}
func TestShortNewlyForkedFastSyncingRepairWithSnapshots(t *testing.T) {
testShortNewlyForkedFastSyncingRepair(t, true)
func TestShortNewlyForkedSnapSyncingRepairWithSnapshots(t *testing.T) {
testShortNewlyForkedSnapSyncingRepair(t, true)
}
func testShortNewlyForkedFastSyncingRepair(t *testing.T, snapshots bool) {
func testShortNewlyForkedSnapSyncingRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
// └->S1->S2->S3->S4->S5->S6
@ -475,14 +475,14 @@ func testShortReorgedRepair(t *testing.T, snapshots bool) {
// the fast sync pivot point was already committed to disk and then the process
// crashed. In this case we expect the canonical chain to be rolled back to the
// committed block, but the chain data itself left in the database for replaying.
func TestShortReorgedFastSyncedRepair(t *testing.T) {
testShortReorgedFastSyncedRepair(t, false)
func TestShortReorgedSnapSyncedRepair(t *testing.T) {
testShortReorgedSnapSyncedRepair(t, false)
}
func TestShortReorgedFastSyncedRepairWithSnapshots(t *testing.T) {
testShortReorgedFastSyncedRepair(t, true)
func TestShortReorgedSnapSyncedRepairWithSnapshots(t *testing.T) {
testShortReorgedSnapSyncedRepair(t, true)
}
func testShortReorgedFastSyncedRepair(t *testing.T, snapshots bool) {
func testShortReorgedSnapSyncedRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10
@ -521,14 +521,14 @@ func testShortReorgedFastSyncedRepair(t *testing.T, snapshots bool) {
// the fast sync pivot point was not yet committed, but the process crashed. In
// this case we expect the chain to detect that it was fast syncing and not delete
// anything, since we can just pick up directly where we left off.
func TestShortReorgedFastSyncingRepair(t *testing.T) {
testShortReorgedFastSyncingRepair(t, false)
func TestShortReorgedSnapSyncingRepair(t *testing.T) {
testShortReorgedSnapSyncingRepair(t, false)
}
func TestShortReorgedFastSyncingRepairWithSnapshots(t *testing.T) {
testShortReorgedFastSyncingRepair(t, true)
func TestShortReorgedSnapSyncingRepairWithSnapshots(t *testing.T) {
testShortReorgedSnapSyncingRepair(t, true)
}
func testShortReorgedFastSyncingRepair(t *testing.T, snapshots bool) {
func testShortReorgedSnapSyncingRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10
@ -656,14 +656,14 @@ func testLongDeepRepair(t *testing.T, snapshots bool) {
// sync pivot point - newer than the ancient limit - was already committed, after
// which the process crashed. In this case we expect the chain to be rolled back
// to the committed block, with everything afterwads kept as fast sync data.
func TestLongFastSyncedShallowRepair(t *testing.T) {
testLongFastSyncedShallowRepair(t, false)
func TestLongSnapSyncedShallowRepair(t *testing.T) {
testLongSnapSyncedShallowRepair(t, false)
}
func TestLongFastSyncedShallowRepairWithSnapshots(t *testing.T) {
testLongFastSyncedShallowRepair(t, true)
func TestLongSnapSyncedShallowRepairWithSnapshots(t *testing.T) {
testLongSnapSyncedShallowRepair(t, true)
}
func testLongFastSyncedShallowRepair(t *testing.T, snapshots bool) {
func testLongSnapSyncedShallowRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
//
@ -705,10 +705,10 @@ func testLongFastSyncedShallowRepair(t *testing.T, snapshots bool) {
// sync pivot point - older than the ancient limit - was already committed, after
// which the process crashed. In this case we expect the chain to be rolled back
// to the committed block, with everything afterwads deleted.
func TestLongFastSyncedDeepRepair(t *testing.T) { testLongFastSyncedDeepRepair(t, false) }
func TestLongFastSyncedDeepRepairWithSnapshots(t *testing.T) { testLongFastSyncedDeepRepair(t, true) }
func TestLongSnapSyncedDeepRepair(t *testing.T) { testLongSnapSyncedDeepRepair(t, false) }
func TestLongSnapSyncedDeepRepairWithSnapshots(t *testing.T) { testLongSnapSyncedDeepRepair(t, true) }
func testLongFastSyncedDeepRepair(t *testing.T, snapshots bool) {
func testLongSnapSyncedDeepRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
//
@ -750,14 +750,14 @@ func testLongFastSyncedDeepRepair(t *testing.T, snapshots bool) {
// process crashed. In this case we expect the chain to detect that it was fast
// syncing and not delete anything, since we can just pick up directly where we
// left off.
func TestLongFastSyncingShallowRepair(t *testing.T) {
testLongFastSyncingShallowRepair(t, false)
func TestLongSnapSyncingShallowRepair(t *testing.T) {
testLongSnapSyncingShallowRepair(t, false)
}
func TestLongFastSyncingShallowRepairWithSnapshots(t *testing.T) {
testLongFastSyncingShallowRepair(t, true)
func TestLongSnapSyncingShallowRepairWithSnapshots(t *testing.T) {
testLongSnapSyncingShallowRepair(t, true)
}
func testLongFastSyncingShallowRepair(t *testing.T, snapshots bool) {
func testLongSnapSyncingShallowRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
//
@ -800,10 +800,10 @@ func testLongFastSyncingShallowRepair(t *testing.T, snapshots bool) {
// process crashed. In this case we expect the chain to detect that it was fast
// syncing and not delete anything, since we can just pick up directly where we
// left off.
func TestLongFastSyncingDeepRepair(t *testing.T) { testLongFastSyncingDeepRepair(t, false) }
func TestLongFastSyncingDeepRepairWithSnapshots(t *testing.T) { testLongFastSyncingDeepRepair(t, true) }
func TestLongSnapSyncingDeepRepair(t *testing.T) { testLongSnapSyncingDeepRepair(t, false) }
func TestLongSnapSyncingDeepRepairWithSnapshots(t *testing.T) { testLongSnapSyncingDeepRepair(t, true) }
func testLongFastSyncingDeepRepair(t *testing.T, snapshots bool) {
func testLongSnapSyncingDeepRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
//
@ -946,14 +946,14 @@ func testLongOldForkedDeepRepair(t *testing.T, snapshots bool) {
// the side chain is below the committed block. In this case we expect the chain
// to be rolled back to the committed block, with everything afterwads kept as
// fast sync data; the side chain completely nuked by the freezer.
func TestLongOldForkedFastSyncedShallowRepair(t *testing.T) {
testLongOldForkedFastSyncedShallowRepair(t, false)
func TestLongOldForkedSnapSyncedShallowRepair(t *testing.T) {
testLongOldForkedSnapSyncedShallowRepair(t, false)
}
func TestLongOldForkedFastSyncedShallowRepairWithSnapshots(t *testing.T) {
testLongOldForkedFastSyncedShallowRepair(t, true)
func TestLongOldForkedSnapSyncedShallowRepairWithSnapshots(t *testing.T) {
testLongOldForkedSnapSyncedShallowRepair(t, true)
}
func testLongOldForkedFastSyncedShallowRepair(t *testing.T, snapshots bool) {
func testLongOldForkedSnapSyncedShallowRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3
@ -998,14 +998,14 @@ func testLongOldForkedFastSyncedShallowRepair(t *testing.T, snapshots bool) {
// the side chain is below the committed block. In this case we expect the canonical
// chain to be rolled back to the committed block, with everything afterwads deleted;
// the side chain completely nuked by the freezer.
func TestLongOldForkedFastSyncedDeepRepair(t *testing.T) {
testLongOldForkedFastSyncedDeepRepair(t, false)
func TestLongOldForkedSnapSyncedDeepRepair(t *testing.T) {
testLongOldForkedSnapSyncedDeepRepair(t, false)
}
func TestLongOldForkedFastSyncedDeepRepairWithSnapshots(t *testing.T) {
testLongOldForkedFastSyncedDeepRepair(t, true)
func TestLongOldForkedSnapSyncedDeepRepairWithSnapshots(t *testing.T) {
testLongOldForkedSnapSyncedDeepRepair(t, true)
}
func testLongOldForkedFastSyncedDeepRepair(t *testing.T, snapshots bool) {
func testLongOldForkedSnapSyncedDeepRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3
@ -1049,14 +1049,14 @@ func testLongOldForkedFastSyncedDeepRepair(t *testing.T, snapshots bool) {
// chain is below the committed block. In this case we expect the chain to detect
// that it was fast syncing and not delete anything. The side chain is completely
// nuked by the freezer.
func TestLongOldForkedFastSyncingShallowRepair(t *testing.T) {
testLongOldForkedFastSyncingShallowRepair(t, false)
func TestLongOldForkedSnapSyncingShallowRepair(t *testing.T) {
testLongOldForkedSnapSyncingShallowRepair(t, false)
}
func TestLongOldForkedFastSyncingShallowRepairWithSnapshots(t *testing.T) {
testLongOldForkedFastSyncingShallowRepair(t, true)
func TestLongOldForkedSnapSyncingShallowRepairWithSnapshots(t *testing.T) {
testLongOldForkedSnapSyncingShallowRepair(t, true)
}
func testLongOldForkedFastSyncingShallowRepair(t *testing.T, snapshots bool) {
func testLongOldForkedSnapSyncingShallowRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3
@ -1101,14 +1101,14 @@ func testLongOldForkedFastSyncingShallowRepair(t *testing.T, snapshots bool) {
// chain is below the committed block. In this case we expect the chain to detect
// that it was fast syncing and not delete anything. The side chain is completely
// nuked by the freezer.
func TestLongOldForkedFastSyncingDeepRepair(t *testing.T) {
testLongOldForkedFastSyncingDeepRepair(t, false)
func TestLongOldForkedSnapSyncingDeepRepair(t *testing.T) {
testLongOldForkedSnapSyncingDeepRepair(t, false)
}
func TestLongOldForkedFastSyncingDeepRepairWithSnapshots(t *testing.T) {
testLongOldForkedFastSyncingDeepRepair(t, true)
func TestLongOldForkedSnapSyncingDeepRepairWithSnapshots(t *testing.T) {
testLongOldForkedSnapSyncingDeepRepair(t, true)
}
func testLongOldForkedFastSyncingDeepRepair(t *testing.T, snapshots bool) {
func testLongOldForkedSnapSyncingDeepRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3
@ -1252,14 +1252,14 @@ func testLongNewerForkedDeepRepair(t *testing.T, snapshots bool) {
// the side chain is above the committed block. In this case we expect the chain
// to be rolled back to the committed block, with everything afterwads kept as fast
// sync data; the side chain completely nuked by the freezer.
func TestLongNewerForkedFastSyncedShallowRepair(t *testing.T) {
testLongNewerForkedFastSyncedShallowRepair(t, false)
func TestLongNewerForkedSnapSyncedShallowRepair(t *testing.T) {
testLongNewerForkedSnapSyncedShallowRepair(t, false)
}
func TestLongNewerForkedFastSyncedShallowRepairWithSnapshots(t *testing.T) {
testLongNewerForkedFastSyncedShallowRepair(t, true)
func TestLongNewerForkedSnapSyncedShallowRepairWithSnapshots(t *testing.T) {
testLongNewerForkedSnapSyncedShallowRepair(t, true)
}
func testLongNewerForkedFastSyncedShallowRepair(t *testing.T, snapshots bool) {
func testLongNewerForkedSnapSyncedShallowRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12
@ -1304,14 +1304,14 @@ func testLongNewerForkedFastSyncedShallowRepair(t *testing.T, snapshots bool) {
// the side chain is above the committed block. In this case we expect the canonical
// chain to be rolled back to the committed block, with everything afterwads deleted;
// the side chain completely nuked by the freezer.
func TestLongNewerForkedFastSyncedDeepRepair(t *testing.T) {
testLongNewerForkedFastSyncedDeepRepair(t, false)
func TestLongNewerForkedSnapSyncedDeepRepair(t *testing.T) {
testLongNewerForkedSnapSyncedDeepRepair(t, false)
}
func TestLongNewerForkedFastSyncedDeepRepairWithSnapshots(t *testing.T) {
testLongNewerForkedFastSyncedDeepRepair(t, true)
func TestLongNewerForkedSnapSyncedDeepRepairWithSnapshots(t *testing.T) {
testLongNewerForkedSnapSyncedDeepRepair(t, true)
}
func testLongNewerForkedFastSyncedDeepRepair(t *testing.T, snapshots bool) {
func testLongNewerForkedSnapSyncedDeepRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12
@ -1355,14 +1355,14 @@ func testLongNewerForkedFastSyncedDeepRepair(t *testing.T, snapshots bool) {
// chain is above the committed block. In this case we expect the chain to detect
// that it was fast syncing and not delete anything. The side chain is completely
// nuked by the freezer.
func TestLongNewerForkedFastSyncingShallowRepair(t *testing.T) {
testLongNewerForkedFastSyncingShallowRepair(t, false)
func TestLongNewerForkedSnapSyncingShallowRepair(t *testing.T) {
testLongNewerForkedSnapSyncingShallowRepair(t, false)
}
func TestLongNewerForkedFastSyncingShallowRepairWithSnapshots(t *testing.T) {
testLongNewerForkedFastSyncingShallowRepair(t, true)
func TestLongNewerForkedSnapSyncingShallowRepairWithSnapshots(t *testing.T) {
testLongNewerForkedSnapSyncingShallowRepair(t, true)
}
func testLongNewerForkedFastSyncingShallowRepair(t *testing.T, snapshots bool) {
func testLongNewerForkedSnapSyncingShallowRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12
@ -1407,14 +1407,14 @@ func testLongNewerForkedFastSyncingShallowRepair(t *testing.T, snapshots bool) {
// chain is above the committed block. In this case we expect the chain to detect
// that it was fast syncing and not delete anything. The side chain is completely
// nuked by the freezer.
func TestLongNewerForkedFastSyncingDeepRepair(t *testing.T) {
testLongNewerForkedFastSyncingDeepRepair(t, false)
func TestLongNewerForkedSnapSyncingDeepRepair(t *testing.T) {
testLongNewerForkedSnapSyncingDeepRepair(t, false)
}
func TestLongNewerForkedFastSyncingDeepRepairWithSnapshots(t *testing.T) {
testLongNewerForkedFastSyncingDeepRepair(t, true)
func TestLongNewerForkedSnapSyncingDeepRepairWithSnapshots(t *testing.T) {
testLongNewerForkedSnapSyncingDeepRepair(t, true)
}
func testLongNewerForkedFastSyncingDeepRepair(t *testing.T, snapshots bool) {
func testLongNewerForkedSnapSyncingDeepRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12
@ -1552,14 +1552,14 @@ func testLongReorgedDeepRepair(t *testing.T, snapshots bool) {
// expect the chain to be rolled back to the committed block, with everything
// afterwads kept as fast sync data. The side chain completely nuked by the
// freezer.
func TestLongReorgedFastSyncedShallowRepair(t *testing.T) {
testLongReorgedFastSyncedShallowRepair(t, false)
func TestLongReorgedSnapSyncedShallowRepair(t *testing.T) {
testLongReorgedSnapSyncedShallowRepair(t, false)
}
func TestLongReorgedFastSyncedShallowRepairWithSnapshots(t *testing.T) {
testLongReorgedFastSyncedShallowRepair(t, true)
func TestLongReorgedSnapSyncedShallowRepairWithSnapshots(t *testing.T) {
testLongReorgedSnapSyncedShallowRepair(t, true)
}
func testLongReorgedFastSyncedShallowRepair(t *testing.T, snapshots bool) {
func testLongReorgedSnapSyncedShallowRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12->S13->S14->S15->S16->S17->S18->S19->S20->S21->S22->S23->S24->S25->S26
@ -1603,14 +1603,14 @@ func testLongReorgedFastSyncedShallowRepair(t *testing.T, snapshots bool) {
// was already committed to disk and then the process crashed. In this case we
// expect the canonical chains to be rolled back to the committed block, with
// everything afterwads deleted. The side chain completely nuked by the freezer.
func TestLongReorgedFastSyncedDeepRepair(t *testing.T) {
testLongReorgedFastSyncedDeepRepair(t, false)
func TestLongReorgedSnapSyncedDeepRepair(t *testing.T) {
testLongReorgedSnapSyncedDeepRepair(t, false)
}
func TestLongReorgedFastSyncedDeepRepairWithSnapshots(t *testing.T) {
testLongReorgedFastSyncedDeepRepair(t, true)
func TestLongReorgedSnapSyncedDeepRepairWithSnapshots(t *testing.T) {
testLongReorgedSnapSyncedDeepRepair(t, true)
}
func testLongReorgedFastSyncedDeepRepair(t *testing.T, snapshots bool) {
func testLongReorgedSnapSyncedDeepRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12->S13->S14->S15->S16->S17->S18->S19->S20->S21->S22->S23->S24->S25->S26
@ -1653,14 +1653,14 @@ func testLongReorgedFastSyncedDeepRepair(t *testing.T, snapshots bool) {
// was not yet committed, but the process crashed. In this case we expect the
// chain to detect that it was fast syncing and not delete anything, since we
// can just pick up directly where we left off.
func TestLongReorgedFastSyncingShallowRepair(t *testing.T) {
testLongReorgedFastSyncingShallowRepair(t, false)
func TestLongReorgedSnapSyncingShallowRepair(t *testing.T) {
testLongReorgedSnapSyncingShallowRepair(t, false)
}
func TestLongReorgedFastSyncingShallowRepairWithSnapshots(t *testing.T) {
testLongReorgedFastSyncingShallowRepair(t, true)
func TestLongReorgedSnapSyncingShallowRepairWithSnapshots(t *testing.T) {
testLongReorgedSnapSyncingShallowRepair(t, true)
}
func testLongReorgedFastSyncingShallowRepair(t *testing.T, snapshots bool) {
func testLongReorgedSnapSyncingShallowRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12->S13->S14->S15->S16->S17->S18->S19->S20->S21->S22->S23->S24->S25->S26
@ -1704,14 +1704,14 @@ func testLongReorgedFastSyncingShallowRepair(t *testing.T, snapshots bool) {
// was not yet committed, but the process crashed. In this case we expect the
// chain to detect that it was fast syncing and not delete anything, since we
// can just pick up directly where we left off.
func TestLongReorgedFastSyncingDeepRepair(t *testing.T) {
testLongReorgedFastSyncingDeepRepair(t, false)
func TestLongReorgedSnapSyncingDeepRepair(t *testing.T) {
testLongReorgedSnapSyncingDeepRepair(t, false)
}
func TestLongReorgedFastSyncingDeepRepairWithSnapshots(t *testing.T) {
testLongReorgedFastSyncingDeepRepair(t, true)
func TestLongReorgedSnapSyncingDeepRepairWithSnapshots(t *testing.T) {
testLongReorgedSnapSyncingDeepRepair(t, true)
}
func testLongReorgedFastSyncingDeepRepair(t *testing.T, snapshots bool) {
func testLongReorgedSnapSyncingDeepRepair(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12->S13->S14->S15->S16->S17->S18->S19->S20->S21->S22->S23->S24->S25->S26

@ -194,10 +194,10 @@ func testShortSetHead(t *testing.T, snapshots bool) {
// Everything above the sethead point should be deleted. In between the committed
// block and the requested head the data can remain as "fast sync" data to avoid
// redownloading it.
func TestShortFastSyncedSetHead(t *testing.T) { testShortFastSyncedSetHead(t, false) }
func TestShortFastSyncedSetHeadWithSnapshots(t *testing.T) { testShortFastSyncedSetHead(t, true) }
func TestShortSnapSyncedSetHead(t *testing.T) { testShortSnapSyncedSetHead(t, false) }
func TestShortSnapSyncedSetHeadWithSnapshots(t *testing.T) { testShortSnapSyncedSetHead(t, true) }
func testShortFastSyncedSetHead(t *testing.T, snapshots bool) {
func testShortSnapSyncedSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
//
@ -236,10 +236,10 @@ func testShortFastSyncedSetHead(t *testing.T, snapshots bool) {
// detect that it was fast syncing and delete everything from the new head, since
// we can just pick up fast syncing from there. The head full block should be set
// to the genesis.
func TestShortFastSyncingSetHead(t *testing.T) { testShortFastSyncingSetHead(t, false) }
func TestShortFastSyncingSetHeadWithSnapshots(t *testing.T) { testShortFastSyncingSetHead(t, true) }
func TestShortSnapSyncingSetHead(t *testing.T) { testShortSnapSyncingSetHead(t, false) }
func TestShortSnapSyncingSetHeadWithSnapshots(t *testing.T) { testShortSnapSyncingSetHead(t, true) }
func testShortFastSyncingSetHead(t *testing.T, snapshots bool) {
func testShortSnapSyncingSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
//
@ -326,14 +326,14 @@ func testShortOldForkedSetHead(t *testing.T, snapshots bool) {
// block. Everything above the sethead point should be deleted. In between the
// committed block and the requested head the data can remain as "fast sync" data
// to avoid redownloading it. The side chain should be left alone as it was shorter.
func TestShortOldForkedFastSyncedSetHead(t *testing.T) {
testShortOldForkedFastSyncedSetHead(t, false)
func TestShortOldForkedSnapSyncedSetHead(t *testing.T) {
testShortOldForkedSnapSyncedSetHead(t, false)
}
func TestShortOldForkedFastSyncedSetHeadWithSnapshots(t *testing.T) {
testShortOldForkedFastSyncedSetHead(t, true)
func TestShortOldForkedSnapSyncedSetHeadWithSnapshots(t *testing.T) {
testShortOldForkedSnapSyncedSetHead(t, true)
}
func testShortOldForkedFastSyncedSetHead(t *testing.T, snapshots bool) {
func testShortOldForkedSnapSyncedSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
// └->S1->S2->S3
@ -375,14 +375,14 @@ func testShortOldForkedFastSyncedSetHead(t *testing.T, snapshots bool) {
// the chain to detect that it was fast syncing and delete everything from the new
// head, since we can just pick up fast syncing from there. The head full block
// should be set to the genesis.
func TestShortOldForkedFastSyncingSetHead(t *testing.T) {
testShortOldForkedFastSyncingSetHead(t, false)
func TestShortOldForkedSnapSyncingSetHead(t *testing.T) {
testShortOldForkedSnapSyncingSetHead(t, false)
}
func TestShortOldForkedFastSyncingSetHeadWithSnapshots(t *testing.T) {
testShortOldForkedFastSyncingSetHead(t, true)
func TestShortOldForkedSnapSyncingSetHeadWithSnapshots(t *testing.T) {
testShortOldForkedSnapSyncingSetHead(t, true)
}
func testShortOldForkedFastSyncingSetHead(t *testing.T, snapshots bool) {
func testShortOldForkedSnapSyncingSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
// └->S1->S2->S3
@ -478,14 +478,14 @@ func testShortNewlyForkedSetHead(t *testing.T, snapshots bool) {
// The side chain could be left to be if the fork point was before the new head
// we are deleting to, but it would be exceedingly hard to detect that case and
// properly handle it, so we'll trade extra work in exchange for simpler code.
func TestShortNewlyForkedFastSyncedSetHead(t *testing.T) {
testShortNewlyForkedFastSyncedSetHead(t, false)
func TestShortNewlyForkedSnapSyncedSetHead(t *testing.T) {
testShortNewlyForkedSnapSyncedSetHead(t, false)
}
func TestShortNewlyForkedFastSyncedSetHeadWithSnapshots(t *testing.T) {
testShortNewlyForkedFastSyncedSetHead(t, true)
func TestShortNewlyForkedSnapSyncedSetHeadWithSnapshots(t *testing.T) {
testShortNewlyForkedSnapSyncedSetHead(t, true)
}
func testShortNewlyForkedFastSyncedSetHead(t *testing.T, snapshots bool) {
func testShortNewlyForkedSnapSyncedSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8
@ -531,14 +531,14 @@ func testShortNewlyForkedFastSyncedSetHead(t *testing.T, snapshots bool) {
// The side chain could be left to be if the fork point was before the new head
// we are deleting to, but it would be exceedingly hard to detect that case and
// properly handle it, so we'll trade extra work in exchange for simpler code.
func TestShortNewlyForkedFastSyncingSetHead(t *testing.T) {
testShortNewlyForkedFastSyncingSetHead(t, false)
func TestShortNewlyForkedSnapSyncingSetHead(t *testing.T) {
testShortNewlyForkedSnapSyncingSetHead(t, false)
}
func TestShortNewlyForkedFastSyncingSetHeadWithSnapshots(t *testing.T) {
testShortNewlyForkedFastSyncingSetHead(t, true)
func TestShortNewlyForkedSnapSyncingSetHeadWithSnapshots(t *testing.T) {
testShortNewlyForkedSnapSyncingSetHead(t, true)
}
func testShortNewlyForkedFastSyncingSetHead(t *testing.T, snapshots bool) {
func testShortNewlyForkedSnapSyncingSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8
@ -634,14 +634,14 @@ func testShortReorgedSetHead(t *testing.T, snapshots bool) {
// The side chain could be left to be if the fork point was before the new head
// we are deleting to, but it would be exceedingly hard to detect that case and
// properly handle it, so we'll trade extra work in exchange for simpler code.
func TestShortReorgedFastSyncedSetHead(t *testing.T) {
testShortReorgedFastSyncedSetHead(t, false)
func TestShortReorgedSnapSyncedSetHead(t *testing.T) {
testShortReorgedSnapSyncedSetHead(t, false)
}
func TestShortReorgedFastSyncedSetHeadWithSnapshots(t *testing.T) {
testShortReorgedFastSyncedSetHead(t, true)
func TestShortReorgedSnapSyncedSetHeadWithSnapshots(t *testing.T) {
testShortReorgedSnapSyncedSetHead(t, true)
}
func testShortReorgedFastSyncedSetHead(t *testing.T, snapshots bool) {
func testShortReorgedSnapSyncedSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10
@ -686,14 +686,14 @@ func testShortReorgedFastSyncedSetHead(t *testing.T, snapshots bool) {
// The side chain could be left to be if the fork point was before the new head
// we are deleting to, but it would be exceedingly hard to detect that case and
// properly handle it, so we'll trade extra work in exchange for simpler code.
func TestShortReorgedFastSyncingSetHead(t *testing.T) {
testShortReorgedFastSyncingSetHead(t, false)
func TestShortReorgedSnapSyncingSetHead(t *testing.T) {
testShortReorgedSnapSyncingSetHead(t, false)
}
func TestShortReorgedFastSyncingSetHeadWithSnapshots(t *testing.T) {
testShortReorgedFastSyncingSetHead(t, true)
func TestShortReorgedSnapSyncingSetHeadWithSnapshots(t *testing.T) {
testShortReorgedSnapSyncingSetHead(t, true)
}
func testShortReorgedFastSyncingSetHead(t *testing.T, snapshots bool) {
func testShortReorgedSnapSyncingSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10
@ -829,14 +829,14 @@ func testLongDeepSetHead(t *testing.T, snapshots bool) {
// back to the committed block. Everything above the sethead point should be
// deleted. In between the committed block and the requested head the data can
// remain as "fast sync" data to avoid redownloading it.
func TestLongFastSyncedShallowSetHead(t *testing.T) {
testLongFastSyncedShallowSetHead(t, false)
func TestLongSnapSyncedShallowSetHead(t *testing.T) {
testLongSnapSyncedShallowSetHead(t, false)
}
func TestLongFastSyncedShallowSetHeadWithSnapshots(t *testing.T) {
testLongFastSyncedShallowSetHead(t, true)
func TestLongSnapSyncedShallowSetHeadWithSnapshots(t *testing.T) {
testLongSnapSyncedShallowSetHead(t, true)
}
func testLongFastSyncedShallowSetHead(t *testing.T, snapshots bool) {
func testLongSnapSyncedShallowSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
//
@ -880,10 +880,10 @@ func testLongFastSyncedShallowSetHead(t *testing.T, snapshots bool) {
// which sethead was called. In this case we expect the full chain to be rolled
// back to the committed block. Since the ancient limit was underflown, everything
// needs to be deleted onwards to avoid creating a gap.
func TestLongFastSyncedDeepSetHead(t *testing.T) { testLongFastSyncedDeepSetHead(t, false) }
func TestLongFastSyncedDeepSetHeadWithSnapshots(t *testing.T) { testLongFastSyncedDeepSetHead(t, true) }
func TestLongSnapSyncedDeepSetHead(t *testing.T) { testLongSnapSyncedDeepSetHead(t, false) }
func TestLongSnapSyncedDeepSetHeadWithSnapshots(t *testing.T) { testLongSnapSyncedDeepSetHead(t, true) }
func testLongFastSyncedDeepSetHead(t *testing.T, snapshots bool) {
func testLongSnapSyncedDeepSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
//
@ -926,14 +926,14 @@ func testLongFastSyncedDeepSetHead(t *testing.T, snapshots bool) {
// sethead was called. In this case we expect the chain to detect that it was fast
// syncing and delete everything from the new head, since we can just pick up fast
// syncing from there.
func TestLongFastSyncingShallowSetHead(t *testing.T) {
testLongFastSyncingShallowSetHead(t, false)
func TestLongSnapSyncingShallowSetHead(t *testing.T) {
testLongSnapSyncingShallowSetHead(t, false)
}
func TestLongFastSyncingShallowSetHeadWithSnapshots(t *testing.T) {
testLongFastSyncingShallowSetHead(t, true)
func TestLongSnapSyncingShallowSetHeadWithSnapshots(t *testing.T) {
testLongSnapSyncingShallowSetHead(t, true)
}
func testLongFastSyncingShallowSetHead(t *testing.T, snapshots bool) {
func testLongSnapSyncingShallowSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
//
@ -977,14 +977,14 @@ func testLongFastSyncingShallowSetHead(t *testing.T, snapshots bool) {
// sethead was called. In this case we expect the chain to detect that it was fast
// syncing and delete everything from the new head, since we can just pick up fast
// syncing from there.
func TestLongFastSyncingDeepSetHead(t *testing.T) {
testLongFastSyncingDeepSetHead(t, false)
func TestLongSnapSyncingDeepSetHead(t *testing.T) {
testLongSnapSyncingDeepSetHead(t, false)
}
func TestLongFastSyncingDeepSetHeadWithSnapshots(t *testing.T) {
testLongFastSyncingDeepSetHead(t, true)
func TestLongSnapSyncingDeepSetHeadWithSnapshots(t *testing.T) {
testLongSnapSyncingDeepSetHead(t, true)
}
func testLongFastSyncingDeepSetHead(t *testing.T, snapshots bool) {
func testLongSnapSyncingDeepSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
//
@ -1132,14 +1132,14 @@ func testLongOldForkedDeepSetHead(t *testing.T, snapshots bool) {
// sethead point should be deleted. In between the committed block and the
// requested head the data can remain as "fast sync" data to avoid redownloading
// it. The side chain is nuked by the freezer.
func TestLongOldForkedFastSyncedShallowSetHead(t *testing.T) {
testLongOldForkedFastSyncedShallowSetHead(t, false)
func TestLongOldForkedSnapSyncedShallowSetHead(t *testing.T) {
testLongOldForkedSnapSyncedShallowSetHead(t, false)
}
func TestLongOldForkedFastSyncedShallowSetHeadWithSnapshots(t *testing.T) {
testLongOldForkedFastSyncedShallowSetHead(t, true)
func TestLongOldForkedSnapSyncedShallowSetHeadWithSnapshots(t *testing.T) {
testLongOldForkedSnapSyncedShallowSetHead(t, true)
}
func testLongOldForkedFastSyncedShallowSetHead(t *testing.T, snapshots bool) {
func testLongOldForkedSnapSyncedShallowSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3
@ -1186,14 +1186,14 @@ func testLongOldForkedFastSyncedShallowSetHead(t *testing.T, snapshots bool) {
// full chain to be rolled back to the committed block. Since the ancient limit was
// underflown, everything needs to be deleted onwards to avoid creating a gap. The
// side chain is nuked by the freezer.
func TestLongOldForkedFastSyncedDeepSetHead(t *testing.T) {
testLongOldForkedFastSyncedDeepSetHead(t, false)
func TestLongOldForkedSnapSyncedDeepSetHead(t *testing.T) {
testLongOldForkedSnapSyncedDeepSetHead(t, false)
}
func TestLongOldForkedFastSyncedDeepSetHeadWithSnapshots(t *testing.T) {
testLongOldForkedFastSyncedDeepSetHead(t, true)
func TestLongOldForkedSnapSyncedDeepSetHeadWithSnapshots(t *testing.T) {
testLongOldForkedSnapSyncedDeepSetHead(t, true)
}
func testLongOldForkedFastSyncedDeepSetHead(t *testing.T, snapshots bool) {
func testLongOldForkedSnapSyncedDeepSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3
@ -1239,14 +1239,14 @@ func testLongOldForkedFastSyncedDeepSetHead(t *testing.T, snapshots bool) {
// that it was fast syncing and delete everything from the new head, since we can
// just pick up fast syncing from there. The side chain is completely nuked by the
// freezer.
func TestLongOldForkedFastSyncingShallowSetHead(t *testing.T) {
testLongOldForkedFastSyncingShallowSetHead(t, false)
func TestLongOldForkedSnapSyncingShallowSetHead(t *testing.T) {
testLongOldForkedSnapSyncingShallowSetHead(t, false)
}
func TestLongOldForkedFastSyncingShallowSetHeadWithSnapshots(t *testing.T) {
testLongOldForkedFastSyncingShallowSetHead(t, true)
func TestLongOldForkedSnapSyncingShallowSetHeadWithSnapshots(t *testing.T) {
testLongOldForkedSnapSyncingShallowSetHead(t, true)
}
func testLongOldForkedFastSyncingShallowSetHead(t *testing.T, snapshots bool) {
func testLongOldForkedSnapSyncingShallowSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3
@ -1293,14 +1293,14 @@ func testLongOldForkedFastSyncingShallowSetHead(t *testing.T, snapshots bool) {
// that it was fast syncing and delete everything from the new head, since we can
// just pick up fast syncing from there. The side chain is completely nuked by the
// freezer.
func TestLongOldForkedFastSyncingDeepSetHead(t *testing.T) {
testLongOldForkedFastSyncingDeepSetHead(t, false)
func TestLongOldForkedSnapSyncingDeepSetHead(t *testing.T) {
testLongOldForkedSnapSyncingDeepSetHead(t, false)
}
func TestLongOldForkedFastSyncingDeepSetHeadWithSnapshots(t *testing.T) {
testLongOldForkedFastSyncingDeepSetHead(t, true)
func TestLongOldForkedSnapSyncingDeepSetHeadWithSnapshots(t *testing.T) {
testLongOldForkedSnapSyncingDeepSetHead(t, true)
}
func testLongOldForkedFastSyncingDeepSetHead(t *testing.T, snapshots bool) {
func testLongOldForkedSnapSyncingDeepSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3
@ -1446,15 +1446,15 @@ func testLongNewerForkedDeepSetHead(t *testing.T, snapshots bool) {
// side chain, where the fast sync pivot point - newer than the ancient limit -
// was already committed to disk and then sethead was called. In this test scenario
// the side chain is above the committed block. In this case the freezer will delete
// the sidechain since it's dangling, reverting to TestLongFastSyncedShallowSetHead.
func TestLongNewerForkedFastSyncedShallowSetHead(t *testing.T) {
testLongNewerForkedFastSyncedShallowSetHead(t, false)
// the sidechain since it's dangling, reverting to TestLongSnapSyncedShallowSetHead.
func TestLongNewerForkedSnapSyncedShallowSetHead(t *testing.T) {
testLongNewerForkedSnapSyncedShallowSetHead(t, false)
}
func TestLongNewerForkedFastSyncedShallowSetHeadWithSnapshots(t *testing.T) {
testLongNewerForkedFastSyncedShallowSetHead(t, true)
func TestLongNewerForkedSnapSyncedShallowSetHeadWithSnapshots(t *testing.T) {
testLongNewerForkedSnapSyncedShallowSetHead(t, true)
}
func testLongNewerForkedFastSyncedShallowSetHead(t *testing.T, snapshots bool) {
func testLongNewerForkedSnapSyncedShallowSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12
@ -1498,15 +1498,15 @@ func testLongNewerForkedFastSyncedShallowSetHead(t *testing.T, snapshots bool) {
// side chain, where the fast sync pivot point - older than the ancient limit -
// was already committed to disk and then sethead was called. In this test scenario
// the side chain is above the committed block. In this case the freezer will delete
// the sidechain since it's dangling, reverting to TestLongFastSyncedDeepSetHead.
func TestLongNewerForkedFastSyncedDeepSetHead(t *testing.T) {
testLongNewerForkedFastSyncedDeepSetHead(t, false)
// the sidechain since it's dangling, reverting to TestLongSnapSyncedDeepSetHead.
func TestLongNewerForkedSnapSyncedDeepSetHead(t *testing.T) {
testLongNewerForkedSnapSyncedDeepSetHead(t, false)
}
func TestLongNewerForkedFastSyncedDeepSetHeadWithSnapshots(t *testing.T) {
testLongNewerForkedFastSyncedDeepSetHead(t, true)
func TestLongNewerForkedSnapSyncedDeepSetHeadWithSnapshots(t *testing.T) {
testLongNewerForkedSnapSyncedDeepSetHead(t, true)
}
func testLongNewerForkedFastSyncedDeepSetHead(t *testing.T, snapshots bool) {
func testLongNewerForkedSnapSyncedDeepSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12
@ -1549,15 +1549,15 @@ func testLongNewerForkedFastSyncedDeepSetHead(t *testing.T, snapshots bool) {
// side chain, where the fast sync pivot point - newer than the ancient limit -
// was not yet committed, but sethead was called. In this test scenario the side
// chain is above the committed block. In this case the freezer will delete the
// sidechain since it's dangling, reverting to TestLongFastSyncinghallowSetHead.
func TestLongNewerForkedFastSyncingShallowSetHead(t *testing.T) {
testLongNewerForkedFastSyncingShallowSetHead(t, false)
// sidechain since it's dangling, reverting to TestLongSnapSyncinghallowSetHead.
func TestLongNewerForkedSnapSyncingShallowSetHead(t *testing.T) {
testLongNewerForkedSnapSyncingShallowSetHead(t, false)
}
func TestLongNewerForkedFastSyncingShallowSetHeadWithSnapshots(t *testing.T) {
testLongNewerForkedFastSyncingShallowSetHead(t, true)
func TestLongNewerForkedSnapSyncingShallowSetHeadWithSnapshots(t *testing.T) {
testLongNewerForkedSnapSyncingShallowSetHead(t, true)
}
func testLongNewerForkedFastSyncingShallowSetHead(t *testing.T, snapshots bool) {
func testLongNewerForkedSnapSyncingShallowSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12
@ -1601,15 +1601,15 @@ func testLongNewerForkedFastSyncingShallowSetHead(t *testing.T, snapshots bool)
// side chain, where the fast sync pivot point - older than the ancient limit -
// was not yet committed, but sethead was called. In this test scenario the side
// chain is above the committed block. In this case the freezer will delete the
// sidechain since it's dangling, reverting to TestLongFastSyncingDeepSetHead.
func TestLongNewerForkedFastSyncingDeepSetHead(t *testing.T) {
testLongNewerForkedFastSyncingDeepSetHead(t, false)
// sidechain since it's dangling, reverting to TestLongSnapSyncingDeepSetHead.
func TestLongNewerForkedSnapSyncingDeepSetHead(t *testing.T) {
testLongNewerForkedSnapSyncingDeepSetHead(t, false)
}
func TestLongNewerForkedFastSyncingDeepSetHeadWithSnapshots(t *testing.T) {
testLongNewerForkedFastSyncingDeepSetHead(t, true)
func TestLongNewerForkedSnapSyncingDeepSetHeadWithSnapshots(t *testing.T) {
testLongNewerForkedSnapSyncingDeepSetHead(t, true)
}
func testLongNewerForkedFastSyncingDeepSetHead(t *testing.T, snapshots bool) {
func testLongNewerForkedSnapSyncingDeepSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12
@ -1745,15 +1745,15 @@ func testLongReorgedDeepSetHead(t *testing.T, snapshots bool) {
// side chain, where the fast sync pivot point - newer than the ancient limit -
// was already committed to disk and then sethead was called. In this case the
// freezer will delete the sidechain since it's dangling, reverting to
// TestLongFastSyncedShallowSetHead.
func TestLongReorgedFastSyncedShallowSetHead(t *testing.T) {
testLongReorgedFastSyncedShallowSetHead(t, false)
// TestLongSnapSyncedShallowSetHead.
func TestLongReorgedSnapSyncedShallowSetHead(t *testing.T) {
testLongReorgedSnapSyncedShallowSetHead(t, false)
}
func TestLongReorgedFastSyncedShallowSetHeadWithSnapshots(t *testing.T) {
testLongReorgedFastSyncedShallowSetHead(t, true)
func TestLongReorgedSnapSyncedShallowSetHeadWithSnapshots(t *testing.T) {
testLongReorgedSnapSyncedShallowSetHead(t, true)
}
func testLongReorgedFastSyncedShallowSetHead(t *testing.T, snapshots bool) {
func testLongReorgedSnapSyncedShallowSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12->S13->S14->S15->S16->S17->S18->S19->S20->S21->S22->S23->S24->S25->S26
@ -1797,15 +1797,15 @@ func testLongReorgedFastSyncedShallowSetHead(t *testing.T, snapshots bool) {
// side chain, where the fast sync pivot point - older than the ancient limit -
// was already committed to disk and then sethead was called. In this case the
// freezer will delete the sidechain since it's dangling, reverting to
// TestLongFastSyncedDeepSetHead.
func TestLongReorgedFastSyncedDeepSetHead(t *testing.T) {
testLongReorgedFastSyncedDeepSetHead(t, false)
// TestLongSnapSyncedDeepSetHead.
func TestLongReorgedSnapSyncedDeepSetHead(t *testing.T) {
testLongReorgedSnapSyncedDeepSetHead(t, false)
}
func TestLongReorgedFastSyncedDeepSetHeadWithSnapshots(t *testing.T) {
testLongReorgedFastSyncedDeepSetHead(t, true)
func TestLongReorgedSnapSyncedDeepSetHeadWithSnapshots(t *testing.T) {
testLongReorgedSnapSyncedDeepSetHead(t, true)
}
func testLongReorgedFastSyncedDeepSetHead(t *testing.T, snapshots bool) {
func testLongReorgedSnapSyncedDeepSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12->S13->S14->S15->S16->S17->S18->S19->S20->S21->S22->S23->S24->S25->S26
@ -1850,14 +1850,14 @@ func testLongReorgedFastSyncedDeepSetHead(t *testing.T, snapshots bool) {
// chain to detect that it was fast syncing and delete everything from the new
// head, since we can just pick up fast syncing from there. The side chain is
// completely nuked by the freezer.
func TestLongReorgedFastSyncingShallowSetHead(t *testing.T) {
testLongReorgedFastSyncingShallowSetHead(t, false)
func TestLongReorgedSnapSyncingShallowSetHead(t *testing.T) {
testLongReorgedSnapSyncingShallowSetHead(t, false)
}
func TestLongReorgedFastSyncingShallowSetHeadWithSnapshots(t *testing.T) {
testLongReorgedFastSyncingShallowSetHead(t, true)
func TestLongReorgedSnapSyncingShallowSetHeadWithSnapshots(t *testing.T) {
testLongReorgedSnapSyncingShallowSetHead(t, true)
}
func testLongReorgedFastSyncingShallowSetHead(t *testing.T, snapshots bool) {
func testLongReorgedSnapSyncingShallowSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12->S13->S14->S15->S16->S17->S18->S19->S20->S21->S22->S23->S24->S25->S26
@ -1903,14 +1903,14 @@ func testLongReorgedFastSyncingShallowSetHead(t *testing.T, snapshots bool) {
// chain to detect that it was fast syncing and delete everything from the new
// head, since we can just pick up fast syncing from there. The side chain is
// completely nuked by the freezer.
func TestLongReorgedFastSyncingDeepSetHead(t *testing.T) {
testLongReorgedFastSyncingDeepSetHead(t, false)
func TestLongReorgedSnapSyncingDeepSetHead(t *testing.T) {
testLongReorgedSnapSyncingDeepSetHead(t, false)
}
func TestLongReorgedFastSyncingDeepSetHeadWithSnapshots(t *testing.T) {
testLongReorgedFastSyncingDeepSetHead(t, true)
func TestLongReorgedSnapSyncingDeepSetHeadWithSnapshots(t *testing.T) {
testLongReorgedSnapSyncingDeepSetHead(t, true)
}
func testLongReorgedFastSyncingDeepSetHead(t *testing.T, snapshots bool) {
func testLongReorgedSnapSyncingDeepSetHead(t *testing.T, snapshots bool) {
// Chain:
// G->C1->C2->C3->C4->C5->C6->C7->C8->C9->C10->C11->C12->C13->C14->C15->C16->C17->C18->C19->C20->C21->C22->C23->C24 (HEAD)
// └->S1->S2->S3->S4->S5->S6->S7->S8->S9->S10->S11->S12->S13->S14->S15->S16->S17->S18->S19->S20->S21->S22->S23->S24->S25->S26

@ -2637,7 +2637,7 @@ func TestTransactionIndices(t *testing.T) {
}
}
func TestSkipStaleTxIndicesInFastSync(t *testing.T) {
func TestSkipStaleTxIndicesInSnapSync(t *testing.T) {
// Configure and generate a sample block chain
var (
gendb = rawdb.NewMemoryDatabase()

@ -155,6 +155,28 @@ func (b *BlockGen) TxNonce(addr common.Address) uint64 {
// AddUncle adds an uncle header to the generated block.
func (b *BlockGen) AddUncle(h *types.Header) {
// The uncle will have the same timestamp and auto-generated difficulty
h.Time = b.header.Time
var parent *types.Header
for i := b.i - 1; i >= 0; i-- {
if b.chain[i].Hash() == h.ParentHash {
parent = b.chain[i].Header()
break
}
}
chainreader := &fakeChainReader{config: b.config}
h.Difficulty = b.engine.CalcDifficulty(chainreader, b.header.Time, parent)
// The gas limit and price should be derived from the parent
h.GasLimit = parent.GasLimit
if b.config.IsLondon(h.Number) {
h.BaseFee = misc.CalcBaseFee(b.config, parent)
if !b.config.IsLondon(parent.Number) {
parentGasLimit := parent.GasLimit * params.ElasticityMultiplier
h.GasLimit = CalcGasLimit(parentGasLimit, parentGasLimit)
}
}
b.uncles = append(b.uncles, h)
}

@ -242,24 +242,6 @@ func WriteLastPivotNumber(db ethdb.KeyValueWriter, pivot uint64) {
}
}
// ReadFastTrieProgress retrieves the number of tries nodes fast synced to allow
// reporting correct numbers across restarts.
func ReadFastTrieProgress(db ethdb.KeyValueReader) uint64 {
data, _ := db.Get(fastTrieProgressKey)
if len(data) == 0 {
return 0
}
return new(big.Int).SetBytes(data).Uint64()
}
// WriteFastTrieProgress stores the fast sync trie process counter to support
// retrieving it across restarts.
func WriteFastTrieProgress(db ethdb.KeyValueWriter, count uint64) {
if err := db.Put(fastTrieProgressKey, new(big.Int).SetUint64(count).Bytes()); err != nil {
log.Crit("Failed to store fast sync trie progress", "err", err)
}
}
// ReadTxIndexTail retrieves the number of oldest indexed block
// whose transaction indices has been indexed. If the corresponding entry
// is non-existent in database it means the indexing has been finished.

@ -208,11 +208,3 @@ func WriteSnapshotSyncStatus(db ethdb.KeyValueWriter, status []byte) {
log.Crit("Failed to store snapshot sync status", "err", err)
}
}
// DeleteSnapshotSyncStatus deletes the serialized sync status saved at the last
// shutdown
func DeleteSnapshotSyncStatus(db ethdb.KeyValueWriter) {
if err := db.Delete(snapshotSyncStatusKey); err != nil {
log.Crit("Failed to remove snapshot sync status", "err", err)
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

115
eth/downloader/fetchers.go Normal file

@ -0,0 +1,115 @@
// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
)
// fetchHeadersByHash is a blocking version of Peer.RequestHeadersByHash which
// handles all the cancellation, interruption and timeout mechanisms of a data
// retrieval to allow blocking API calls.
func (d *Downloader) fetchHeadersByHash(p *peerConnection, hash common.Hash, amount int, skip int, reverse bool) ([]*types.Header, error) {
// Create the response sink and send the network request
start := time.Now()
resCh := make(chan *eth.Response)
req, err := p.peer.RequestHeadersByHash(hash, amount, skip, reverse, resCh)
if err != nil {
return nil, err
}
defer req.Close()
// Wait until the response arrives, the request is cancelled or times out
ttl := d.peers.rates.TargetTimeout()
timeoutTimer := time.NewTimer(ttl)
defer timeoutTimer.Stop()
select {
case <-d.cancelCh:
return nil, errCanceled
case <-timeoutTimer.C:
// Header retrieval timed out, update the metrics
p.log.Debug("Header request timed out", "elapsed", ttl)
headerTimeoutMeter.Mark(1)
return nil, errTimeout
case res := <-resCh:
// Headers successfully retrieved, update the metrics
headerReqTimer.Update(time.Since(start))
headerInMeter.Mark(int64(len(*res.Res.(*eth.BlockHeadersPacket))))
// Don't reject the packet even if it turns out to be bad, downloader will
// disconnect the peer on its own terms. Simply delivery the headers to
// be processed by the caller
res.Done <- nil
return *res.Res.(*eth.BlockHeadersPacket), nil
}
}
// fetchHeadersByNumber is a blocking version of Peer.RequestHeadersByNumber which
// handles all the cancellation, interruption and timeout mechanisms of a data
// retrieval to allow blocking API calls.
func (d *Downloader) fetchHeadersByNumber(p *peerConnection, number uint64, amount int, skip int, reverse bool) ([]*types.Header, error) {
// Create the response sink and send the network request
start := time.Now()
resCh := make(chan *eth.Response)
req, err := p.peer.RequestHeadersByNumber(number, amount, skip, reverse, resCh)
if err != nil {
return nil, err
}
defer req.Close()
// Wait until the response arrives, the request is cancelled or times out
ttl := d.peers.rates.TargetTimeout()
timeoutTimer := time.NewTimer(ttl)
defer timeoutTimer.Stop()
select {
case <-d.cancelCh:
return nil, errCanceled
case <-timeoutTimer.C:
// Header retrieval timed out, update the metrics
p.log.Debug("Header request timed out", "elapsed", ttl)
headerTimeoutMeter.Mark(1)
return nil, errTimeout
case res := <-resCh:
// Headers successfully retrieved, update the metrics
headerReqTimer.Update(time.Since(start))
headerInMeter.Mark(int64(len(*res.Res.(*eth.BlockHeadersPacket))))
// Don't reject the packet even if it turns out to be bad, downloader will
// disconnect the peer on its own terms. Simply delivery the headers to
// be processed by the caller
res.Done <- nil
return *res.Res.(*eth.BlockHeadersPacket), nil
}
}

@ -0,0 +1,381 @@
// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"errors"
"sort"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/log"
)
// timeoutGracePeriod is the amount of time to allow for a peer to deliver a
// response to a locally already timed out request. Timeouts are not penalized
// as a peer might be temporarily overloaded, however, they still must reply
// to each request. Failing to do so is considered a protocol violation.
var timeoutGracePeriod = 2 * time.Minute
// typedQueue is an interface defining the adaptor needed to translate the type
// specific downloader/queue schedulers into the type-agnostic general concurrent
// fetcher algorithm calls.
type typedQueue interface {
// waker returns a notification channel that gets pinged in case more fetches
// have been queued up, so the fetcher might assign it to idle peers.
waker() chan bool
// pending returns the number of wrapped items that are currently queued for
// fetching by the concurrent downloader.
pending() int
// capacity is responsible for calculating how many items of the abstracted
// type a particular peer is estimated to be able to retrieve within the
// alloted round trip time.
capacity(peer *peerConnection, rtt time.Duration) int
// updateCapacity is responsible for updating how many items of the abstracted
// type a particular peer is estimated to be able to retrieve in a unit time.
updateCapacity(peer *peerConnection, items int, elapsed time.Duration)
// reserve is responsible for allocating a requested number of pending items
// from the download queue to the specified peer.
reserve(peer *peerConnection, items int) (*fetchRequest, bool, bool)
// unreserve is resposible for removing the current retrieval allocation
// assigned to a specific peer and placing it back into the pool to allow
// reassigning to some other peer.
unreserve(peer string) int
// request is responsible for converting a generic fetch request into a typed
// one and sending it to the remote peer for fulfillment.
request(peer *peerConnection, req *fetchRequest, resCh chan *eth.Response) (*eth.Request, error)
// deliver is responsible for taking a generic response packet from the
// concurrent fetcher, unpacking the type specific data and delivering
// it to the downloader's queue.
deliver(peer *peerConnection, packet *eth.Response) (int, error)
}
// concurrentFetch iteratively downloads scheduled block parts, taking available
// peers, reserving a chunk of fetch requests for each and waiting for delivery
// or timeouts.
func (d *Downloader) concurrentFetch(queue typedQueue) error {
// Create a delivery channel to accept responses from all peers
responses := make(chan *eth.Response)
// Track the currently active requests and their timeout order
pending := make(map[string]*eth.Request)
defer func() {
// Abort all requests on sync cycle cancellation. The requests may still
// be fulfilled by the remote side, but the dispatcher will not wait to
// deliver them since nobody's going to be listening.
for _, req := range pending {
req.Close()
}
}()
ordering := make(map[*eth.Request]int)
timeouts := prque.New(func(data interface{}, index int) {
ordering[data.(*eth.Request)] = index
})
timeout := time.NewTimer(0)
if !timeout.Stop() {
<-timeout.C
}
defer timeout.Stop()
// Track the timed-out but not-yet-answered requests separately. We want to
// keep tracking which peers are busy (potentially overloaded), so removing
// all trace of a timed out request is not good. We also can't just cancel
// the pending request altogether as that would prevent a late response from
// being delivered, thus never unblocking the peer.
stales := make(map[string]*eth.Request)
defer func() {
// Abort all requests on sync cycle cancellation. The requests may still
// be fulfilled by the remote side, but the dispatcher will not wait to
// deliver them since nobody's going to be listening.
for _, req := range stales {
req.Close()
}
}()
// Subscribe to peer lifecycle events to schedule tasks to new joiners and
// reschedule tasks upon disconnections. We don't care which event happened
// for simplicity, so just use a single channel.
peering := make(chan *peeringEvent, 64) // arbitrary buffer, just some burst protection
peeringSub := d.peers.SubscribeEvents(peering)
defer peeringSub.Unsubscribe()
// Prepare the queue and fetch block parts until the block header fetcher's done
finished := false
for {
// Short circuit if we lost all our peers
if d.peers.Len() == 0 {
return errNoPeers
}
// If there's nothing more to fetch, wait or terminate
if queue.pending() == 0 {
if len(pending) == 0 && finished {
return nil
}
} else {
// Send a download request to all idle peers, until throttled
var (
idles []*peerConnection
caps []int
)
for _, peer := range d.peers.AllPeers() {
pending, stale := pending[peer.id], stales[peer.id]
if pending == nil && stale == nil {
idles = append(idles, peer)
caps = append(caps, queue.capacity(peer, time.Second))
} else if stale != nil {
if waited := time.Since(stale.Sent); waited > timeoutGracePeriod {
// Request has been in flight longer than the grace period
// permitted it, consider the peer malicious attempting to
// stall the sync.
peer.log.Warn("Peer stalling, dropping", "waited", common.PrettyDuration(waited))
d.dropPeer(peer.id)
}
}
}
sort.Sort(&peerCapacitySort{idles, caps})
var (
progressed bool
throttled bool
queued = queue.pending()
)
for _, peer := range idles {
// Short circuit if throttling activated or there are no more
// queued tasks to be retrieved
if throttled {
break
}
if queued = queue.pending(); queued == 0 {
break
}
// Reserve a chunk of fetches for a peer. A nil can mean either that
// no more headers are available, or that the peer is known not to
// have them.
request, progress, throttle := queue.reserve(peer, queue.capacity(peer, d.peers.rates.TargetRoundTrip()))
if progress {
progressed = true
}
if throttle {
throttled = true
throttleCounter.Inc(1)
}
if request == nil {
continue
}
// Fetch the chunk and make sure any errors return the hashes to the queue
req, err := queue.request(peer, request, responses)
if err != nil {
// Sending the request failed, which generally means the peer
// was diconnected in between assignment and network send.
// Although all peer removal operations return allocated tasks
// to the queue, that is async, and we can do better here by
// immediately pushing the unfulfilled requests.
queue.unreserve(peer.id) // TODO(karalabe): This needs a non-expiration method
continue
}
pending[peer.id] = req
ttl := d.peers.rates.TargetTimeout()
ordering[req] = timeouts.Size()
timeouts.Push(req, -time.Now().Add(ttl).UnixNano())
if timeouts.Size() == 1 {
timeout.Reset(ttl)
}
}
// Make sure that we have peers available for fetching. If all peers have been tried
// and all failed throw an error
if !progressed && !throttled && len(pending) == 0 && len(idles) == d.peers.Len() && queued > 0 {
return errPeersUnavailable
}
}
// Wait for something to happen
select {
case <-d.cancelCh:
// If sync was cancelled, tear down the parallel retriever. Pending
// requests will be cancelled locally, and the remote responses will
// be dropped when they arrive
return errCanceled
case event := <-peering:
// A peer joined or left, the tasks queue and allocations need to be
// checked for potential assignment or reassignment
peerid := event.peer.id
if event.join {
// Sanity check the internal state; this can be dropped later
if _, ok := pending[peerid]; ok {
event.peer.log.Error("Pending request exists for joining peer")
}
if _, ok := stales[peerid]; ok {
event.peer.log.Error("Stale request exists for joining peer")
}
// Loop back to the entry point for task assignment
continue
}
// A peer left, any existing requests need to be untracked, pending
// tasks returned and possible reassignment checked
if req, ok := pending[peerid]; ok {
queue.unreserve(peerid) // TODO(karalabe): This needs a non-expiration method
delete(pending, peerid)
req.Close()
if index, live := ordering[req]; live {
timeouts.Remove(index)
if index == 0 {
if !timeout.Stop() {
<-timeout.C
}
if timeouts.Size() > 0 {
_, exp := timeouts.Peek()
timeout.Reset(time.Until(time.Unix(0, -exp)))
}
}
delete(ordering, req)
}
}
if req, ok := stales[peerid]; ok {
delete(stales, peerid)
req.Close()
}
case <-timeout.C:
// Retrieve the next request which should have timed out. The check
// below is purely for to catch programming errors, given the correct
// code, there's no possible order of events that should result in a
// timeout firing for a non-existent event.
item, exp := timeouts.Peek()
if now, at := time.Now(), time.Unix(0, -exp); now.Before(at) {
log.Error("Timeout triggered but not reached", "left", at.Sub(now))
timeout.Reset(at.Sub(now))
continue
}
req := item.(*eth.Request)
// Stop tracking the timed out request from a timing perspective,
// cancel it, so it's not considered in-flight anymore, but keep
// the peer marked busy to prevent assigning a second request and
// overloading it further.
delete(pending, req.Peer)
stales[req.Peer] = req
delete(ordering, req)
timeouts.Pop()
if timeouts.Size() > 0 {
_, exp := timeouts.Peek()
timeout.Reset(time.Until(time.Unix(0, -exp)))
}
// New timeout potentially set if there are more requests pending,
// reschedule the failed one to a free peer
fails := queue.unreserve(req.Peer)
// Finally, update the peer's retrieval capacity, or if it's already
// below the minimum allowance, drop the peer. If a lot of retrieval
// elements expired, we might have overestimated the remote peer or
// perhaps ourselves. Only reset to minimal throughput but don't drop
// just yet.
//
// The reason the minimum threshold is 2 is that the downloader tries
// to estimate the bandwidth and latency of a peer separately, which
// requires pushing the measured capacity a bit and seeing how response
// times reacts, to it always requests one more than the minimum (i.e.
// min 2).
peer := d.peers.Peer(req.Peer)
if peer == nil {
// If the peer got disconnected in between, we should really have
// short-circuited it already. Just in case there's some strange
// codepath, leave this check in not to crash.
log.Error("Delivery timeout from unknown peer", "peer", req.Peer)
continue
}
if fails > 2 {
queue.updateCapacity(peer, 0, 0)
} else {
d.dropPeer(peer.id)
// If this peer was the master peer, abort sync immediately
d.cancelLock.RLock()
master := peer.id == d.cancelPeer
d.cancelLock.RUnlock()
if master {
d.cancel()
return errTimeout
}
}
case res := <-responses:
// Response arrived, it may be for an existing or an already timed
// out request. If the former, update the timeout heap and perhaps
// reschedule the timeout timer.
index, live := ordering[res.Req]
if live {
timeouts.Remove(index)
if index == 0 {
if !timeout.Stop() {
<-timeout.C
}
if timeouts.Size() > 0 {
_, exp := timeouts.Peek()
timeout.Reset(time.Until(time.Unix(0, -exp)))
}
}
delete(ordering, res.Req)
}
// Delete the pending request (if it still exists) and mark the peer idle
delete(pending, res.Req.Peer)
delete(stales, res.Req.Peer)
// Signal the dispatcher that the round trip is done. We'll drop the
// peer if the data turns out to be junk.
res.Done <- nil
res.Req.Close()
// If the peer was previously banned and failed to deliver its pack
// in a reasonable time frame, ignore its message.
if peer := d.peers.Peer(res.Req.Peer); peer != nil {
// Deliver the received chunk of data and check chain validity
accepted, err := queue.deliver(peer, res)
if errors.Is(err, errInvalidChain) {
return err
}
// Unless a peer delivered something completely else than requested (usually
// caused by a timed out request which came through in the end), set it to
// idle. If the delivery's stale, the peer should have already been idled.
if !errors.Is(err, errStaleDelivery) {
queue.updateCapacity(peer, accepted, res.Time)
}
}
case cont := <-queue.waker():
// The header fetcher sent a continuation flag, check if it's done
if !cont {
finished = true
}
}
}
}

@ -0,0 +1,104 @@
// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/log"
)
// bodyQueue implements typedQueue and is a type adapter between the generic
// concurrent fetcher and the downloader.
type bodyQueue Downloader
// waker returns a notification channel that gets pinged in case more body
// fetches have been queued up, so the fetcher might assign it to idle peers.
func (q *bodyQueue) waker() chan bool {
return q.queue.blockWakeCh
}
// pending returns the number of bodies that are currently queued for fetching
// by the concurrent downloader.
func (q *bodyQueue) pending() int {
return q.queue.PendingBodies()
}
// capacity is responsible for calculating how many bodies a particular peer is
// estimated to be able to retrieve within the alloted round trip time.
func (q *bodyQueue) capacity(peer *peerConnection, rtt time.Duration) int {
return peer.BodyCapacity(rtt)
}
// updateCapacity is responsible for updating how many bodies a particular peer
// is estimated to be able to retrieve in a unit time.
func (q *bodyQueue) updateCapacity(peer *peerConnection, items int, span time.Duration) {
peer.UpdateBodyRate(items, span)
}
// reserve is responsible for allocating a requested number of pending bodies
// from the download queue to the specified peer.
func (q *bodyQueue) reserve(peer *peerConnection, items int) (*fetchRequest, bool, bool) {
return q.queue.ReserveBodies(peer, items)
}
// unreserve is resposible for removing the current body retrieval allocation
// assigned to a specific peer and placing it back into the pool to allow
// reassigning to some other peer.
func (q *bodyQueue) unreserve(peer string) int {
fails := q.queue.ExpireBodies(peer)
if fails > 2 {
log.Trace("Body delivery timed out", "peer", peer)
} else {
log.Debug("Body delivery stalling", "peer", peer)
}
return fails
}
// request is responsible for converting a generic fetch request into a body
// one and sending it to the remote peer for fulfillment.
func (q *bodyQueue) request(peer *peerConnection, req *fetchRequest, resCh chan *eth.Response) (*eth.Request, error) {
peer.log.Trace("Requesting new batch of bodies", "count", len(req.Headers), "from", req.Headers[0].Number)
if q.bodyFetchHook != nil {
q.bodyFetchHook(req.Headers)
}
hashes := make([]common.Hash, 0, len(req.Headers))
for _, header := range req.Headers {
hashes = append(hashes, header.Hash())
}
return peer.peer.RequestBodies(hashes, resCh)
}
// deliver is responsible for taking a generic response packet from the concurrent
// fetcher, unpacking the body data and delivering it to the downloader's queue.
func (q *bodyQueue) deliver(peer *peerConnection, packet *eth.Response) (int, error) {
txs, uncles := packet.Res.(*eth.BlockBodiesPacket).Unpack()
accepted, err := q.queue.DeliverBodies(peer.id, txs, uncles)
switch {
case err == nil && len(txs) == 0:
peer.log.Trace("Requested bodies delivered")
case err == nil:
peer.log.Trace("Delivered new batch of bodies", "count", len(txs), "accepted", accepted)
default:
peer.log.Debug("Failed to deliver retrieved bodies", "err", err)
}
return accepted, err
}

@ -0,0 +1,95 @@
// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"time"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/log"
)
// headerQueue implements typedQueue and is a type adapter between the generic
// concurrent fetcher and the downloader.
type headerQueue Downloader
// waker returns a notification channel that gets pinged in case more header
// fetches have been queued up, so the fetcher might assign it to idle peers.
func (q *headerQueue) waker() chan bool {
return q.queue.headerContCh
}
// pending returns the number of headers that are currently queued for fetching
// by the concurrent downloader.
func (q *headerQueue) pending() int {
return q.queue.PendingHeaders()
}
// capacity is responsible for calculating how many headers a particular peer is
// estimated to be able to retrieve within the alloted round trip time.
func (q *headerQueue) capacity(peer *peerConnection, rtt time.Duration) int {
return peer.HeaderCapacity(rtt)
}
// updateCapacity is responsible for updating how many headers a particular peer
// is estimated to be able to retrieve in a unit time.
func (q *headerQueue) updateCapacity(peer *peerConnection, items int, span time.Duration) {
peer.UpdateHeaderRate(items, span)
}
// reserve is responsible for allocating a requested number of pending headers
// from the download queue to the specified peer.
func (q *headerQueue) reserve(peer *peerConnection, items int) (*fetchRequest, bool, bool) {
return q.queue.ReserveHeaders(peer, items), false, false
}
// unreserve is resposible for removing the current header retrieval allocation
// assigned to a specific peer and placing it back into the pool to allow
// reassigning to some other peer.
func (q *headerQueue) unreserve(peer string) int {
fails := q.queue.ExpireHeaders(peer)
if fails > 2 {
log.Trace("Header delivery timed out", "peer", peer)
} else {
log.Debug("Header delivery stalling", "peer", peer)
}
return fails
}
// request is responsible for converting a generic fetch request into a header
// one and sending it to the remote peer for fulfillment.
func (q *headerQueue) request(peer *peerConnection, req *fetchRequest, resCh chan *eth.Response) (*eth.Request, error) {
peer.log.Trace("Requesting new batch of headers", "from", req.From)
return peer.peer.RequestHeadersByNumber(req.From, MaxHeaderFetch, 0, false, resCh)
}
// deliver is responsible for taking a generic response packet from the concurrent
// fetcher, unpacking the header data and delivering it to the downloader's queue.
func (q *headerQueue) deliver(peer *peerConnection, packet *eth.Response) (int, error) {
headers := *packet.Res.(*eth.BlockHeadersPacket)
accepted, err := q.queue.DeliverHeaders(peer.id, headers, q.headerProcCh)
switch {
case err == nil && len(headers) == 0:
peer.log.Trace("Requested headers delivered")
case err == nil:
peer.log.Trace("Delivered new batch of headers", "count", len(headers), "accepted", accepted)
default:
peer.log.Debug("Failed to deliver retrieved headers", "err", err)
}
return accepted, err
}

@ -0,0 +1,103 @@
// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/log"
)
// receiptQueue implements typedQueue and is a type adapter between the generic
// concurrent fetcher and the downloader.
type receiptQueue Downloader
// waker returns a notification channel that gets pinged in case more reecipt
// fetches have been queued up, so the fetcher might assign it to idle peers.
func (q *receiptQueue) waker() chan bool {
return q.queue.receiptWakeCh
}
// pending returns the number of receipt that are currently queued for fetching
// by the concurrent downloader.
func (q *receiptQueue) pending() int {
return q.queue.PendingReceipts()
}
// capacity is responsible for calculating how many receipts a particular peer is
// estimated to be able to retrieve within the alloted round trip time.
func (q *receiptQueue) capacity(peer *peerConnection, rtt time.Duration) int {
return peer.ReceiptCapacity(rtt)
}
// updateCapacity is responsible for updating how many receipts a particular peer
// is estimated to be able to retrieve in a unit time.
func (q *receiptQueue) updateCapacity(peer *peerConnection, items int, span time.Duration) {
peer.UpdateReceiptRate(items, span)
}
// reserve is responsible for allocating a requested number of pending receipts
// from the download queue to the specified peer.
func (q *receiptQueue) reserve(peer *peerConnection, items int) (*fetchRequest, bool, bool) {
return q.queue.ReserveReceipts(peer, items)
}
// unreserve is resposible for removing the current receipt retrieval allocation
// assigned to a specific peer and placing it back into the pool to allow
// reassigning to some other peer.
func (q *receiptQueue) unreserve(peer string) int {
fails := q.queue.ExpireReceipts(peer)
if fails > 2 {
log.Trace("Receipt delivery timed out", "peer", peer)
} else {
log.Debug("Receipt delivery stalling", "peer", peer)
}
return fails
}
// request is responsible for converting a generic fetch request into a receipt
// one and sending it to the remote peer for fulfillment.
func (q *receiptQueue) request(peer *peerConnection, req *fetchRequest, resCh chan *eth.Response) (*eth.Request, error) {
peer.log.Trace("Requesting new batch of receipts", "count", len(req.Headers), "from", req.Headers[0].Number)
if q.receiptFetchHook != nil {
q.receiptFetchHook(req.Headers)
}
hashes := make([]common.Hash, 0, len(req.Headers))
for _, header := range req.Headers {
hashes = append(hashes, header.Hash())
}
return peer.peer.RequestReceipts(hashes, resCh)
}
// deliver is responsible for taking a generic response packet from the concurrent
// fetcher, unpacking the receipt data and delivering it to the downloader's queue.
func (q *receiptQueue) deliver(peer *peerConnection, packet *eth.Response) (int, error) {
receipts := *packet.Res.(*eth.ReceiptsPacket)
accepted, err := q.queue.DeliverReceipts(peer.id, receipts)
switch {
case err == nil && len(receipts) == 0:
peer.log.Trace("Requested receipts delivered")
case err == nil:
peer.log.Trace("Delivered new batch of receipts", "count", len(receipts), "accepted", accepted)
default:
peer.log.Debug("Failed to deliver retrieved receipts", "err", err)
}
return accepted, err
}

@ -38,8 +38,5 @@ var (
receiptDropMeter = metrics.NewRegisteredMeter("eth/downloader/receipts/drop", nil)
receiptTimeoutMeter = metrics.NewRegisteredMeter("eth/downloader/receipts/timeout", nil)
stateInMeter = metrics.NewRegisteredMeter("eth/downloader/states/in", nil)
stateDropMeter = metrics.NewRegisteredMeter("eth/downloader/states/drop", nil)
throttleCounter = metrics.NewRegisteredCounter("eth/downloader/throttle", nil)
)

@ -24,7 +24,6 @@ type SyncMode uint32
const (
FullSync SyncMode = iota // Synchronise the entire blockchain history from full blocks
FastSync // Quickly download the headers, full sync only at the chain
SnapSync // Download the chain and the state via compact snapshots
LightSync // Download only the headers and terminate afterwards
)
@ -38,8 +37,6 @@ func (mode SyncMode) String() string {
switch mode {
case FullSync:
return "full"
case FastSync:
return "fast"
case SnapSync:
return "snap"
case LightSync:
@ -53,8 +50,6 @@ func (mode SyncMode) MarshalText() ([]byte, error) {
switch mode {
case FullSync:
return []byte("full"), nil
case FastSync:
return []byte("fast"), nil
case SnapSync:
return []byte("snap"), nil
case LightSync:
@ -68,14 +63,12 @@ func (mode *SyncMode) UnmarshalText(text []byte) error {
switch string(text) {
case "full":
*mode = FullSync
case "fast":
*mode = FastSync
case "snap":
*mode = SnapSync
case "light":
*mode = LightSync
default:
return fmt.Errorf(`unknown sync mode %q, want "full", "fast" or "light"`, text)
return fmt.Errorf(`unknown sync mode %q, want "full", "snap" or "light"`, text)
}
return nil
}

@ -22,9 +22,7 @@ package downloader
import (
"errors"
"math/big"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/ethereum/go-ethereum/common"
@ -39,7 +37,6 @@ const (
)
var (
errAlreadyFetching = errors.New("already fetching blocks from peer")
errAlreadyRegistered = errors.New("peer is already registered")
errNotRegistered = errors.New("peer is not registered")
)
@ -48,16 +45,6 @@ var (
type peerConnection struct {
id string // Unique identifier of the peer
headerIdle int32 // Current header activity state of the peer (idle = 0, active = 1)
blockIdle int32 // Current block activity state of the peer (idle = 0, active = 1)
receiptIdle int32 // Current receipt activity state of the peer (idle = 0, active = 1)
stateIdle int32 // Current node data activity state of the peer (idle = 0, active = 1)
headerStarted time.Time // Time instance when the last header fetch was started
blockStarted time.Time // Time instance when the last block (body) fetch was started
receiptStarted time.Time // Time instance when the last receipt fetch was started
stateStarted time.Time // Time instance when the last node data fetch was started
rates *msgrate.Tracker // Tracker to hone in on the number of items retrievable per second
lacking map[common.Hash]struct{} // Set of hashes not to request (didn't have previously)
@ -71,16 +58,15 @@ type peerConnection struct {
// LightPeer encapsulates the methods required to synchronise with a remote light peer.
type LightPeer interface {
Head() (common.Hash, *big.Int)
RequestHeadersByHash(common.Hash, int, int, bool) error
RequestHeadersByNumber(uint64, int, int, bool) error
RequestHeadersByHash(common.Hash, int, int, bool, chan *eth.Response) (*eth.Request, error)
RequestHeadersByNumber(uint64, int, int, bool, chan *eth.Response) (*eth.Request, error)
}
// Peer encapsulates the methods required to synchronise with a remote full peer.
type Peer interface {
LightPeer
RequestBodies([]common.Hash) error
RequestReceipts([]common.Hash) error
RequestNodeData([]common.Hash) error
RequestBodies([]common.Hash, chan *eth.Response) (*eth.Request, error)
RequestReceipts([]common.Hash, chan *eth.Response) (*eth.Request, error)
}
// lightPeerWrapper wraps a LightPeer struct, stubbing out the Peer-only methods.
@ -89,21 +75,18 @@ type lightPeerWrapper struct {
}
func (w *lightPeerWrapper) Head() (common.Hash, *big.Int) { return w.peer.Head() }
func (w *lightPeerWrapper) RequestHeadersByHash(h common.Hash, amount int, skip int, reverse bool) error {
return w.peer.RequestHeadersByHash(h, amount, skip, reverse)
func (w *lightPeerWrapper) RequestHeadersByHash(h common.Hash, amount int, skip int, reverse bool, sink chan *eth.Response) (*eth.Request, error) {
return w.peer.RequestHeadersByHash(h, amount, skip, reverse, sink)
}
func (w *lightPeerWrapper) RequestHeadersByNumber(i uint64, amount int, skip int, reverse bool) error {
return w.peer.RequestHeadersByNumber(i, amount, skip, reverse)
func (w *lightPeerWrapper) RequestHeadersByNumber(i uint64, amount int, skip int, reverse bool, sink chan *eth.Response) (*eth.Request, error) {
return w.peer.RequestHeadersByNumber(i, amount, skip, reverse, sink)
}
func (w *lightPeerWrapper) RequestBodies([]common.Hash) error {
func (w *lightPeerWrapper) RequestBodies([]common.Hash, chan *eth.Response) (*eth.Request, error) {
panic("RequestBodies not supported in light client mode sync")
}
func (w *lightPeerWrapper) RequestReceipts([]common.Hash) error {
func (w *lightPeerWrapper) RequestReceipts([]common.Hash, chan *eth.Response) (*eth.Request, error) {
panic("RequestReceipts not supported in light client mode sync")
}
func (w *lightPeerWrapper) RequestNodeData([]common.Hash) error {
panic("RequestNodeData not supported in light client mode sync")
}
// newPeerConnection creates a new downloader peer.
func newPeerConnection(id string, version uint, peer Peer, logger log.Logger) *peerConnection {
@ -121,114 +104,28 @@ func (p *peerConnection) Reset() {
p.lock.Lock()
defer p.lock.Unlock()
atomic.StoreInt32(&p.headerIdle, 0)
atomic.StoreInt32(&p.blockIdle, 0)
atomic.StoreInt32(&p.receiptIdle, 0)
atomic.StoreInt32(&p.stateIdle, 0)
p.lacking = make(map[common.Hash]struct{})
}
// FetchHeaders sends a header retrieval request to the remote peer.
func (p *peerConnection) FetchHeaders(from uint64, count int) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.headerIdle, 0, 1) {
return errAlreadyFetching
}
p.headerStarted = time.Now()
// Issue the header retrieval request (absolute upwards without gaps)
go p.peer.RequestHeadersByNumber(from, count, 0, false)
return nil
// UpdateHeaderRate updates the peer's estimated header retrieval throughput with
// the current measurement.
func (p *peerConnection) UpdateHeaderRate(delivered int, elapsed time.Duration) {
p.rates.Update(eth.BlockHeadersMsg, elapsed, delivered)
}
// FetchBodies sends a block body retrieval request to the remote peer.
func (p *peerConnection) FetchBodies(request *fetchRequest) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.blockIdle, 0, 1) {
return errAlreadyFetching
}
p.blockStarted = time.Now()
go func() {
// Convert the header set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Headers))
for _, header := range request.Headers {
hashes = append(hashes, header.Hash())
}
p.peer.RequestBodies(hashes)
}()
return nil
// UpdateBodyRate updates the peer's estimated body retrieval throughput with the
// current measurement.
func (p *peerConnection) UpdateBodyRate(delivered int, elapsed time.Duration) {
p.rates.Update(eth.BlockBodiesMsg, elapsed, delivered)
}
// FetchReceipts sends a receipt retrieval request to the remote peer.
func (p *peerConnection) FetchReceipts(request *fetchRequest) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.receiptIdle, 0, 1) {
return errAlreadyFetching
}
p.receiptStarted = time.Now()
go func() {
// Convert the header set to a retrievable slice
hashes := make([]common.Hash, 0, len(request.Headers))
for _, header := range request.Headers {
hashes = append(hashes, header.Hash())
}
p.peer.RequestReceipts(hashes)
}()
return nil
// UpdateReceiptRate updates the peer's estimated receipt retrieval throughput
// with the current measurement.
func (p *peerConnection) UpdateReceiptRate(delivered int, elapsed time.Duration) {
p.rates.Update(eth.ReceiptsMsg, elapsed, delivered)
}
// FetchNodeData sends a node state data retrieval request to the remote peer.
func (p *peerConnection) FetchNodeData(hashes []common.Hash) error {
// Short circuit if the peer is already fetching
if !atomic.CompareAndSwapInt32(&p.stateIdle, 0, 1) {
return errAlreadyFetching
}
p.stateStarted = time.Now()
go p.peer.RequestNodeData(hashes)
return nil
}
// SetHeadersIdle sets the peer to idle, allowing it to execute new header retrieval
// requests. Its estimated header retrieval throughput is updated with that measured
// just now.
func (p *peerConnection) SetHeadersIdle(delivered int, deliveryTime time.Time) {
p.rates.Update(eth.BlockHeadersMsg, deliveryTime.Sub(p.headerStarted), delivered)
atomic.StoreInt32(&p.headerIdle, 0)
}
// SetBodiesIdle sets the peer to idle, allowing it to execute block body retrieval
// requests. Its estimated body retrieval throughput is updated with that measured
// just now.
func (p *peerConnection) SetBodiesIdle(delivered int, deliveryTime time.Time) {
p.rates.Update(eth.BlockBodiesMsg, deliveryTime.Sub(p.blockStarted), delivered)
atomic.StoreInt32(&p.blockIdle, 0)
}
// SetReceiptsIdle sets the peer to idle, allowing it to execute new receipt
// retrieval requests. Its estimated receipt retrieval throughput is updated
// with that measured just now.
func (p *peerConnection) SetReceiptsIdle(delivered int, deliveryTime time.Time) {
p.rates.Update(eth.ReceiptsMsg, deliveryTime.Sub(p.receiptStarted), delivered)
atomic.StoreInt32(&p.receiptIdle, 0)
}
// SetNodeDataIdle sets the peer to idle, allowing it to execute new state trie
// data retrieval requests. Its estimated state retrieval throughput is updated
// with that measured just now.
func (p *peerConnection) SetNodeDataIdle(delivered int, deliveryTime time.Time) {
p.rates.Update(eth.NodeDataMsg, deliveryTime.Sub(p.stateStarted), delivered)
atomic.StoreInt32(&p.stateIdle, 0)
}
// HeaderCapacity retrieves the peers header download allowance based on its
// HeaderCapacity retrieves the peer's header download allowance based on its
// previously discovered throughput.
func (p *peerConnection) HeaderCapacity(targetRTT time.Duration) int {
cap := p.rates.Capacity(eth.BlockHeadersMsg, targetRTT)
@ -238,9 +135,9 @@ func (p *peerConnection) HeaderCapacity(targetRTT time.Duration) int {
return cap
}
// BlockCapacity retrieves the peers block download allowance based on its
// BodyCapacity retrieves the peer's body download allowance based on its
// previously discovered throughput.
func (p *peerConnection) BlockCapacity(targetRTT time.Duration) int {
func (p *peerConnection) BodyCapacity(targetRTT time.Duration) int {
cap := p.rates.Capacity(eth.BlockBodiesMsg, targetRTT)
if cap > MaxBlockFetch {
cap = MaxBlockFetch
@ -258,16 +155,6 @@ func (p *peerConnection) ReceiptCapacity(targetRTT time.Duration) int {
return cap
}
// NodeDataCapacity retrieves the peers state download allowance based on its
// previously discovered throughput.
func (p *peerConnection) NodeDataCapacity(targetRTT time.Duration) int {
cap := p.rates.Capacity(eth.NodeDataMsg, targetRTT)
if cap > MaxStateFetch {
cap = MaxStateFetch
}
return cap
}
// MarkLacking appends a new entity to the set of items (blocks, receipts, states)
// that a peer is known not to have (i.e. have been requested before). If the
// set reaches its maximum allowed capacity, items are randomly dropped off.
@ -294,14 +181,19 @@ func (p *peerConnection) Lacks(hash common.Hash) bool {
return ok
}
// peeringEvent is sent on the peer event feed when a remote peer connects or
// disconnects.
type peeringEvent struct {
peer *peerConnection
join bool
}
// peerSet represents the collection of active peer participating in the chain
// download procedure.
type peerSet struct {
peers map[string]*peerConnection
rates *msgrate.Trackers // Set of rate trackers to give the sync a common beat
newPeerFeed event.Feed
peerDropFeed event.Feed
events event.Feed // Feed to publish peer lifecycle events on
lock sync.RWMutex
}
@ -314,14 +206,9 @@ func newPeerSet() *peerSet {
}
}
// SubscribeNewPeers subscribes to peer arrival events.
func (ps *peerSet) SubscribeNewPeers(ch chan<- *peerConnection) event.Subscription {
return ps.newPeerFeed.Subscribe(ch)
}
// SubscribePeerDrops subscribes to peer departure events.
func (ps *peerSet) SubscribePeerDrops(ch chan<- *peerConnection) event.Subscription {
return ps.peerDropFeed.Subscribe(ch)
// SubscribeEvents subscribes to peer arrival and departure events.
func (ps *peerSet) SubscribeEvents(ch chan<- *peeringEvent) event.Subscription {
return ps.events.Subscribe(ch)
}
// Reset iterates over the current peer set, and resets each of the known peers
@ -355,7 +242,7 @@ func (ps *peerSet) Register(p *peerConnection) error {
ps.peers[p.id] = p
ps.lock.Unlock()
ps.newPeerFeed.Send(p)
ps.events.Send(&peeringEvent{peer: p, join: true})
return nil
}
@ -372,7 +259,7 @@ func (ps *peerSet) Unregister(id string) error {
ps.rates.Untrack(id)
ps.lock.Unlock()
ps.peerDropFeed.Send(p)
ps.events.Send(&peeringEvent{peer: p, join: false})
return nil
}
@ -404,82 +291,6 @@ func (ps *peerSet) AllPeers() []*peerConnection {
return list
}
// HeaderIdlePeers retrieves a flat list of all the currently header-idle peers
// within the active peer set, ordered by their reputation.
func (ps *peerSet) HeaderIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.headerIdle) == 0
}
throughput := func(p *peerConnection) int {
return p.rates.Capacity(eth.BlockHeadersMsg, time.Second)
}
return ps.idlePeers(eth.ETH66, eth.ETH66, idle, throughput)
}
// BodyIdlePeers retrieves a flat list of all the currently body-idle peers within
// the active peer set, ordered by their reputation.
func (ps *peerSet) BodyIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.blockIdle) == 0
}
throughput := func(p *peerConnection) int {
return p.rates.Capacity(eth.BlockBodiesMsg, time.Second)
}
return ps.idlePeers(eth.ETH66, eth.ETH66, idle, throughput)
}
// ReceiptIdlePeers retrieves a flat list of all the currently receipt-idle peers
// within the active peer set, ordered by their reputation.
func (ps *peerSet) ReceiptIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.receiptIdle) == 0
}
throughput := func(p *peerConnection) int {
return p.rates.Capacity(eth.ReceiptsMsg, time.Second)
}
return ps.idlePeers(eth.ETH66, eth.ETH66, idle, throughput)
}
// NodeDataIdlePeers retrieves a flat list of all the currently node-data-idle
// peers within the active peer set, ordered by their reputation.
func (ps *peerSet) NodeDataIdlePeers() ([]*peerConnection, int) {
idle := func(p *peerConnection) bool {
return atomic.LoadInt32(&p.stateIdle) == 0
}
throughput := func(p *peerConnection) int {
return p.rates.Capacity(eth.NodeDataMsg, time.Second)
}
return ps.idlePeers(eth.ETH66, eth.ETH66, idle, throughput)
}
// idlePeers retrieves a flat list of all currently idle peers satisfying the
// protocol version constraints, using the provided function to check idleness.
// The resulting set of peers are sorted by their capacity.
func (ps *peerSet) idlePeers(minProtocol, maxProtocol uint, idleCheck func(*peerConnection) bool, capacity func(*peerConnection) int) ([]*peerConnection, int) {
ps.lock.RLock()
defer ps.lock.RUnlock()
var (
total = 0
idle = make([]*peerConnection, 0, len(ps.peers))
tps = make([]int, 0, len(ps.peers))
)
for _, p := range ps.peers {
if p.version >= minProtocol && p.version <= maxProtocol {
if idleCheck(p) {
idle = append(idle, p)
tps = append(tps, capacity(p))
}
total++
}
}
// And sort them
sortPeers := &peerCapacitySort{idle, tps}
sort.Sort(sortPeers)
return sortPeers.p, total
}
// peerCapacitySort implements sort.Interface.
// It sorts peer connections by capacity (descending).
type peerCapacitySort struct {

@ -54,8 +54,8 @@ var (
// fetchRequest is a currently running data retrieval operation.
type fetchRequest struct {
Peer *peerConnection // Peer to which the request was sent
From uint64 // [eth/62] Requested chain element index (used for skeleton fills only)
Headers []*types.Header // [eth/62] Requested headers, sorted by request order
From uint64 // Requested chain element index (used for skeleton fills only)
Headers []*types.Header // Requested headers, sorted by request order
Time time.Time // Time when the request was made
}
@ -127,10 +127,12 @@ type queue struct {
blockTaskPool map[common.Hash]*types.Header // Pending block (body) retrieval tasks, mapping hashes to headers
blockTaskQueue *prque.Prque // Priority queue of the headers to fetch the blocks (bodies) for
blockPendPool map[string]*fetchRequest // Currently pending block (body) retrieval operations
blockWakeCh chan bool // Channel to notify the block fetcher of new tasks
receiptTaskPool map[common.Hash]*types.Header // Pending receipt retrieval tasks, mapping hashes to headers
receiptTaskQueue *prque.Prque // Priority queue of the headers to fetch the receipts for
receiptPendPool map[string]*fetchRequest // Currently pending receipt retrieval operations
receiptWakeCh chan bool // Channel to notify when receipt fetcher of new tasks
resultCache *resultStore // Downloaded but not yet delivered fetch results
resultSize common.StorageSize // Approximate size of a block (exponential moving average)
@ -146,9 +148,11 @@ type queue struct {
func newQueue(blockCacheLimit int, thresholdInitialSize int) *queue {
lock := new(sync.RWMutex)
q := &queue{
headerContCh: make(chan bool),
headerContCh: make(chan bool, 1),
blockTaskQueue: prque.New(nil),
blockWakeCh: make(chan bool, 1),
receiptTaskQueue: prque.New(nil),
receiptWakeCh: make(chan bool, 1),
active: sync.NewCond(lock),
lock: lock,
}
@ -196,8 +200,8 @@ func (q *queue) PendingHeaders() int {
return q.headerTaskQueue.Size()
}
// PendingBlocks retrieves the number of block (body) requests pending for retrieval.
func (q *queue) PendingBlocks() int {
// PendingBodies retrieves the number of block body requests pending for retrieval.
func (q *queue) PendingBodies() int {
q.lock.Lock()
defer q.lock.Unlock()
@ -212,15 +216,6 @@ func (q *queue) PendingReceipts() int {
return q.receiptTaskQueue.Size()
}
// InFlightHeaders retrieves whether there are header fetch requests currently
// in flight.
func (q *queue) InFlightHeaders() bool {
q.lock.Lock()
defer q.lock.Unlock()
return len(q.headerPendPool) > 0
}
// InFlightBlocks retrieves whether there are block fetch requests currently in
// flight.
func (q *queue) InFlightBlocks() bool {
@ -318,7 +313,7 @@ func (q *queue) Schedule(headers []*types.Header, from uint64) []*types.Header {
q.blockTaskQueue.Push(header, -int64(header.Number.Uint64()))
}
// Queue for receipt retrieval
if q.mode == FastSync && !header.EmptyReceipts() {
if q.mode == SnapSync && !header.EmptyReceipts() {
if _, ok := q.receiptTaskPool[hash]; ok {
log.Warn("Header already scheduled for receipt fetch", "number", header.Number, "hash", hash)
} else {
@ -383,6 +378,13 @@ func (q *queue) Results(block bool) []*fetchResult {
throttleThreshold := uint64((common.StorageSize(blockCacheMemory) + q.resultSize - 1) / q.resultSize)
throttleThreshold = q.resultCache.SetThrottleThreshold(throttleThreshold)
// With results removed from the cache, wake throttled fetchers
for _, ch := range []chan bool{q.blockWakeCh, q.receiptWakeCh} {
select {
case ch <- true:
default:
}
}
// Log some info at certain times
if time.Since(q.lastStatLog) > 60*time.Second {
q.lastStatLog = time.Now()
@ -503,7 +505,7 @@ func (q *queue) reserveHeaders(p *peerConnection, count int, taskPool map[common
// we can ask the resultcache if this header is within the
// "prioritized" segment of blocks. If it is not, we need to throttle
stale, throttle, item, err := q.resultCache.AddFetch(header, q.mode == FastSync)
stale, throttle, item, err := q.resultCache.AddFetch(header, q.mode == SnapSync)
if stale {
// Don't put back in the task queue, this item has already been
// delivered upstream
@ -566,40 +568,6 @@ func (q *queue) reserveHeaders(p *peerConnection, count int, taskPool map[common
return request, progress, throttled
}
// CancelHeaders aborts a fetch request, returning all pending skeleton indexes to the queue.
func (q *queue) CancelHeaders(request *fetchRequest) {
q.lock.Lock()
defer q.lock.Unlock()
q.cancel(request, q.headerTaskQueue, q.headerPendPool)
}
// CancelBodies aborts a body fetch request, returning all pending headers to the
// task queue.
func (q *queue) CancelBodies(request *fetchRequest) {
q.lock.Lock()
defer q.lock.Unlock()
q.cancel(request, q.blockTaskQueue, q.blockPendPool)
}
// CancelReceipts aborts a body fetch request, returning all pending headers to
// the task queue.
func (q *queue) CancelReceipts(request *fetchRequest) {
q.lock.Lock()
defer q.lock.Unlock()
q.cancel(request, q.receiptTaskQueue, q.receiptPendPool)
}
// Cancel aborts a fetch request, returning all pending hashes to the task queue.
func (q *queue) cancel(request *fetchRequest, taskQueue *prque.Prque, pendPool map[string]*fetchRequest) {
if request.From > 0 {
taskQueue.Push(request.From, -int64(request.From))
}
for _, header := range request.Headers {
taskQueue.Push(header, -int64(header.Number.Uint64()))
}
delete(pendPool, request.Peer.id)
}
// Revoke cancels all pending requests belonging to a given peer. This method is
// meant to be called during a peer drop to quickly reassign owned data fetches
// to remaining nodes.
@ -607,6 +575,10 @@ func (q *queue) Revoke(peerID string) {
q.lock.Lock()
defer q.lock.Unlock()
if request, ok := q.headerPendPool[peerID]; ok {
q.headerTaskQueue.Push(request.From, -int64(request.From))
delete(q.headerPendPool, peerID)
}
if request, ok := q.blockPendPool[peerID]; ok {
for _, header := range request.Headers {
q.blockTaskQueue.Push(header, -int64(header.Number.Uint64()))
@ -621,62 +593,60 @@ func (q *queue) Revoke(peerID string) {
}
}
// ExpireHeaders checks for in flight requests that exceeded a timeout allowance,
// canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireHeaders(timeout time.Duration) map[string]int {
// ExpireHeaders cancels a request that timed out and moves the pending fetch
// task back into the queue for rescheduling.
func (q *queue) ExpireHeaders(peer string) int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.headerPendPool, q.headerTaskQueue, headerTimeoutMeter)
headerTimeoutMeter.Mark(1)
return q.expire(peer, q.headerPendPool, q.headerTaskQueue)
}
// ExpireBodies checks for in flight block body requests that exceeded a timeout
// allowance, canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireBodies(timeout time.Duration) map[string]int {
func (q *queue) ExpireBodies(peer string) int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.blockPendPool, q.blockTaskQueue, bodyTimeoutMeter)
bodyTimeoutMeter.Mark(1)
return q.expire(peer, q.blockPendPool, q.blockTaskQueue)
}
// ExpireReceipts checks for in flight receipt requests that exceeded a timeout
// allowance, canceling them and returning the responsible peers for penalisation.
func (q *queue) ExpireReceipts(timeout time.Duration) map[string]int {
func (q *queue) ExpireReceipts(peer string) int {
q.lock.Lock()
defer q.lock.Unlock()
return q.expire(timeout, q.receiptPendPool, q.receiptTaskQueue, receiptTimeoutMeter)
receiptTimeoutMeter.Mark(1)
return q.expire(peer, q.receiptPendPool, q.receiptTaskQueue)
}
// expire is the generic check that move expired tasks from a pending pool back
// into a task pool, returning all entities caught with expired tasks.
// expire is the generic check that moves a specific expired task from a pending
// pool back into a task pool.
//
// Note, this method expects the queue lock to be already held. The
// reason the lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway.
func (q *queue) expire(timeout time.Duration, pendPool map[string]*fetchRequest, taskQueue *prque.Prque, timeoutMeter metrics.Meter) map[string]int {
// Iterate over the expired requests and return each to the queue
expiries := make(map[string]int)
for id, request := range pendPool {
if time.Since(request.Time) > timeout {
// Update the metrics with the timeout
timeoutMeter.Mark(1)
// Return any non satisfied requests to the pool
if request.From > 0 {
taskQueue.Push(request.From, -int64(request.From))
// Note, this method expects the queue lock to be already held. The reason the
// lock is not obtained in here is that the parameters already need to access
// the queue, so they already need a lock anyway.
func (q *queue) expire(peer string, pendPool map[string]*fetchRequest, taskQueue *prque.Prque) int {
// Retrieve the request being expired and log an error if it's non-existnet,
// as there's no order of events that should lead to such expirations.
req := pendPool[peer]
if req == nil {
log.Error("Expired request does not exist", "peer", peer)
return 0
}
for _, header := range request.Headers {
delete(pendPool, peer)
// Return any non-satisfied requests to the pool
if req.From > 0 {
taskQueue.Push(req.From, -int64(req.From))
}
for _, header := range req.Headers {
taskQueue.Push(header, -int64(header.Number.Uint64()))
}
// Add the peer to the expiry report along the number of failed requests
expiries[id] = len(request.Headers)
// Remove the expired requests from the pending pool directly
delete(pendPool, id)
}
}
return expiries
return len(req.Headers)
}
// DeliverHeaders injects a header retrieval response into the header results
@ -684,7 +654,7 @@ func (q *queue) expire(timeout time.Duration, pendPool map[string]*fetchRequest,
// if they do not map correctly to the skeleton.
//
// If the headers are accepted, the method makes an attempt to deliver the set
// of ready headers to the processor to keep the pipeline full. However it will
// of ready headers to the processor to keep the pipeline full. However, it will
// not block to prevent stalling other pending deliveries.
func (q *queue) DeliverHeaders(id string, headers []*types.Header, headerProcCh chan []*types.Header) (int, error) {
q.lock.Lock()
@ -700,11 +670,14 @@ func (q *queue) DeliverHeaders(id string, headers []*types.Header, headerProcCh
// Short circuit if the data was never requested
request := q.headerPendPool[id]
if request == nil {
headerDropMeter.Mark(int64(len(headers)))
return 0, errNoFetchesPending
}
headerReqTimer.UpdateSince(request.Time)
delete(q.headerPendPool, id)
headerReqTimer.UpdateSince(request.Time)
headerInMeter.Mark(int64(len(headers)))
// Ensure headers can be mapped onto the skeleton chain
target := q.headerTaskPool[request.From].Hash()
@ -739,6 +712,7 @@ func (q *queue) DeliverHeaders(id string, headers []*types.Header, headerProcCh
// If the batch of headers wasn't accepted, mark as unavailable
if !accepted {
logger.Trace("Skeleton filling not accepted", "from", request.From)
headerDropMeter.Mark(int64(len(headers)))
miss := q.headerPeerMiss[id]
if miss == nil {
@ -783,6 +757,7 @@ func (q *queue) DeliverHeaders(id string, headers []*types.Header, headerProcCh
func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLists [][]*types.Header) (int, error) {
q.lock.Lock()
defer q.lock.Unlock()
trieHasher := trie.NewStackTrie(nil)
validate := func(index int, header *types.Header) error {
if types.DeriveSha(types.Transactions(txLists[index]), trieHasher) != header.TxHash {
@ -800,7 +775,7 @@ func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLi
result.SetBodyDone()
}
return q.deliver(id, q.blockTaskPool, q.blockTaskQueue, q.blockPendPool,
bodyReqTimer, len(txLists), validate, reconstruct)
bodyReqTimer, bodyInMeter, bodyDropMeter, len(txLists), validate, reconstruct)
}
// DeliverReceipts injects a receipt retrieval response into the results queue.
@ -809,6 +784,7 @@ func (q *queue) DeliverBodies(id string, txLists [][]*types.Transaction, uncleLi
func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt) (int, error) {
q.lock.Lock()
defer q.lock.Unlock()
trieHasher := trie.NewStackTrie(nil)
validate := func(index int, header *types.Header) error {
if types.DeriveSha(types.Receipts(receiptList[index]), trieHasher) != header.ReceiptHash {
@ -821,7 +797,7 @@ func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt) (int,
result.SetReceiptsDone()
}
return q.deliver(id, q.receiptTaskPool, q.receiptTaskQueue, q.receiptPendPool,
receiptReqTimer, len(receiptList), validate, reconstruct)
receiptReqTimer, receiptInMeter, receiptDropMeter, len(receiptList), validate, reconstruct)
}
// deliver injects a data retrieval response into the results queue.
@ -830,18 +806,22 @@ func (q *queue) DeliverReceipts(id string, receiptList [][]*types.Receipt) (int,
// reason this lock is not obtained in here is because the parameters already need
// to access the queue, so they already need a lock anyway.
func (q *queue) deliver(id string, taskPool map[common.Hash]*types.Header,
taskQueue *prque.Prque, pendPool map[string]*fetchRequest, reqTimer metrics.Timer,
taskQueue *prque.Prque, pendPool map[string]*fetchRequest,
reqTimer metrics.Timer, resInMeter metrics.Meter, resDropMeter metrics.Meter,
results int, validate func(index int, header *types.Header) error,
reconstruct func(index int, result *fetchResult)) (int, error) {
// Short circuit if the data was never requested
request := pendPool[id]
if request == nil {
resDropMeter.Mark(int64(results))
return 0, errNoFetchesPending
}
reqTimer.UpdateSince(request.Time)
delete(pendPool, id)
reqTimer.UpdateSince(request.Time)
resInMeter.Mark(int64(results))
// If no data items were retrieved, mark them as unavailable for the origin peer
if results == 0 {
for _, header := range request.Headers {
@ -883,6 +863,8 @@ func (q *queue) deliver(id string, taskPool map[common.Hash]*types.Header,
delete(taskPool, hashes[accepted])
accepted++
}
resDropMeter.Mark(int64(results - accepted))
// Return all failed or missing fetches to the queue
for _, header := range request.Headers[accepted:] {
taskQueue.Push(header, -int64(header.Number.Uint64()))

@ -104,7 +104,7 @@ func TestBasics(t *testing.T) {
if !q.Idle() {
t.Errorf("new queue should be idle")
}
q.Prepare(1, FastSync)
q.Prepare(1, SnapSync)
if res := q.Results(false); len(res) != 0 {
t.Fatal("new queue should have 0 results")
}
@ -114,7 +114,7 @@ func TestBasics(t *testing.T) {
if q.Idle() {
t.Errorf("queue should not be idle")
}
if got, exp := q.PendingBlocks(), chain.Len(); got != exp {
if got, exp := q.PendingBodies(), chain.Len(); got != exp {
t.Errorf("wrong pending block count, got %d, exp %d", got, exp)
}
// Only non-empty receipts get added to task-queue
@ -197,13 +197,13 @@ func TestEmptyBlocks(t *testing.T) {
q := newQueue(10, 10)
q.Prepare(1, FastSync)
q.Prepare(1, SnapSync)
// Schedule a batch of headers
q.Schedule(emptyChain.headers(), 1)
if q.Idle() {
t.Errorf("queue should not be idle")
}
if got, exp := q.PendingBlocks(), len(emptyChain.blocks); got != exp {
if got, exp := q.PendingBodies(), len(emptyChain.blocks); got != exp {
t.Errorf("wrong pending block count, got %d, exp %d", got, exp)
}
if got, exp := q.PendingReceipts(), 0; got != exp {
@ -272,7 +272,7 @@ func XTestDelivery(t *testing.T) {
}
q := newQueue(10, 10)
var wg sync.WaitGroup
q.Prepare(1, FastSync)
q.Prepare(1, SnapSync)
wg.Add(1)
go func() {
// deliver headers

@ -17,48 +17,12 @@
package downloader
import (
"fmt"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/trie"
"golang.org/x/crypto/sha3"
)
// stateReq represents a batch of state fetch requests grouped together into
// a single data retrieval network packet.
type stateReq struct {
nItems uint16 // Number of items requested for download (max is 384, so uint16 is sufficient)
trieTasks map[common.Hash]*trieTask // Trie node download tasks to track previous attempts
codeTasks map[common.Hash]*codeTask // Byte code download tasks to track previous attempts
timeout time.Duration // Maximum round trip time for this to complete
timer *time.Timer // Timer to fire when the RTT timeout expires
peer *peerConnection // Peer that we're requesting from
delivered time.Time // Time when the packet was delivered (independent when we process it)
response [][]byte // Response data of the peer (nil for timeouts)
dropped bool // Flag whether the peer dropped off early
}
// timedOut returns if this request timed out.
func (req *stateReq) timedOut() bool {
return req.response == nil
}
// stateSyncStats is a collection of progress stats to report during a state trie
// sync to RPC requests as well as to display in user logs.
type stateSyncStats struct {
processed uint64 // Number of state entries processed
duplicate uint64 // Number of state entries downloaded twice
unexpected uint64 // Number of non-requested state entries received
pending uint64 // Number of still pending state entries
}
// syncState starts downloading state with the given root hash.
func (d *Downloader) syncState(root common.Hash) *stateSync {
// Create the state sync
@ -85,8 +49,6 @@ func (d *Downloader) stateFetcher() {
for next := s; next != nil; {
next = d.runStateSync(next)
}
case <-d.stateCh:
// Ignore state responses while no sync is running.
case <-d.quitCh:
return
}
@ -96,162 +58,19 @@ func (d *Downloader) stateFetcher() {
// runStateSync runs a state synchronisation until it completes or another root
// hash is requested to be switched over to.
func (d *Downloader) runStateSync(s *stateSync) *stateSync {
var (
active = make(map[string]*stateReq) // Currently in-flight requests
finished []*stateReq // Completed or failed requests
timeout = make(chan *stateReq) // Timed out active requests
)
log.Trace("State sync starting", "root", s.root)
defer func() {
// Cancel active request timers on exit. Also set peers to idle so they're
// available for the next sync.
for _, req := range active {
req.timer.Stop()
req.peer.SetNodeDataIdle(int(req.nItems), time.Now())
}
}()
go s.run()
defer s.Cancel()
// Listen for peer departure events to cancel assigned tasks
peerDrop := make(chan *peerConnection, 1024)
peerSub := s.d.peers.SubscribePeerDrops(peerDrop)
defer peerSub.Unsubscribe()
for {
// Enable sending of the first buffered element if there is one.
var (
deliverReq *stateReq
deliverReqCh chan *stateReq
)
if len(finished) > 0 {
deliverReq = finished[0]
deliverReqCh = s.deliver
}
select {
// The stateSync lifecycle:
case next := <-d.stateSyncStart:
d.spindownStateSync(active, finished, timeout, peerDrop)
return next
case <-s.done:
d.spindownStateSync(active, finished, timeout, peerDrop)
return nil
// Send the next finished request to the current sync:
case deliverReqCh <- deliverReq:
// Shift out the first request, but also set the emptied slot to nil for GC
copy(finished, finished[1:])
finished[len(finished)-1] = nil
finished = finished[:len(finished)-1]
// Handle incoming state packs:
case pack := <-d.stateCh:
// Discard any data not requested (or previously timed out)
req := active[pack.PeerId()]
if req == nil {
log.Debug("Unrequested node data", "peer", pack.PeerId(), "len", pack.Items())
continue
}
// Finalize the request and queue up for processing
req.timer.Stop()
req.response = pack.(*statePack).states
req.delivered = time.Now()
finished = append(finished, req)
delete(active, pack.PeerId())
// Handle dropped peer connections:
case p := <-peerDrop:
// Skip if no request is currently pending
req := active[p.id]
if req == nil {
continue
}
// Finalize the request and queue up for processing
req.timer.Stop()
req.dropped = true
req.delivered = time.Now()
finished = append(finished, req)
delete(active, p.id)
// Handle timed-out requests:
case req := <-timeout:
// If the peer is already requesting something else, ignore the stale timeout.
// This can happen when the timeout and the delivery happens simultaneously,
// causing both pathways to trigger.
if active[req.peer.id] != req {
continue
}
req.delivered = time.Now()
// Move the timed out data back into the download queue
finished = append(finished, req)
delete(active, req.peer.id)
// Track outgoing state requests:
case req := <-d.trackStateReq:
// If an active request already exists for this peer, we have a problem. In
// theory the trie node schedule must never assign two requests to the same
// peer. In practice however, a peer might receive a request, disconnect and
// immediately reconnect before the previous times out. In this case the first
// request is never honored, alas we must not silently overwrite it, as that
// causes valid requests to go missing and sync to get stuck.
if old := active[req.peer.id]; old != nil {
log.Warn("Busy peer assigned new state fetch", "peer", old.peer.id)
// Move the previous request to the finished set
old.timer.Stop()
old.dropped = true
old.delivered = time.Now()
finished = append(finished, old)
}
// Start a timer to notify the sync loop if the peer stalled.
req.timer = time.AfterFunc(req.timeout, func() {
timeout <- req
})
active[req.peer.id] = req
}
}
}
// spindownStateSync 'drains' the outstanding requests; some will be delivered and other
// will time out. This is to ensure that when the next stateSync starts working, all peers
// are marked as idle and de facto _are_ idle.
func (d *Downloader) spindownStateSync(active map[string]*stateReq, finished []*stateReq, timeout chan *stateReq, peerDrop chan *peerConnection) {
log.Trace("State sync spinning down", "active", len(active), "finished", len(finished))
for len(active) > 0 {
var (
req *stateReq
reason string
)
select {
// Handle (drop) incoming state packs:
case pack := <-d.stateCh:
req = active[pack.PeerId()]
reason = "delivered"
// Handle dropped peer connections:
case p := <-peerDrop:
req = active[p.id]
reason = "peerdrop"
// Handle timed-out requests:
case req = <-timeout:
reason = "timeout"
}
if req == nil {
continue
}
req.peer.log.Trace("State peer marked idle (spindown)", "req.items", int(req.nItems), "reason", reason)
req.timer.Stop()
delete(active, req.peer.id)
req.peer.SetNodeDataIdle(int(req.nItems), time.Now())
}
// The 'finished' set contains deliveries that we were going to pass to processing.
// Those are now moot, but we still need to set those peers as idle, which would
// otherwise have been done after processing
for _, req := range finished {
req.peer.SetNodeDataIdle(int(req.nItems), time.Now())
}
}
@ -259,50 +78,21 @@ func (d *Downloader) spindownStateSync(active map[string]*stateReq, finished []*
// by a given state root.
type stateSync struct {
d *Downloader // Downloader instance to access and manage current peerset
root common.Hash // State root currently being synced
sched *trie.Sync // State trie sync scheduler defining the tasks
keccak crypto.KeccakState // Keccak256 hasher to verify deliveries with
trieTasks map[common.Hash]*trieTask // Set of trie node tasks currently queued for retrieval
codeTasks map[common.Hash]*codeTask // Set of byte code tasks currently queued for retrieval
numUncommitted int
bytesUncommitted int
started chan struct{} // Started is signalled once the sync loop starts
deliver chan *stateReq // Delivery channel multiplexing peer responses
cancel chan struct{} // Channel to signal a termination request
cancelOnce sync.Once // Ensures cancel only ever gets called once
done chan struct{} // Channel to signal termination completion
err error // Any error hit during sync (set before completion)
}
// trieTask represents a single trie node download task, containing a set of
// peers already attempted retrieval from to detect stalled syncs and abort.
type trieTask struct {
path [][]byte
attempts map[string]struct{}
}
// codeTask represents a single byte code download task, containing a set of
// peers already attempted retrieval from to detect stalled syncs and abort.
type codeTask struct {
attempts map[string]struct{}
}
// newStateSync creates a new state trie download scheduler. This method does not
// yet start the sync. The user needs to call run to initiate.
func newStateSync(d *Downloader, root common.Hash) *stateSync {
return &stateSync{
d: d,
root: root,
sched: state.NewStateSync(root, d.stateDB, d.stateBloom, nil),
keccak: sha3.NewLegacyKeccak256().(crypto.KeccakState),
trieTasks: make(map[common.Hash]*trieTask),
codeTasks: make(map[common.Hash]*codeTask),
deliver: make(chan *stateReq),
cancel: make(chan struct{}),
done: make(chan struct{}),
started: make(chan struct{}),
@ -314,11 +104,7 @@ func newStateSync(d *Downloader, root common.Hash) *stateSync {
// finish.
func (s *stateSync) run() {
close(s.started)
if s.d.snapSync {
s.err = s.d.SnapSyncer.Sync(s.root, s.cancel)
} else {
s.err = s.loop()
}
close(s.done)
}
@ -335,281 +121,3 @@ func (s *stateSync) Cancel() error {
})
return s.Wait()
}
// loop is the main event loop of a state trie sync. It it responsible for the
// assignment of new tasks to peers (including sending it to them) as well as
// for the processing of inbound data. Note, that the loop does not directly
// receive data from peers, rather those are buffered up in the downloader and
// pushed here async. The reason is to decouple processing from data receipt
// and timeouts.
func (s *stateSync) loop() (err error) {
// Listen for new peer events to assign tasks to them
newPeer := make(chan *peerConnection, 1024)
peerSub := s.d.peers.SubscribeNewPeers(newPeer)
defer peerSub.Unsubscribe()
defer func() {
cerr := s.commit(true)
if err == nil {
err = cerr
}
}()
// Keep assigning new tasks until the sync completes or aborts
for s.sched.Pending() > 0 {
if err = s.commit(false); err != nil {
return err
}
s.assignTasks()
// Tasks assigned, wait for something to happen
select {
case <-newPeer:
// New peer arrived, try to assign it download tasks
case <-s.cancel:
return errCancelStateFetch
case <-s.d.cancelCh:
return errCanceled
case req := <-s.deliver:
// Response, disconnect or timeout triggered, drop the peer if stalling
log.Trace("Received node data response", "peer", req.peer.id, "count", len(req.response), "dropped", req.dropped, "timeout", !req.dropped && req.timedOut())
if req.nItems <= 2 && !req.dropped && req.timedOut() {
// 2 items are the minimum requested, if even that times out, we've no use of
// this peer at the moment.
log.Warn("Stalling state sync, dropping peer", "peer", req.peer.id)
if s.d.dropPeer == nil {
// The dropPeer method is nil when `--copydb` is used for a local copy.
// Timeouts can occur if e.g. compaction hits at the wrong time, and can be ignored
req.peer.log.Warn("Downloader wants to drop peer, but peerdrop-function is not set", "peer", req.peer.id)
} else {
s.d.dropPeer(req.peer.id)
// If this peer was the master peer, abort sync immediately
s.d.cancelLock.RLock()
master := req.peer.id == s.d.cancelPeer
s.d.cancelLock.RUnlock()
if master {
s.d.cancel()
return errTimeout
}
}
}
// Process all the received blobs and check for stale delivery
delivered, err := s.process(req)
req.peer.SetNodeDataIdle(delivered, req.delivered)
if err != nil {
log.Warn("Node data write error", "err", err)
return err
}
}
}
return nil
}
func (s *stateSync) commit(force bool) error {
if !force && s.bytesUncommitted < ethdb.IdealBatchSize {
return nil
}
start := time.Now()
b := s.d.stateDB.NewBatch()
if err := s.sched.Commit(b); err != nil {
return err
}
if err := b.Write(); err != nil {
return fmt.Errorf("DB write error: %v", err)
}
s.updateStats(s.numUncommitted, 0, 0, time.Since(start))
s.numUncommitted = 0
s.bytesUncommitted = 0
return nil
}
// assignTasks attempts to assign new tasks to all idle peers, either from the
// batch currently being retried, or fetching new data from the trie sync itself.
func (s *stateSync) assignTasks() {
// Iterate over all idle peers and try to assign them state fetches
peers, _ := s.d.peers.NodeDataIdlePeers()
for _, p := range peers {
// Assign a batch of fetches proportional to the estimated latency/bandwidth
cap := p.NodeDataCapacity(s.d.peers.rates.TargetRoundTrip())
req := &stateReq{peer: p, timeout: s.d.peers.rates.TargetTimeout()}
nodes, _, codes := s.fillTasks(cap, req)
// If the peer was assigned tasks to fetch, send the network request
if len(nodes)+len(codes) > 0 {
req.peer.log.Trace("Requesting batch of state data", "nodes", len(nodes), "codes", len(codes), "root", s.root)
select {
case s.d.trackStateReq <- req:
req.peer.FetchNodeData(append(nodes, codes...)) // Unified retrieval under eth/6x
case <-s.cancel:
case <-s.d.cancelCh:
}
}
}
}
// fillTasks fills the given request object with a maximum of n state download
// tasks to send to the remote peer.
func (s *stateSync) fillTasks(n int, req *stateReq) (nodes []common.Hash, paths []trie.SyncPath, codes []common.Hash) {
// Refill available tasks from the scheduler.
if fill := n - (len(s.trieTasks) + len(s.codeTasks)); fill > 0 {
nodes, paths, codes := s.sched.Missing(fill)
for i, hash := range nodes {
s.trieTasks[hash] = &trieTask{
path: paths[i],
attempts: make(map[string]struct{}),
}
}
for _, hash := range codes {
s.codeTasks[hash] = &codeTask{
attempts: make(map[string]struct{}),
}
}
}
// Find tasks that haven't been tried with the request's peer. Prefer code
// over trie nodes as those can be written to disk and forgotten about.
nodes = make([]common.Hash, 0, n)
paths = make([]trie.SyncPath, 0, n)
codes = make([]common.Hash, 0, n)
req.trieTasks = make(map[common.Hash]*trieTask, n)
req.codeTasks = make(map[common.Hash]*codeTask, n)
for hash, t := range s.codeTasks {
// Stop when we've gathered enough requests
if len(nodes)+len(codes) == n {
break
}
// Skip any requests we've already tried from this peer
if _, ok := t.attempts[req.peer.id]; ok {
continue
}
// Assign the request to this peer
t.attempts[req.peer.id] = struct{}{}
codes = append(codes, hash)
req.codeTasks[hash] = t
delete(s.codeTasks, hash)
}
for hash, t := range s.trieTasks {
// Stop when we've gathered enough requests
if len(nodes)+len(codes) == n {
break
}
// Skip any requests we've already tried from this peer
if _, ok := t.attempts[req.peer.id]; ok {
continue
}
// Assign the request to this peer
t.attempts[req.peer.id] = struct{}{}
nodes = append(nodes, hash)
paths = append(paths, t.path)
req.trieTasks[hash] = t
delete(s.trieTasks, hash)
}
req.nItems = uint16(len(nodes) + len(codes))
return nodes, paths, codes
}
// process iterates over a batch of delivered state data, injecting each item
// into a running state sync, re-queuing any items that were requested but not
// delivered. Returns whether the peer actually managed to deliver anything of
// value, and any error that occurred.
func (s *stateSync) process(req *stateReq) (int, error) {
// Collect processing stats and update progress if valid data was received
duplicate, unexpected, successful := 0, 0, 0
defer func(start time.Time) {
if duplicate > 0 || unexpected > 0 {
s.updateStats(0, duplicate, unexpected, time.Since(start))
}
}(time.Now())
// Iterate over all the delivered data and inject one-by-one into the trie
for _, blob := range req.response {
hash, err := s.processNodeData(blob)
switch err {
case nil:
s.numUncommitted++
s.bytesUncommitted += len(blob)
successful++
case trie.ErrNotRequested:
unexpected++
case trie.ErrAlreadyProcessed:
duplicate++
default:
return successful, fmt.Errorf("invalid state node %s: %v", hash.TerminalString(), err)
}
// Delete from both queues (one delivery is enough for the syncer)
delete(req.trieTasks, hash)
delete(req.codeTasks, hash)
}
// Put unfulfilled tasks back into the retry queue
npeers := s.d.peers.Len()
for hash, task := range req.trieTasks {
// If the node did deliver something, missing items may be due to a protocol
// limit or a previous timeout + delayed delivery. Both cases should permit
// the node to retry the missing items (to avoid single-peer stalls).
if len(req.response) > 0 || req.timedOut() {
delete(task.attempts, req.peer.id)
}
// If we've requested the node too many times already, it may be a malicious
// sync where nobody has the right data. Abort.
if len(task.attempts) >= npeers {
return successful, fmt.Errorf("trie node %s failed with all peers (%d tries, %d peers)", hash.TerminalString(), len(task.attempts), npeers)
}
// Missing item, place into the retry queue.
s.trieTasks[hash] = task
}
for hash, task := range req.codeTasks {
// If the node did deliver something, missing items may be due to a protocol
// limit or a previous timeout + delayed delivery. Both cases should permit
// the node to retry the missing items (to avoid single-peer stalls).
if len(req.response) > 0 || req.timedOut() {
delete(task.attempts, req.peer.id)
}
// If we've requested the node too many times already, it may be a malicious
// sync where nobody has the right data. Abort.
if len(task.attempts) >= npeers {
return successful, fmt.Errorf("byte code %s failed with all peers (%d tries, %d peers)", hash.TerminalString(), len(task.attempts), npeers)
}
// Missing item, place into the retry queue.
s.codeTasks[hash] = task
}
return successful, nil
}
// processNodeData tries to inject a trie node data blob delivered from a remote
// peer into the state trie, returning whether anything useful was written or any
// error occurred.
func (s *stateSync) processNodeData(blob []byte) (common.Hash, error) {
res := trie.SyncResult{Data: blob}
s.keccak.Reset()
s.keccak.Write(blob)
s.keccak.Read(res.Hash[:])
err := s.sched.Process(res)
return res.Hash, err
}
// updateStats bumps the various state sync progress counters and displays a log
// message for the user to see.
func (s *stateSync) updateStats(written, duplicate, unexpected int, duration time.Duration) {
s.d.syncStatsLock.Lock()
defer s.d.syncStatsLock.Unlock()
s.d.syncStatsState.pending = uint64(s.sched.Pending())
s.d.syncStatsState.processed += uint64(written)
s.d.syncStatsState.duplicate += uint64(duplicate)
s.d.syncStatsState.unexpected += uint64(unexpected)
if written > 0 || duplicate > 0 || unexpected > 0 {
log.Info("Imported new state entries", "count", written, "elapsed", common.PrettyDuration(duration), "processed", s.d.syncStatsState.processed, "pending", s.d.syncStatsState.pending, "trieretry", len(s.trieTasks), "coderetry", len(s.codeTasks), "duplicate", s.d.syncStatsState.duplicate, "unexpected", s.d.syncStatsState.unexpected)
}
if written > 0 {
rawdb.WriteFastTrieProgress(s.d.stateDB, s.d.syncStatsState.processed)
}
}

@ -20,12 +20,14 @@ import (
"fmt"
"math/big"
"sync"
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/consensus/ethash"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/core/vm"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/params"
)
@ -39,73 +41,110 @@ var (
)
// The common prefix of all test chains:
var testChainBase = newTestChain(blockCacheMaxItems+200, testGenesis)
var testChainBase *testChain
// Different forks on top of the base chain:
var testChainForkLightA, testChainForkLightB, testChainForkHeavy *testChain
var pregenerated bool
func init() {
// Reduce some of the parameters to make the tester faster
fullMaxForkAncestry = 10000
lightMaxForkAncestry = 10000
blockCacheMaxItems = 1024
fsHeaderSafetyNet = 256
fsHeaderContCheck = 500 * time.Millisecond
testChainBase = newTestChain(blockCacheMaxItems+200, testGenesis)
var forkLen = int(fullMaxForkAncestry + 50)
var wg sync.WaitGroup
// Generate the test chains to seed the peers with
wg.Add(3)
go func() { testChainForkLightA = testChainBase.makeFork(forkLen, false, 1); wg.Done() }()
go func() { testChainForkLightB = testChainBase.makeFork(forkLen, false, 2); wg.Done() }()
go func() { testChainForkHeavy = testChainBase.makeFork(forkLen, true, 3); wg.Done() }()
wg.Wait()
// Generate the test peers used by the tests to avoid overloading during testing.
// These seemingly random chains are used in various downloader tests. We're just
// pre-generating them here.
chains := []*testChain{
testChainBase,
testChainForkLightA,
testChainForkLightB,
testChainForkHeavy,
testChainBase.shorten(1),
testChainBase.shorten(blockCacheMaxItems - 15),
testChainBase.shorten((blockCacheMaxItems - 15) / 2),
testChainBase.shorten(blockCacheMaxItems - 15 - 5),
testChainBase.shorten(MaxHeaderFetch),
testChainBase.shorten(800),
testChainBase.shorten(800 / 2),
testChainBase.shorten(800 / 3),
testChainBase.shorten(800 / 4),
testChainBase.shorten(800 / 5),
testChainBase.shorten(800 / 6),
testChainBase.shorten(800 / 7),
testChainBase.shorten(800 / 8),
testChainBase.shorten(3*fsHeaderSafetyNet + 256 + fsMinFullBlocks),
testChainBase.shorten(fsMinFullBlocks + 256 - 1),
testChainForkLightA.shorten(len(testChainBase.blocks) + 80),
testChainForkLightB.shorten(len(testChainBase.blocks) + 81),
testChainForkLightA.shorten(len(testChainBase.blocks) + MaxHeaderFetch),
testChainForkLightB.shorten(len(testChainBase.blocks) + MaxHeaderFetch),
testChainForkHeavy.shorten(len(testChainBase.blocks) + 79),
}
wg.Add(len(chains))
for _, chain := range chains {
go func(blocks []*types.Block) {
newTestBlockchain(blocks)
wg.Done()
}(chain.blocks[1:])
}
wg.Wait()
// Mark the chains pregenerated. Generating a new one will lead to a panic.
pregenerated = true
}
type testChain struct {
genesis *types.Block
chain []common.Hash
headerm map[common.Hash]*types.Header
blockm map[common.Hash]*types.Block
receiptm map[common.Hash][]*types.Receipt
tdm map[common.Hash]*big.Int
blocks []*types.Block
}
// newTestChain creates a blockchain of the given length.
func newTestChain(length int, genesis *types.Block) *testChain {
tc := new(testChain).copy(length)
tc.genesis = genesis
tc.chain = append(tc.chain, genesis.Hash())
tc.headerm[tc.genesis.Hash()] = tc.genesis.Header()
tc.tdm[tc.genesis.Hash()] = tc.genesis.Difficulty()
tc.blockm[tc.genesis.Hash()] = tc.genesis
tc := &testChain{
blocks: []*types.Block{genesis},
}
tc.generate(length-1, 0, genesis, false)
return tc
}
// makeFork creates a fork on top of the test chain.
func (tc *testChain) makeFork(length int, heavy bool, seed byte) *testChain {
fork := tc.copy(tc.len() + length)
fork.generate(length, seed, tc.headBlock(), heavy)
fork := tc.copy(len(tc.blocks) + length)
fork.generate(length, seed, tc.blocks[len(tc.blocks)-1], heavy)
return fork
}
// shorten creates a copy of the chain with the given length. It panics if the
// length is longer than the number of available blocks.
func (tc *testChain) shorten(length int) *testChain {
if length > tc.len() {
panic(fmt.Errorf("can't shorten test chain to %d blocks, it's only %d blocks long", length, tc.len()))
if length > len(tc.blocks) {
panic(fmt.Errorf("can't shorten test chain to %d blocks, it's only %d blocks long", length, len(tc.blocks)))
}
return tc.copy(length)
}
func (tc *testChain) copy(newlen int) *testChain {
cpy := &testChain{
genesis: tc.genesis,
headerm: make(map[common.Hash]*types.Header, newlen),
blockm: make(map[common.Hash]*types.Block, newlen),
receiptm: make(map[common.Hash][]*types.Receipt, newlen),
tdm: make(map[common.Hash]*big.Int, newlen),
if newlen > len(tc.blocks) {
newlen = len(tc.blocks)
}
for i := 0; i < len(tc.chain) && i < newlen; i++ {
hash := tc.chain[i]
cpy.chain = append(cpy.chain, tc.chain[i])
cpy.tdm[hash] = tc.tdm[hash]
cpy.blockm[hash] = tc.blockm[hash]
cpy.headerm[hash] = tc.headerm[hash]
cpy.receiptm[hash] = tc.receiptm[hash]
cpy := &testChain{
blocks: append([]*types.Block{}, tc.blocks[:newlen]...),
}
return cpy
}
@ -115,17 +154,14 @@ func (tc *testChain) copy(newlen int) *testChain {
// contains a transaction and every 5th an uncle to allow testing correct block
// reassembly.
func (tc *testChain) generate(n int, seed byte, parent *types.Block, heavy bool) {
// start := time.Now()
// defer func() { fmt.Printf("test chain generated in %v\n", time.Since(start)) }()
blocks, receipts := core.GenerateChain(params.TestChainConfig, parent, ethash.NewFaker(), testDB, n, func(i int, block *core.BlockGen) {
blocks, _ := core.GenerateChain(params.TestChainConfig, parent, ethash.NewFaker(), testDB, n, func(i int, block *core.BlockGen) {
block.SetCoinbase(common.Address{seed})
// If a heavy chain is requested, delay blocks to raise difficulty
if heavy {
block.OffsetTime(-1)
block.OffsetTime(-9)
}
// Include transactions to the miner to make blocks more interesting.
if parent == tc.genesis && i%22 == 0 {
if parent == tc.blocks[0] && i%22 == 0 {
signer := types.MakeSigner(params.TestChainConfig, block.Number())
tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, block.BaseFee(), nil), signer, testKey)
if err != nil {
@ -136,95 +172,56 @@ func (tc *testChain) generate(n int, seed byte, parent *types.Block, heavy bool)
// if the block number is a multiple of 5, add a bonus uncle to the block
if i > 0 && i%5 == 0 {
block.AddUncle(&types.Header{
ParentHash: block.PrevBlock(i - 1).Hash(),
ParentHash: block.PrevBlock(i - 2).Hash(),
Number: big.NewInt(block.Number().Int64() - 1),
})
}
})
// Convert the block-chain into a hash-chain and header/block maps
td := new(big.Int).Set(tc.td(parent.Hash()))
for i, b := range blocks {
td := td.Add(td, b.Difficulty())
hash := b.Hash()
tc.chain = append(tc.chain, hash)
tc.blockm[hash] = b
tc.headerm[hash] = b.Header()
tc.receiptm[hash] = receipts[i]
tc.tdm[hash] = new(big.Int).Set(td)
}
tc.blocks = append(tc.blocks, blocks...)
}
// len returns the total number of blocks in the chain.
func (tc *testChain) len() int {
return len(tc.chain)
var (
testBlockchains = make(map[common.Hash]*testBlockchain)
testBlockchainsLock sync.Mutex
)
type testBlockchain struct {
chain *core.BlockChain
gen sync.Once
}
// headBlock returns the head of the chain.
func (tc *testChain) headBlock() *types.Block {
return tc.blockm[tc.chain[len(tc.chain)-1]]
}
// newTestBlockchain creates a blockchain database built by running the given blocks,
// either actually running them, or reusing a previously created one. The returned
// chains are *shared*, so *do not* mutate them.
func newTestBlockchain(blocks []*types.Block) *core.BlockChain {
// Retrieve an existing database, or create a new one
head := testGenesis.Hash()
if len(blocks) > 0 {
head = blocks[len(blocks)-1].Hash()
}
testBlockchainsLock.Lock()
if _, ok := testBlockchains[head]; !ok {
testBlockchains[head] = new(testBlockchain)
}
tbc := testBlockchains[head]
testBlockchainsLock.Unlock()
// td returns the total difficulty of the given block.
func (tc *testChain) td(hash common.Hash) *big.Int {
return tc.tdm[hash]
}
// Ensure that the database is generated
tbc.gen.Do(func() {
if pregenerated {
panic("Requested chain generation outside of init")
}
db := rawdb.NewMemoryDatabase()
core.GenesisBlockForTesting(db, testAddress, big.NewInt(1000000000000000))
// headersByHash returns headers in order from the given hash.
func (tc *testChain) headersByHash(origin common.Hash, amount int, skip int, reverse bool) []*types.Header {
num, _ := tc.hashToNumber(origin)
return tc.headersByNumber(num, amount, skip, reverse)
}
// headersByNumber returns headers from the given number.
func (tc *testChain) headersByNumber(origin uint64, amount int, skip int, reverse bool) []*types.Header {
result := make([]*types.Header, 0, amount)
if !reverse {
for num := origin; num < uint64(len(tc.chain)) && len(result) < amount; num += uint64(skip) + 1 {
if header, ok := tc.headerm[tc.chain[int(num)]]; ok {
result = append(result, header)
}
}
} else {
for num := int64(origin); num >= 0 && len(result) < amount; num -= int64(skip) + 1 {
if header, ok := tc.headerm[tc.chain[int(num)]]; ok {
result = append(result, header)
}
}
}
return result
}
// receipts returns the receipts of the given block hashes.
func (tc *testChain) receipts(hashes []common.Hash) [][]*types.Receipt {
results := make([][]*types.Receipt, 0, len(hashes))
for _, hash := range hashes {
if receipt, ok := tc.receiptm[hash]; ok {
results = append(results, receipt)
}
}
return results
}
// bodies returns the block bodies of the given block hashes.
func (tc *testChain) bodies(hashes []common.Hash) ([][]*types.Transaction, [][]*types.Header) {
transactions := make([][]*types.Transaction, 0, len(hashes))
uncles := make([][]*types.Header, 0, len(hashes))
for _, hash := range hashes {
if block, ok := tc.blockm[hash]; ok {
transactions = append(transactions, block.Transactions())
uncles = append(uncles, block.Uncles())
}
}
return transactions, uncles
}
func (tc *testChain) hashToNumber(target common.Hash) (uint64, bool) {
for num, hash := range tc.chain {
if hash == target {
return uint64(num), true
}
}
return 0, false
chain, err := core.NewBlockChain(db, nil, params.TestChainConfig, ethash.NewFaker(), vm.Config{}, nil, nil)
if err != nil {
panic(err)
}
if n, err := chain.InsertChain(blocks); err != nil {
panic(fmt.Sprintf("block %d: %v", n, err))
}
tbc.chain = chain
})
return tbc.chain
}

@ -1,79 +0,0 @@
// Copyright 2015 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package downloader
import (
"fmt"
"github.com/ethereum/go-ethereum/core/types"
)
// peerDropFn is a callback type for dropping a peer detected as malicious.
type peerDropFn func(id string)
// dataPack is a data message returned by a peer for some query.
type dataPack interface {
PeerId() string
Items() int
Stats() string
}
// headerPack is a batch of block headers returned by a peer.
type headerPack struct {
peerID string
headers []*types.Header
}
func (p *headerPack) PeerId() string { return p.peerID }
func (p *headerPack) Items() int { return len(p.headers) }
func (p *headerPack) Stats() string { return fmt.Sprintf("%d", len(p.headers)) }
// bodyPack is a batch of block bodies returned by a peer.
type bodyPack struct {
peerID string
transactions [][]*types.Transaction
uncles [][]*types.Header
}
func (p *bodyPack) PeerId() string { return p.peerID }
func (p *bodyPack) Items() int {
if len(p.transactions) <= len(p.uncles) {
return len(p.transactions)
}
return len(p.uncles)
}
func (p *bodyPack) Stats() string { return fmt.Sprintf("%d:%d", len(p.transactions), len(p.uncles)) }
// receiptPack is a batch of receipts returned by a peer.
type receiptPack struct {
peerID string
receipts [][]*types.Receipt
}
func (p *receiptPack) PeerId() string { return p.peerID }
func (p *receiptPack) Items() int { return len(p.receipts) }
func (p *receiptPack) Stats() string { return fmt.Sprintf("%d", len(p.receipts)) }
// statePack is a batch of states returned by a peer.
type statePack struct {
peerID string
states [][]byte
}
func (p *statePack) PeerId() string { return p.peerID }
func (p *statePack) Items() int { return len(p.states) }
func (p *statePack) Stats() string { return fmt.Sprintf("%d", len(p.states)) }

@ -26,6 +26,7 @@ import (
"github.com/ethereum/go-ethereum/common/prque"
"github.com/ethereum/go-ethereum/consensus"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/metrics"
"github.com/ethereum/go-ethereum/trie"
@ -74,10 +75,10 @@ type HeaderRetrievalFn func(common.Hash) *types.Header
type blockRetrievalFn func(common.Hash) *types.Block
// headerRequesterFn is a callback type for sending a header retrieval request.
type headerRequesterFn func(common.Hash) error
type headerRequesterFn func(common.Hash, chan *eth.Response) (*eth.Request, error)
// bodyRequesterFn is a callback type for sending a body retrieval request.
type bodyRequesterFn func([]common.Hash) error
type bodyRequesterFn func([]common.Hash, chan *eth.Response) (*eth.Request, error)
// headerVerifierFn is a callback type to verify a block's header for fast propagation.
type headerVerifierFn func(header *types.Header) error
@ -461,15 +462,28 @@ func (f *BlockFetcher) loop() {
// Create a closure of the fetch and schedule in on a new thread
fetchHeader, hashes := f.fetching[hashes[0]].fetchHeader, hashes
go func() {
go func(peer string) {
if f.fetchingHook != nil {
f.fetchingHook(hashes)
}
for _, hash := range hashes {
headerFetchMeter.Mark(1)
fetchHeader(hash) // Suboptimal, but protocol doesn't allow batch header retrievals
go func(hash common.Hash) {
resCh := make(chan *eth.Response)
req, err := fetchHeader(hash, resCh)
if err != nil {
return // Legacy code, yolo
}
}()
defer req.Close()
res := <-resCh
res.Done <- nil
f.FilterHeaders(peer, *res.Res.(*eth.BlockHeadersPacket), time.Now().Add(res.Time))
}(hash)
}
}(peer)
}
// Schedule the next fetch if blocks are still pending
f.rescheduleFetch(fetchTimer)
@ -497,8 +511,24 @@ func (f *BlockFetcher) loop() {
if f.completingHook != nil {
f.completingHook(hashes)
}
fetchBodies := f.completing[hashes[0]].fetchBodies
bodyFetchMeter.Mark(int64(len(hashes)))
go f.completing[hashes[0]].fetchBodies(hashes)
go func(peer string, hashes []common.Hash) {
resCh := make(chan *eth.Response)
req, err := fetchBodies(hashes, resCh)
if err != nil {
return // Legacy code, yolo
}
defer req.Close()
res := <-resCh
res.Done <- nil
txs, uncles := res.Res.(*eth.BlockBodiesPacket).Unpack()
f.FilterBodies(peer, txs, uncles, time.Now())
}(peer, hashes)
}
// Schedule the next fetch if blocks are still pending
f.rescheduleComplete(completeTimer)

@ -30,6 +30,7 @@ import (
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/params"
"github.com/ethereum/go-ethereum/trie"
)
@ -60,8 +61,8 @@ func makeChain(n int, seed byte, parent *types.Block) ([]common.Hash, map[common
block.AddTx(tx)
}
// If the block number is a multiple of 5, add a bonus uncle to the block
if i%5 == 0 {
block.AddUncle(&types.Header{ParentHash: block.PrevBlock(i - 1).Hash(), Number: big.NewInt(int64(i - 1))})
if i > 0 && i%5 == 0 {
block.AddUncle(&types.Header{ParentHash: block.PrevBlock(i - 2).Hash(), Number: big.NewInt(int64(i - 1))})
}
})
hashes := make([]common.Hash, n+1)
@ -195,16 +196,26 @@ func (f *fetcherTester) makeHeaderFetcher(peer string, blocks map[common.Hash]*t
closure[hash] = block
}
// Create a function that return a header from the closure
return func(hash common.Hash) error {
return func(hash common.Hash, sink chan *eth.Response) (*eth.Request, error) {
// Gather the blocks to return
headers := make([]*types.Header, 0, 1)
if block, ok := closure[hash]; ok {
headers = append(headers, block.Header())
}
// Return on a new thread
go f.fetcher.FilterHeaders(peer, headers, time.Now().Add(drift))
return nil
req := &eth.Request{
Peer: peer,
}
res := &eth.Response{
Req: req,
Res: (*eth.BlockHeadersPacket)(&headers),
Time: drift,
Done: make(chan error, 1), // Ignore the returned status
}
go func() {
sink <- res
}()
return req, nil
}
}
@ -215,7 +226,7 @@ func (f *fetcherTester) makeBodyFetcher(peer string, blocks map[common.Hash]*typ
closure[hash] = block
}
// Create a function that returns blocks from the closure
return func(hashes []common.Hash) error {
return func(hashes []common.Hash, sink chan *eth.Response) (*eth.Request, error) {
// Gather the block bodies to return
transactions := make([][]*types.Transaction, 0, len(hashes))
uncles := make([][]*types.Header, 0, len(hashes))
@ -227,14 +238,33 @@ func (f *fetcherTester) makeBodyFetcher(peer string, blocks map[common.Hash]*typ
}
}
// Return on a new thread
go f.fetcher.FilterBodies(peer, transactions, uncles, time.Now().Add(drift))
return nil
bodies := make([]*eth.BlockBody, len(transactions))
for i, txs := range transactions {
bodies[i] = &eth.BlockBody{
Transactions: txs,
Uncles: uncles[i],
}
}
req := &eth.Request{
Peer: peer,
}
res := &eth.Response{
Req: req,
Res: (*eth.BlockBodiesPacket)(&bodies),
Time: drift,
Done: make(chan error, 1), // Ignore the returned status
}
go func() {
sink <- res
}()
return req, nil
}
}
// verifyFetchingEvent verifies that one single event arrive on a fetching channel.
func verifyFetchingEvent(t *testing.T, fetching chan []common.Hash, arrive bool) {
t.Helper()
if arrive {
select {
case <-fetching:
@ -252,6 +282,8 @@ func verifyFetchingEvent(t *testing.T, fetching chan []common.Hash, arrive bool)
// verifyCompletingEvent verifies that one single event arrive on an completing channel.
func verifyCompletingEvent(t *testing.T, completing chan []common.Hash, arrive bool) {
t.Helper()
if arrive {
select {
case <-completing:
@ -269,6 +301,8 @@ func verifyCompletingEvent(t *testing.T, completing chan []common.Hash, arrive b
// verifyImportEvent verifies that one single event arrive on an import channel.
func verifyImportEvent(t *testing.T, imported chan interface{}, arrive bool) {
t.Helper()
if arrive {
select {
case <-imported:
@ -287,6 +321,8 @@ func verifyImportEvent(t *testing.T, imported chan interface{}, arrive bool) {
// verifyImportCount verifies that exactly count number of events arrive on an
// import hook channel.
func verifyImportCount(t *testing.T, imported chan interface{}, count int) {
t.Helper()
for i := 0; i < count; i++ {
select {
case <-imported:
@ -299,6 +335,8 @@ func verifyImportCount(t *testing.T, imported chan interface{}, count int) {
// verifyImportDone verifies that no more events are arriving on an import channel.
func verifyImportDone(t *testing.T, imported chan interface{}) {
t.Helper()
select {
case <-imported:
t.Fatalf("extra block imported")
@ -308,6 +346,8 @@ func verifyImportDone(t *testing.T, imported chan interface{}) {
// verifyChainHeight verifies the chain height is as expected.
func verifyChainHeight(t *testing.T, fetcher *fetcherTester, height uint64) {
t.Helper()
if fetcher.chainHeight() != height {
t.Fatalf("chain height mismatch, got %d, want %d", fetcher.chainHeight(), height)
}
@ -368,13 +408,13 @@ func testConcurrentAnnouncements(t *testing.T, light bool) {
secondBodyFetcher := tester.makeBodyFetcher("second", blocks, 0)
counter := uint32(0)
firstHeaderWrapper := func(hash common.Hash) error {
firstHeaderWrapper := func(hash common.Hash, sink chan *eth.Response) (*eth.Request, error) {
atomic.AddUint32(&counter, 1)
return firstHeaderFetcher(hash)
return firstHeaderFetcher(hash, sink)
}
secondHeaderWrapper := func(hash common.Hash) error {
secondHeaderWrapper := func(hash common.Hash, sink chan *eth.Response) (*eth.Request, error) {
atomic.AddUint32(&counter, 1)
return secondHeaderFetcher(hash)
return secondHeaderFetcher(hash, sink)
}
// Iteratively announce blocks until all are imported
imported := make(chan interface{})
@ -468,15 +508,20 @@ func testPendingDeduplication(t *testing.T, light bool) {
delay := 50 * time.Millisecond
counter := uint32(0)
headerWrapper := func(hash common.Hash) error {
headerWrapper := func(hash common.Hash, sink chan *eth.Response) (*eth.Request, error) {
atomic.AddUint32(&counter, 1)
// Simulate a long running fetch
resink := make(chan *eth.Response)
req, err := headerFetcher(hash, resink)
if err == nil {
go func() {
res := <-resink
time.Sleep(delay)
headerFetcher(hash)
sink <- res
}()
return nil
}
return req, err
}
checkNonExist := func() bool {
return tester.getBlock(hashes[0]) == nil

@ -83,8 +83,8 @@ type handlerConfig struct {
TxPool txPool // Transaction pool to propagate from
Merger *consensus.Merger // The manager for eth1/2 transition
Network uint64 // Network identifier to adfvertise
Sync downloader.SyncMode // Whether to fast or full sync
BloomCache uint64 // Megabytes to alloc for fast sync bloom
Sync downloader.SyncMode // Whether to snap or full sync
BloomCache uint64 // Megabytes to alloc for snap sync bloom
EventMux *event.TypeMux // Legacy event mux, deprecate for `feed`
Checkpoint *params.TrustedCheckpoint // Hard coded checkpoint for sync challenges
Whitelist map[uint64]common.Hash // Hard coded whitelist for sync challenged
@ -94,8 +94,7 @@ type handler struct {
networkID uint64
forkFilter forkid.Filter // Fork ID filter, constant across the lifetime of the node
fastSync uint32 // Flag whether fast sync is enabled (gets disabled if we already have blocks)
snapSync uint32 // Flag whether fast sync should operate on top of the snap protocol
snapSync uint32 // Flag whether snap sync is enabled (gets disabled if we already have blocks)
acceptTxs uint32 // Flag whether we're considered synchronised (enables transaction processing)
checkpointNumber uint64 // Block number for the sync progress validator to cross reference
@ -147,44 +146,41 @@ func newHandler(config *handlerConfig) (*handler, error) {
quitSync: make(chan struct{}),
}
if config.Sync == downloader.FullSync {
// The database seems empty as the current block is the genesis. Yet the fast
// block is ahead, so fast sync was enabled for this node at a certain point.
// The database seems empty as the current block is the genesis. Yet the snap
// block is ahead, so snap sync was enabled for this node at a certain point.
// The scenarios where this can happen is
// * if the user manually (or via a bad block) rolled back a fast sync node
// * if the user manually (or via a bad block) rolled back a snap sync node
// below the sync point.
// * the last fast sync is not finished while user specifies a full sync this
// * the last snap sync is not finished while user specifies a full sync this
// time. But we don't have any recent state for full sync.
// In these cases however it's safe to reenable fast sync.
// In these cases however it's safe to reenable snap sync.
fullBlock, fastBlock := h.chain.CurrentBlock(), h.chain.CurrentFastBlock()
if fullBlock.NumberU64() == 0 && fastBlock.NumberU64() > 0 {
h.fastSync = uint32(1)
log.Warn("Switch sync mode from full sync to fast sync")
h.snapSync = uint32(1)
log.Warn("Switch sync mode from full sync to snap sync")
}
} else {
if h.chain.CurrentBlock().NumberU64() > 0 {
// Print warning log if database is not empty to run fast sync.
log.Warn("Switch sync mode from fast sync to full sync")
// Print warning log if database is not empty to run snap sync.
log.Warn("Switch sync mode from snap sync to full sync")
} else {
// If fast sync was requested and our database is empty, grant it
h.fastSync = uint32(1)
if config.Sync == downloader.SnapSync {
// If snap sync was requested and our database is empty, grant it
h.snapSync = uint32(1)
}
}
}
// If we have trusted checkpoints, enforce them on the chain
if config.Checkpoint != nil {
h.checkpointNumber = (config.Checkpoint.SectionIndex+1)*params.CHTFrequency - 1
h.checkpointHash = config.Checkpoint.SectionHead
}
// Construct the downloader (long sync) and its backing state bloom if fast
// Construct the downloader (long sync) and its backing state bloom if snap
// sync is requested. The downloader is responsible for deallocating the state
// bloom when it's done.
// Note: we don't enable it if snap-sync is performed, since it's very heavy
// and the heal-portion of the snap sync is much lighter than fast. What we particularly
// and the heal-portion of the snap sync is much lighter than snap. What we particularly
// want to avoid, is a 90%-finished (but restarted) snap-sync to begin
// indexing the entire trie
if atomic.LoadUint32(&h.fastSync) == 1 && atomic.LoadUint32(&h.snapSync) == 0 {
if atomic.LoadUint32(&h.snapSync) == 1 && atomic.LoadUint32(&h.snapSync) == 0 {
h.stateBloom = trie.NewSyncBloom(config.BloomCache, config.Database)
}
h.downloader = downloader.New(h.checkpointNumber, config.Database, h.stateBloom, h.eventMux, h.chain, nil, h.removePeer)
@ -236,12 +232,12 @@ func newHandler(config *handlerConfig) (*handler, error) {
log.Warn("Unsynced yet, discarded propagated block", "number", blocks[0].Number(), "hash", blocks[0].Hash())
return 0, nil
}
// If fast sync is running, deny importing weird blocks. This is a problematic
// clause when starting up a new network, because fast-syncing miners might not
// If snap sync is running, deny importing weird blocks. This is a problematic
// clause when starting up a new network, because snap-syncing miners might not
// accept each others' blocks until a restart. Unfortunately we haven't figured
// out a way yet where nodes can decide unilaterally whether the network is new
// or not. This should be fixed if we figure out a solution.
if atomic.LoadUint32(&h.fastSync) == 1 {
if atomic.LoadUint32(&h.snapSync) == 1 {
log.Warn("Fast syncing, discarded propagated block", "number", blocks[0].Number(), "hash", blocks[0].Hash())
return 0, nil
}
@ -365,30 +361,93 @@ func (h *handler) runEthPeer(peer *eth.Peer, handler eth.Handler) error {
// after this will be sent via broadcasts.
h.syncTransactions(peer)
// Create a notification channel for pending requests if the peer goes down
dead := make(chan struct{})
defer close(dead)
// If we have a trusted CHT, reject all peers below that (avoid fast sync eclipse)
if h.checkpointHash != (common.Hash{}) {
// Request the peer's checkpoint header for chain height/weight validation
if err := peer.RequestHeadersByNumber(h.checkpointNumber, 1, 0, false); err != nil {
resCh := make(chan *eth.Response)
if _, err := peer.RequestHeadersByNumber(h.checkpointNumber, 1, 0, false, resCh); err != nil {
return err
}
// Start a timer to disconnect if the peer doesn't reply in time
p.syncDrop = time.AfterFunc(syncChallengeTimeout, func() {
go func() {
timeout := time.NewTimer(syncChallengeTimeout)
defer timeout.Stop()
select {
case res := <-resCh:
headers := ([]*types.Header)(*res.Res.(*eth.BlockHeadersPacket))
if len(headers) == 0 {
// If we're doing a snap sync, we must enforce the checkpoint
// block to avoid eclipse attacks. Unsynced nodes are welcome
// to connect after we're done joining the network.
if atomic.LoadUint32(&h.snapSync) == 1 {
peer.Log().Warn("Dropping unsynced node during sync", "addr", peer.RemoteAddr(), "type", peer.Name())
res.Done <- errors.New("unsynced node cannot serve sync")
return
}
res.Done <- nil
return
}
// Validate the header and either drop the peer or continue
if len(headers) > 1 {
res.Done <- errors.New("too many headers in checkpoint response")
return
}
if headers[0].Hash() != h.checkpointHash {
res.Done <- errors.New("checkpoint hash mismatch")
return
}
res.Done <- nil
case <-timeout.C:
peer.Log().Warn("Checkpoint challenge timed out, dropping", "addr", peer.RemoteAddr(), "type", peer.Name())
h.removePeer(peer.ID())
})
// Make sure it's cleaned up if the peer dies off
defer func() {
if p.syncDrop != nil {
p.syncDrop.Stop()
p.syncDrop = nil
case <-dead:
// Peer handler terminated, abort all goroutines
}
}()
}
// If we have any explicit whitelist block hashes, request them
for number := range h.whitelist {
if err := peer.RequestHeadersByNumber(number, 1, 0, false); err != nil {
for number, hash := range h.whitelist {
resCh := make(chan *eth.Response)
if _, err := peer.RequestHeadersByNumber(number, 1, 0, false, resCh); err != nil {
return err
}
go func(number uint64, hash common.Hash) {
timeout := time.NewTimer(syncChallengeTimeout)
defer timeout.Stop()
select {
case res := <-resCh:
headers := ([]*types.Header)(*res.Res.(*eth.BlockHeadersPacket))
if len(headers) == 0 {
// Whitelisted blocks are allowed to be missing if the remote
// node is not yet synced
res.Done <- nil
return
}
// Validate the header and either drop the peer or continue
if len(headers) > 1 {
res.Done <- errors.New("too many headers in whitelist response")
return
}
if headers[0].Number.Uint64() != number || headers[0].Hash() != hash {
peer.Log().Info("Whitelist mismatch, dropping peer", "number", number, "hash", headers[0].Hash(), "want", hash)
res.Done <- errors.New("whitelist block mismatch")
return
}
peer.Log().Debug("Whitelist block verified", "number", number, "hash", hash)
case <-timeout.C:
peer.Log().Warn("Whitelist challenge timed out, dropping", "addr", peer.RemoteAddr(), "type", peer.Name())
h.removePeer(peer.ID())
}
}(number, hash)
}
// Handle incoming messages until the connection is torn down
return handler(peer)

@ -17,7 +17,6 @@
package eth
import (
"errors"
"fmt"
"math/big"
"sync/atomic"
@ -27,7 +26,6 @@ import (
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/p2p/enode"
"github.com/ethereum/go-ethereum/trie"
)
@ -64,25 +62,6 @@ func (h *ethHandler) AcceptTxs() bool {
func (h *ethHandler) Handle(peer *eth.Peer, packet eth.Packet) error {
// Consume any broadcasts and announces, forwarding the rest to the downloader
switch packet := packet.(type) {
case *eth.BlockHeadersPacket:
return h.handleHeaders(peer, *packet)
case *eth.BlockBodiesPacket:
txset, uncleset := packet.Unpack()
return h.handleBodies(peer, txset, uncleset)
case *eth.NodeDataPacket:
if err := h.downloader.DeliverNodeData(peer.ID(), *packet); err != nil {
log.Debug("Failed to deliver node state data", "err", err)
}
return nil
case *eth.ReceiptsPacket:
if err := h.downloader.DeliverReceipts(peer.ID(), *packet); err != nil {
log.Debug("Failed to deliver receipts", "err", err)
}
return nil
case *eth.NewBlockHashesPacket:
hashes, numbers := packet.Unpack()
return h.handleBlockAnnounces(peer, hashes, numbers)
@ -104,79 +83,6 @@ func (h *ethHandler) Handle(peer *eth.Peer, packet eth.Packet) error {
}
}
// handleHeaders is invoked from a peer's message handler when it transmits a batch
// of headers for the local node to process.
func (h *ethHandler) handleHeaders(peer *eth.Peer, headers []*types.Header) error {
p := h.peers.peer(peer.ID())
if p == nil {
return errors.New("unregistered during callback")
}
// If no headers were received, but we're expencting a checkpoint header, consider it that
if len(headers) == 0 && p.syncDrop != nil {
// Stop the timer either way, decide later to drop or not
p.syncDrop.Stop()
p.syncDrop = nil
// If we're doing a fast (or snap) sync, we must enforce the checkpoint block to avoid
// eclipse attacks. Unsynced nodes are welcome to connect after we're done
// joining the network
if atomic.LoadUint32(&h.fastSync) == 1 {
peer.Log().Warn("Dropping unsynced node during sync", "addr", peer.RemoteAddr(), "type", peer.Name())
return errors.New("unsynced node cannot serve sync")
}
}
// Filter out any explicitly requested headers, deliver the rest to the downloader
filter := len(headers) == 1
if filter {
// If it's a potential sync progress check, validate the content and advertised chain weight
if p.syncDrop != nil && headers[0].Number.Uint64() == h.checkpointNumber {
// Disable the sync drop timer
p.syncDrop.Stop()
p.syncDrop = nil
// Validate the header and either drop the peer or continue
if headers[0].Hash() != h.checkpointHash {
return errors.New("checkpoint hash mismatch")
}
return nil
}
// Otherwise if it's a whitelisted block, validate against the set
if want, ok := h.whitelist[headers[0].Number.Uint64()]; ok {
if hash := headers[0].Hash(); want != hash {
peer.Log().Info("Whitelist mismatch, dropping peer", "number", headers[0].Number.Uint64(), "hash", hash, "want", want)
return errors.New("whitelist block mismatch")
}
peer.Log().Debug("Whitelist block verified", "number", headers[0].Number.Uint64(), "hash", want)
}
// Irrelevant of the fork checks, send the header to the fetcher just in case
headers = h.blockFetcher.FilterHeaders(peer.ID(), headers, time.Now())
}
if len(headers) > 0 || !filter {
err := h.downloader.DeliverHeaders(peer.ID(), headers)
if err != nil {
log.Debug("Failed to deliver headers", "err", err)
}
}
return nil
}
// handleBodies is invoked from a peer's message handler when it transmits a batch
// of block bodies for the local node to process.
func (h *ethHandler) handleBodies(peer *eth.Peer, txs [][]*types.Transaction, uncles [][]*types.Header) error {
// Filter out any explicitly requested bodies, deliver the rest to the downloader
filter := len(txs) > 0 || len(uncles) > 0
if filter {
txs, uncles = h.blockFetcher.FilterBodies(peer.ID(), txs, uncles, time.Now())
}
if len(txs) > 0 || len(uncles) > 0 || !filter {
err := h.downloader.DeliverBodies(peer.ID(), txs, uncles)
if err != nil {
log.Debug("Failed to deliver bodies", "err", err)
}
}
return nil
}
// handleBlockAnnounces is invoked from a peer's message handler when it transmits a
// batch of block announcements for the local node to process.
func (h *ethHandler) handleBlockAnnounces(peer *eth.Peer, hashes []common.Hash, numbers []uint64) error {

@ -354,7 +354,7 @@ func testSendTransactions(t *testing.T, protocol uint) {
seen := make(map[common.Hash]struct{})
for len(seen) < len(insert) {
switch protocol {
case 65, 66:
case 66:
select {
case hashes := <-anns:
for _, hash := range hashes {
@ -364,7 +364,7 @@ func testSendTransactions(t *testing.T, protocol uint) {
seen[hash] = struct{}{}
}
case <-bcasts:
t.Errorf("initial tx broadcast received on post eth/65")
t.Errorf("initial tx broadcast received on post eth/66")
}
default:
@ -389,6 +389,7 @@ func testTransactionPropagation(t *testing.T, protocol uint) {
// to receive them. We need multiple sinks since a one-to-one peering would
// broadcast all transactions without announcement.
source := newTestHandler()
source.handler.snapSync = 0 // Avoid requiring snap, otherwise some will be dropped below
defer source.close()
sinks := make([]*testHandler, 10)
@ -406,7 +407,7 @@ func testTransactionPropagation(t *testing.T, protocol uint) {
defer sourcePipe.Close()
defer sinkPipe.Close()
sourcePeer := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{byte(i)}, "", nil, sourcePipe), sourcePipe, source.txpool)
sourcePeer := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{byte(i + 1)}, "", nil, sourcePipe), sourcePipe, source.txpool)
sinkPeer := eth.NewPeer(protocol, p2p.NewPeerPipe(enode.ID{0}, "", nil, sinkPipe), sinkPipe, sink.txpool)
defer sourcePeer.Close()
defer sinkPeer.Close()
@ -438,12 +439,13 @@ func testTransactionPropagation(t *testing.T, protocol uint) {
// Iterate through all the sinks and ensure they all got the transactions
for i := range sinks {
for arrived := 0; arrived < len(txs); {
for arrived, timeout := 0, false; arrived < len(txs) && !timeout; {
select {
case event := <-txChs[i]:
arrived += len(event.Txs)
case <-time.NewTimer(time.Second).C:
case <-time.After(time.Second):
t.Errorf("sink %d: transaction propagation timed out: have %d, want %d", i, arrived, len(txs))
timeout = true
}
}
}
@ -463,23 +465,23 @@ func TestCheckpointChallenge(t *testing.T) {
}{
// If checkpointing is not enabled locally, don't challenge and don't drop
{downloader.FullSync, false, false, false, false, false},
{downloader.FastSync, false, false, false, false, false},
{downloader.SnapSync, false, false, false, false, false},
// If checkpointing is enabled locally and remote response is empty, only drop during fast sync
{downloader.FullSync, true, false, true, false, false},
{downloader.FastSync, true, false, true, false, true}, // Special case, fast sync, unsynced peer
{downloader.SnapSync, true, false, true, false, true}, // Special case, fast sync, unsynced peer
// If checkpointing is enabled locally and remote response mismatches, always drop
{downloader.FullSync, true, false, false, false, true},
{downloader.FastSync, true, false, false, false, true},
{downloader.SnapSync, true, false, false, false, true},
// If checkpointing is enabled locally and remote response matches, never drop
{downloader.FullSync, true, false, false, true, false},
{downloader.FastSync, true, false, false, true, false},
{downloader.SnapSync, true, false, false, true, false},
// If checkpointing is enabled locally and remote times out, always drop
{downloader.FullSync, true, true, false, true, true},
{downloader.FastSync, true, true, false, true, true},
{downloader.SnapSync, true, true, false, true, true},
}
for _, tt := range tests {
t.Run(fmt.Sprintf("sync %v checkpoint %v timeout %v empty %v match %v", tt.syncmode, tt.checkpoint, tt.timeout, tt.empty, tt.match), func(t *testing.T) {
@ -500,10 +502,10 @@ func testCheckpointChallenge(t *testing.T, syncmode downloader.SyncMode, checkpo
handler := newTestHandler()
defer handler.close()
if syncmode == downloader.FastSync {
atomic.StoreUint32(&handler.handler.fastSync, 1)
if syncmode == downloader.SnapSync {
atomic.StoreUint32(&handler.handler.snapSync, 1)
} else {
atomic.StoreUint32(&handler.handler.fastSync, 0)
atomic.StoreUint32(&handler.handler.snapSync, 0)
}
var response *types.Header
if checkpoint {

@ -152,7 +152,7 @@ func newTestHandlerWithBlocks(blocks int) *testHandler {
TxPool: txpool,
Merger: consensus.NewMerger(rawdb.NewMemoryDatabase()),
Network: 1,
Sync: downloader.FastSync,
Sync: downloader.SnapSync,
BloomCache: 1,
})
handler.Start(1000)

@ -18,8 +18,6 @@ package eth
import (
"math/big"
"sync"
"time"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/eth/protocols/snap"
@ -37,10 +35,7 @@ type ethPeerInfo struct {
type ethPeer struct {
*eth.Peer
snapExt *snapPeer // Satellite `snap` connection
syncDrop *time.Timer // Connection dropper if `eth` sync progress isn't validated in time
snapWait chan struct{} // Notification channel for snap connections
lock sync.RWMutex // Mutex protecting the internal fields
}
// info gathers and returns some `eth` protocol metadata known about a peer.

@ -0,0 +1,247 @@
// Copyright 2021 The go-ethereum Authors
// This file is part of the go-ethereum library.
//
// The go-ethereum library is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// The go-ethereum library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
package eth
import (
"errors"
"fmt"
"time"
"github.com/ethereum/go-ethereum/p2p"
)
var (
// errDisconnected is returned if a request is attempted to be made to a peer
// that was already closed.
errDisconnected = errors.New("disconnected")
// errDanglingResponse is returned if a response arrives with a request id
// which does not match to any existing pending requests.
errDanglingResponse = errors.New("response to non-existent request")
// errMismatchingResponseType is returned if the remote peer sent a different
// packet type as a response to a request than what the local node expected.
errMismatchingResponseType = errors.New("mismatching response type")
)
// Request is a pending request to allow tracking it and delivering a response
// back to the requester on their chosen channel.
type Request struct {
peer *Peer // Peer to which this request belogs for untracking
id uint64 // Request ID to match up replies to
sink chan *Response // Channel to deliver the response on
cancel chan struct{} // Channel to cancel requests ahead of time
code uint64 // Message code of the request packet
want uint64 // Message code of the response packet
data interface{} // Data content of the request packet
Peer string // Demultiplexer if cross-peer requests are batched together
Sent time.Time // Timestamp when the request was sent
}
// Close aborts an in-flight request. Although there's no way to notify the
// remote peer about the cancellation, this method notifies the dispatcher to
// discard any late responses.
func (r *Request) Close() error {
if r.peer == nil { // Tests mock out the dispatcher, skip internal cancellation
return nil
}
cancelOp := &cancel{
id: r.id,
fail: make(chan error),
}
select {
case r.peer.reqCancel <- cancelOp:
if err := <-cancelOp.fail; err != nil {
return err
}
close(r.cancel)
return nil
case <-r.peer.term:
return errDisconnected
}
}
// request is a wrapper around a client Request that has an error channel to
// signal on if sending the request already failed on a network level.
type request struct {
req *Request
fail chan error
}
// cancel is a maintenance type on the dispatcher to stop tracking a pending
// request.
type cancel struct {
id uint64 // Request ID to stop tracking
fail chan error
}
// Response is a reply packet to a previously created request. It is delivered
// on the channel assigned by the requester subsystem and contains the original
// request embedded to allow uniquely matching it caller side.
type Response struct {
id uint64 // Request ID to match up this reply to
recv time.Time // Timestamp when the request was received
code uint64 // Response packet type to cross validate with request
Req *Request // Original request to cross-reference with
Res interface{} // Remote response for the request query
Time time.Duration // Time it took for the request to be served
Done chan error // Channel to signal message handling to the reader
}
// response is a wrapper around a remote Response that has an error channel to
// signal on if processing the response failed.
type response struct {
res *Response
fail chan error
}
// dispatchRequest schedules the request to the dispatcher for tracking and
// network serialization, blocking until it's successfully sent.
//
// The returned Request must either be closed before discarding it, or the reply
// must be waited for and the Response's Done channel signalled.
func (p *Peer) dispatchRequest(req *Request) error {
reqOp := &request{
req: req,
fail: make(chan error),
}
req.cancel = make(chan struct{})
req.peer = p
req.Peer = p.id
select {
case p.reqDispatch <- reqOp:
return <-reqOp.fail
case <-p.term:
return errDisconnected
}
}
// dispatchRequest fulfils a pending request and delivers it to the requested
// sink.
func (p *Peer) dispatchResponse(res *Response) error {
resOp := &response{
res: res,
fail: make(chan error),
}
res.recv = time.Now()
res.Done = make(chan error)
select {
case p.resDispatch <- resOp:
// Ensure the response is accepted by the dispatcher
if err := <-resOp.fail; err != nil {
return nil
}
// Deliver the filled out response and wait until it's handled. This
// path is a bit funky as Go's select has no order, so if a response
// arrives to an already cancelled request, there's a 50-50% changes
// of picking on channel or the other. To avoid such cases delivering
// the packet upstream, check for cancellation first and only after
// block on delivery.
select {
case <-res.Req.cancel:
return nil // Request cancelled, silently discard response
default:
// Request not yet cancelled, attempt to deliver it, but do watch
// for fresh cancellations too
select {
case res.Req.sink <- res:
return <-res.Done // Response delivered, return any errors
case <-res.Req.cancel:
return nil // Request cancelled, silently discard response
}
}
case <-p.term:
return errDisconnected
}
}
// dispatcher is a loop that accepts requests from higher layer packages, pushes
// it to the network and tracks and dispatches the responses back to the original
// requester.
func (p *Peer) dispatcher() {
pending := make(map[uint64]*Request)
for {
select {
case reqOp := <-p.reqDispatch:
req := reqOp.req
req.Sent = time.Now()
requestTracker.Track(p.id, p.version, req.code, req.want, req.id)
err := p2p.Send(p.rw, req.code, req.data)
reqOp.fail <- err
if err == nil {
pending[req.id] = req
}
case cancelOp := <-p.reqCancel:
// Retrieve the pendign request to cancel and short circuit if it
// has already been serviced and is not available anymore
req := pending[cancelOp.id]
if req == nil {
cancelOp.fail <- nil
continue
}
// Stop tracking the request
delete(pending, cancelOp.id)
cancelOp.fail <- nil
case resOp := <-p.resDispatch:
res := resOp.res
res.Req = pending[res.id]
// Independent if the request exists or not, track this packet
requestTracker.Fulfil(p.id, p.version, res.code, res.id)
switch {
case res.Req == nil:
// Response arrived with an untracked ID. Since even cancelled
// requests are tracked until fulfilment, a dangling repsponse
// means the remote peer implements the protocol badly.
resOp.fail <- errDanglingResponse
case res.Req.want != res.code:
// Response arrived, but it's a different packet type than the
// one expected by the requester. Either the local code is bad,
// or the remote peer send junk. In neither cases can we handle
// the packet.
resOp.fail <- fmt.Errorf("%w: have %d, want %d", errMismatchingResponseType, res.code, res.Req.want)
default:
// All dispatcher checks passed and the response was initialized
// with the matching request. Signal to the delivery routine that
// it can wait for a handler response and dispatch the data.
res.Time = res.recv.Sub(res.Req.Sent)
resOp.fail <- nil
// Stop tracking the request, the response dispatcher will deliver
delete(pending, res.id)
}
case <-p.term:
return
}
}
}

@ -21,6 +21,7 @@ import (
"fmt"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core"
"github.com/ethereum/go-ethereum/core/types"
"github.com/ethereum/go-ethereum/log"
"github.com/ethereum/go-ethereum/rlp"
@ -34,11 +35,13 @@ func handleGetBlockHeaders66(backend Backend, msg Decoder, peer *Peer) error {
if err := msg.Decode(&query); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
response := answerGetBlockHeadersQuery(backend, query.GetBlockHeadersPacket, peer)
response := ServiceGetBlockHeadersQuery(backend.Chain(), query.GetBlockHeadersPacket, peer)
return peer.ReplyBlockHeaders(query.RequestId, response)
}
func answerGetBlockHeadersQuery(backend Backend, query *GetBlockHeadersPacket, peer *Peer) []*types.Header {
// ServiceGetBlockHeadersQuery assembles the response to a header query. It is
// exposed to allow external packages to test protocol behavior.
func ServiceGetBlockHeadersQuery(chain *core.BlockChain, query *GetBlockHeadersPacket, peer *Peer) []*types.Header {
hashMode := query.Origin.Hash != (common.Hash{})
first := true
maxNonCanonical := uint64(100)
@ -58,15 +61,15 @@ func answerGetBlockHeadersQuery(backend Backend, query *GetBlockHeadersPacket, p
if hashMode {
if first {
first = false
origin = backend.Chain().GetHeaderByHash(query.Origin.Hash)
origin = chain.GetHeaderByHash(query.Origin.Hash)
if origin != nil {
query.Origin.Number = origin.Number.Uint64()
}
} else {
origin = backend.Chain().GetHeader(query.Origin.Hash, query.Origin.Number)
origin = chain.GetHeader(query.Origin.Hash, query.Origin.Number)
}
} else {
origin = backend.Chain().GetHeaderByNumber(query.Origin.Number)
origin = chain.GetHeaderByNumber(query.Origin.Number)
}
if origin == nil {
break
@ -82,7 +85,7 @@ func answerGetBlockHeadersQuery(backend Backend, query *GetBlockHeadersPacket, p
if ancestor == 0 {
unknown = true
} else {
query.Origin.Hash, query.Origin.Number = backend.Chain().GetAncestor(query.Origin.Hash, query.Origin.Number, ancestor, &maxNonCanonical)
query.Origin.Hash, query.Origin.Number = chain.GetAncestor(query.Origin.Hash, query.Origin.Number, ancestor, &maxNonCanonical)
unknown = (query.Origin.Hash == common.Hash{})
}
case hashMode && !query.Reverse:
@ -96,9 +99,9 @@ func answerGetBlockHeadersQuery(backend Backend, query *GetBlockHeadersPacket, p
peer.Log().Warn("GetBlockHeaders skip overflow attack", "current", current, "skip", query.Skip, "next", next, "attacker", infos)
unknown = true
} else {
if header := backend.Chain().GetHeaderByNumber(next); header != nil {
if header := chain.GetHeaderByNumber(next); header != nil {
nextHash := header.Hash()
expOldHash, _ := backend.Chain().GetAncestor(nextHash, next, query.Skip+1, &maxNonCanonical)
expOldHash, _ := chain.GetAncestor(nextHash, next, query.Skip+1, &maxNonCanonical)
if expOldHash == query.Origin.Hash {
query.Origin.Hash, query.Origin.Number = nextHash, next
} else {
@ -130,11 +133,13 @@ func handleGetBlockBodies66(backend Backend, msg Decoder, peer *Peer) error {
if err := msg.Decode(&query); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
response := answerGetBlockBodiesQuery(backend, query.GetBlockBodiesPacket, peer)
response := ServiceGetBlockBodiesQuery(backend.Chain(), query.GetBlockBodiesPacket)
return peer.ReplyBlockBodiesRLP(query.RequestId, response)
}
func answerGetBlockBodiesQuery(backend Backend, query GetBlockBodiesPacket, peer *Peer) []rlp.RawValue {
// ServiceGetBlockBodiesQuery assembles the response to a body query. It is
// exposed to allow external packages to test protocol behavior.
func ServiceGetBlockBodiesQuery(chain *core.BlockChain, query GetBlockBodiesPacket) []rlp.RawValue {
// Gather blocks until the fetch or network limits is reached
var (
bytes int
@ -145,7 +150,7 @@ func answerGetBlockBodiesQuery(backend Backend, query GetBlockBodiesPacket, peer
lookups >= 2*maxBodiesServe {
break
}
if data := backend.Chain().GetBodyRLP(hash); len(data) != 0 {
if data := chain.GetBodyRLP(hash); len(data) != 0 {
bodies = append(bodies, data)
bytes += len(data)
}
@ -159,11 +164,13 @@ func handleGetNodeData66(backend Backend, msg Decoder, peer *Peer) error {
if err := msg.Decode(&query); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
response := answerGetNodeDataQuery(backend, query.GetNodeDataPacket, peer)
response := ServiceGetNodeDataQuery(backend.Chain(), backend.StateBloom(), query.GetNodeDataPacket)
return peer.ReplyNodeData(query.RequestId, response)
}
func answerGetNodeDataQuery(backend Backend, query GetNodeDataPacket, peer *Peer) [][]byte {
// ServiceGetNodeDataQuery assembles the response to a node data query. It is
// exposed to allow external packages to test protocol behavior.
func ServiceGetNodeDataQuery(chain *core.BlockChain, bloom *trie.SyncBloom, query GetNodeDataPacket) [][]byte {
// Gather state data until the fetch or network limits is reached
var (
bytes int
@ -175,14 +182,14 @@ func answerGetNodeDataQuery(backend Backend, query GetNodeDataPacket, peer *Peer
break
}
// Retrieve the requested state entry
if bloom := backend.StateBloom(); bloom != nil && !bloom.Contains(hash[:]) {
if bloom != nil && !bloom.Contains(hash[:]) {
// Only lookup the trie node if there's chance that we actually have it
continue
}
entry, err := backend.Chain().TrieNode(hash)
entry, err := chain.TrieNode(hash)
if len(entry) == 0 || err != nil {
// Read the contract code with prefix only to save unnecessary lookups.
entry, err = backend.Chain().ContractCodeWithPrefix(hash)
entry, err = chain.ContractCodeWithPrefix(hash)
}
if err == nil && len(entry) > 0 {
nodes = append(nodes, entry)
@ -198,11 +205,13 @@ func handleGetReceipts66(backend Backend, msg Decoder, peer *Peer) error {
if err := msg.Decode(&query); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
response := answerGetReceiptsQuery(backend, query.GetReceiptsPacket, peer)
response := ServiceGetReceiptsQuery(backend.Chain(), query.GetReceiptsPacket)
return peer.ReplyReceiptsRLP(query.RequestId, response)
}
func answerGetReceiptsQuery(backend Backend, query GetReceiptsPacket, peer *Peer) []rlp.RawValue {
// ServiceGetReceiptsQuery assembles the response to a receipt query. It is
// exposed to allow external packages to test protocol behavior.
func ServiceGetReceiptsQuery(chain *core.BlockChain, query GetReceiptsPacket) []rlp.RawValue {
// Gather state data until the fetch or network limits is reached
var (
bytes int
@ -214,9 +223,9 @@ func answerGetReceiptsQuery(backend Backend, query GetReceiptsPacket, peer *Peer
break
}
// Retrieve the requested block's receipts
results := backend.Chain().GetReceiptsByHash(hash)
results := chain.GetReceiptsByHash(hash)
if results == nil {
if header := backend.Chain().GetHeaderByHash(hash); header == nil || header.ReceiptHash != types.EmptyRootHash {
if header := chain.GetHeaderByHash(hash); header == nil || header.ReceiptHash != types.EmptyRootHash {
continue
}
}
@ -277,9 +286,11 @@ func handleBlockHeaders66(backend Backend, msg Decoder, peer *Peer) error {
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
requestTracker.Fulfil(peer.id, peer.version, BlockHeadersMsg, res.RequestId)
return backend.Handle(peer, &res.BlockHeadersPacket)
return peer.dispatchResponse(&Response{
id: res.RequestId,
code: BlockHeadersMsg,
Res: &res.BlockHeadersPacket,
})
}
func handleBlockBodies66(backend Backend, msg Decoder, peer *Peer) error {
@ -288,9 +299,11 @@ func handleBlockBodies66(backend Backend, msg Decoder, peer *Peer) error {
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
requestTracker.Fulfil(peer.id, peer.version, BlockBodiesMsg, res.RequestId)
return backend.Handle(peer, &res.BlockBodiesPacket)
return peer.dispatchResponse(&Response{
id: res.RequestId,
code: BlockBodiesMsg,
Res: &res.BlockBodiesPacket,
})
}
func handleNodeData66(backend Backend, msg Decoder, peer *Peer) error {
@ -299,9 +312,11 @@ func handleNodeData66(backend Backend, msg Decoder, peer *Peer) error {
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
requestTracker.Fulfil(peer.id, peer.version, NodeDataMsg, res.RequestId)
return backend.Handle(peer, &res.NodeDataPacket)
return peer.dispatchResponse(&Response{
id: res.RequestId,
code: NodeDataMsg,
Res: &res.NodeDataPacket,
})
}
func handleReceipts66(backend Backend, msg Decoder, peer *Peer) error {
@ -310,9 +325,11 @@ func handleReceipts66(backend Backend, msg Decoder, peer *Peer) error {
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
requestTracker.Fulfil(peer.id, peer.version, ReceiptsMsg, res.RequestId)
return backend.Handle(peer, &res.ReceiptsPacket)
return peer.dispatchResponse(&Response{
id: res.RequestId,
code: ReceiptsMsg,
Res: &res.ReceiptsPacket,
})
}
func handleNewPooledTransactionHashes(backend Backend, msg Decoder, peer *Peer) error {

@ -84,6 +84,10 @@ type Peer struct {
txBroadcast chan []common.Hash // Channel used to queue transaction propagation requests
txAnnounce chan []common.Hash // Channel used to queue transaction announcement requests
reqDispatch chan *request // Dispatch channel to send requests and track then until fulfilment
reqCancel chan *cancel // Dispatch channel to cancel pending requests and untrack them
resDispatch chan *response // Dispatch channel to fulfil pending requests and untrack them
term chan struct{} // Termination channel to stop the broadcasters
lock sync.RWMutex // Mutex protecting the internal fields
}
@ -102,6 +106,9 @@ func NewPeer(version uint, p *p2p.Peer, rw p2p.MsgReadWriter, txpool TxPool) *Pe
queuedBlockAnns: make(chan *types.Block, maxQueuedBlockAnns),
txBroadcast: make(chan []common.Hash),
txAnnounce: make(chan []common.Hash),
reqDispatch: make(chan *request),
reqCancel: make(chan *cancel),
resDispatch: make(chan *response),
txpool: txpool,
term: make(chan struct{}),
}
@ -109,6 +116,7 @@ func NewPeer(version uint, p *p2p.Peer, rw p2p.MsgReadWriter, txpool TxPool) *Pe
go peer.broadcastBlocks()
go peer.broadcastTransactions()
go peer.announceTransactions()
go peer.dispatcher()
return peer
}
@ -323,12 +331,16 @@ func (p *Peer) ReplyReceiptsRLP(id uint64, receipts []rlp.RawValue) error {
// RequestOneHeader is a wrapper around the header query functions to fetch a
// single header. It is used solely by the fetcher.
func (p *Peer) RequestOneHeader(hash common.Hash) error {
func (p *Peer) RequestOneHeader(hash common.Hash, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching single header", "hash", hash)
id := rand.Uint64()
requestTracker.Track(p.id, p.version, GetBlockHeadersMsg, BlockHeadersMsg, id)
return p2p.Send(p.rw, GetBlockHeadersMsg, &GetBlockHeadersPacket66{
req := &Request{
id: id,
sink: sink,
code: GetBlockHeadersMsg,
want: BlockHeadersMsg,
data: &GetBlockHeadersPacket66{
RequestId: id,
GetBlockHeadersPacket: &GetBlockHeadersPacket{
Origin: HashOrNumber{Hash: hash},
@ -336,17 +348,26 @@ func (p *Peer) RequestOneHeader(hash common.Hash) error {
Skip: uint64(0),
Reverse: false,
},
})
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestHeadersByHash fetches a batch of blocks' headers corresponding to the
// specified header query, based on the hash of an origin block.
func (p *Peer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool) error {
func (p *Peer) RequestHeadersByHash(origin common.Hash, amount int, skip int, reverse bool, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromhash", origin, "skip", skip, "reverse", reverse)
id := rand.Uint64()
requestTracker.Track(p.id, p.version, GetBlockHeadersMsg, BlockHeadersMsg, id)
return p2p.Send(p.rw, GetBlockHeadersMsg, &GetBlockHeadersPacket66{
req := &Request{
id: id,
sink: sink,
code: GetBlockHeadersMsg,
want: BlockHeadersMsg,
data: &GetBlockHeadersPacket66{
RequestId: id,
GetBlockHeadersPacket: &GetBlockHeadersPacket{
Origin: HashOrNumber{Hash: origin},
@ -354,17 +375,26 @@ func (p *Peer) RequestHeadersByHash(origin common.Hash, amount int, skip int, re
Skip: uint64(skip),
Reverse: reverse,
},
})
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestHeadersByNumber fetches a batch of blocks' headers corresponding to the
// specified header query, based on the number of an origin block.
func (p *Peer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool) error {
func (p *Peer) RequestHeadersByNumber(origin uint64, amount int, skip int, reverse bool, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching batch of headers", "count", amount, "fromnum", origin, "skip", skip, "reverse", reverse)
id := rand.Uint64()
requestTracker.Track(p.id, p.version, GetBlockHeadersMsg, BlockHeadersMsg, id)
return p2p.Send(p.rw, GetBlockHeadersMsg, &GetBlockHeadersPacket66{
req := &Request{
id: id,
sink: sink,
code: GetBlockHeadersMsg,
want: BlockHeadersMsg,
data: &GetBlockHeadersPacket66{
RequestId: id,
GetBlockHeadersPacket: &GetBlockHeadersPacket{
Origin: HashOrNumber{Number: origin},
@ -372,45 +402,77 @@ func (p *Peer) RequestHeadersByNumber(origin uint64, amount int, skip int, rever
Skip: uint64(skip),
Reverse: reverse,
},
})
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestBodies fetches a batch of blocks' bodies corresponding to the hashes
// specified.
func (p *Peer) RequestBodies(hashes []common.Hash) error {
func (p *Peer) RequestBodies(hashes []common.Hash, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching batch of block bodies", "count", len(hashes))
id := rand.Uint64()
requestTracker.Track(p.id, p.version, GetBlockBodiesMsg, BlockBodiesMsg, id)
return p2p.Send(p.rw, GetBlockBodiesMsg, &GetBlockBodiesPacket66{
req := &Request{
id: id,
sink: sink,
code: GetBlockBodiesMsg,
want: BlockBodiesMsg,
data: &GetBlockBodiesPacket66{
RequestId: id,
GetBlockBodiesPacket: hashes,
})
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestNodeData fetches a batch of arbitrary data from a node's known state
// data, corresponding to the specified hashes.
func (p *Peer) RequestNodeData(hashes []common.Hash) error {
func (p *Peer) RequestNodeData(hashes []common.Hash, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching batch of state data", "count", len(hashes))
id := rand.Uint64()
requestTracker.Track(p.id, p.version, GetNodeDataMsg, NodeDataMsg, id)
return p2p.Send(p.rw, GetNodeDataMsg, &GetNodeDataPacket66{
req := &Request{
id: id,
sink: sink,
code: GetNodeDataMsg,
want: NodeDataMsg,
data: &GetNodeDataPacket66{
RequestId: id,
GetNodeDataPacket: hashes,
})
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestReceipts fetches a batch of transaction receipts from a remote node.
func (p *Peer) RequestReceipts(hashes []common.Hash) error {
func (p *Peer) RequestReceipts(hashes []common.Hash, sink chan *Response) (*Request, error) {
p.Log().Debug("Fetching batch of receipts", "count", len(hashes))
id := rand.Uint64()
requestTracker.Track(p.id, p.version, GetReceiptsMsg, ReceiptsMsg, id)
return p2p.Send(p.rw, GetReceiptsMsg, &GetReceiptsPacket66{
req := &Request{
id: id,
sink: sink,
code: GetReceiptsMsg,
want: ReceiptsMsg,
data: &GetReceiptsPacket66{
RequestId: id,
GetReceiptsPacket: hashes,
})
},
}
if err := p.dispatchRequest(req); err != nil {
return nil, err
}
return req, nil
}
// RequestTxs fetches a batch of transactions from a remote node.

@ -99,8 +99,8 @@ func MakeProtocols(backend Backend, dnsdisc enode.Iterator) []p2p.Protocol {
Version: version,
Length: protocolLengths[version],
Run: func(p *p2p.Peer, rw p2p.MsgReadWriter) error {
return backend.RunPeer(newPeer(version, p, rw), func(peer *Peer) error {
return handle(backend, peer)
return backend.RunPeer(NewPeer(version, p, rw), func(peer *Peer) error {
return Handle(backend, peer)
})
},
NodeInfo: func() interface{} {
@ -116,9 +116,9 @@ func MakeProtocols(backend Backend, dnsdisc enode.Iterator) []p2p.Protocol {
return protocols
}
// handle is the callback invoked to manage the life cycle of a `snap` peer.
// Handle is the callback invoked to manage the life cycle of a `snap` peer.
// When this function terminates, the peer is disconnected.
func handle(backend Backend, peer *Peer) error {
func Handle(backend Backend, peer *Peer) error {
for {
if err := handleMessage(backend, peer); err != nil {
peer.Log().Debug("Message handling failed in `snap`", "err", err)
@ -161,17 +161,137 @@ func handleMessage(backend Backend, peer *Peer) error {
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// Service the request, potentially returning nothing in case of errors
accounts, proofs := ServiceGetAccountRangeQuery(backend.Chain(), &req)
// Send back anything accumulated (or empty in case of errors)
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{
ID: req.ID,
Accounts: accounts,
Proof: proofs,
})
case msg.Code == AccountRangeMsg:
// A range of accounts arrived to one of our previous requests
res := new(AccountRangePacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// Ensure the range is monotonically increasing
for i := 1; i < len(res.Accounts); i++ {
if bytes.Compare(res.Accounts[i-1].Hash[:], res.Accounts[i].Hash[:]) >= 0 {
return fmt.Errorf("accounts not monotonically increasing: #%d [%x] vs #%d [%x]", i-1, res.Accounts[i-1].Hash[:], i, res.Accounts[i].Hash[:])
}
}
requestTracker.Fulfil(peer.id, peer.version, AccountRangeMsg, res.ID)
return backend.Handle(peer, res)
case msg.Code == GetStorageRangesMsg:
// Decode the storage retrieval request
var req GetStorageRangesPacket
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// Service the request, potentially returning nothing in case of errors
slots, proofs := ServiceGetStorageRangesQuery(backend.Chain(), &req)
// Send back anything accumulated (or empty in case of errors)
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{
ID: req.ID,
Slots: slots,
Proof: proofs,
})
case msg.Code == StorageRangesMsg:
// A range of storage slots arrived to one of our previous requests
res := new(StorageRangesPacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// Ensure the ranges are monotonically increasing
for i, slots := range res.Slots {
for j := 1; j < len(slots); j++ {
if bytes.Compare(slots[j-1].Hash[:], slots[j].Hash[:]) >= 0 {
return fmt.Errorf("storage slots not monotonically increasing for account #%d: #%d [%x] vs #%d [%x]", i, j-1, slots[j-1].Hash[:], j, slots[j].Hash[:])
}
}
}
requestTracker.Fulfil(peer.id, peer.version, StorageRangesMsg, res.ID)
return backend.Handle(peer, res)
case msg.Code == GetByteCodesMsg:
// Decode bytecode retrieval request
var req GetByteCodesPacket
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// Service the request, potentially returning nothing in case of errors
codes := ServiceGetByteCodesQuery(backend.Chain(), &req)
// Send back anything accumulated (or empty in case of errors)
return p2p.Send(peer.rw, ByteCodesMsg, &ByteCodesPacket{
ID: req.ID,
Codes: codes,
})
case msg.Code == ByteCodesMsg:
// A batch of byte codes arrived to one of our previous requests
res := new(ByteCodesPacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
requestTracker.Fulfil(peer.id, peer.version, ByteCodesMsg, res.ID)
return backend.Handle(peer, res)
case msg.Code == GetTrieNodesMsg:
// Decode trie node retrieval request
var req GetTrieNodesPacket
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// Service the request, potentially returning nothing in case of errors
nodes, err := ServiceGetTrieNodesQuery(backend.Chain(), &req, start)
if err != nil {
return err
}
// Send back anything accumulated (or empty in case of errors)
return p2p.Send(peer.rw, TrieNodesMsg, &TrieNodesPacket{
ID: req.ID,
Nodes: nodes,
})
case msg.Code == TrieNodesMsg:
// A batch of trie nodes arrived to one of our previous requests
res := new(TrieNodesPacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
requestTracker.Fulfil(peer.id, peer.version, TrieNodesMsg, res.ID)
return backend.Handle(peer, res)
default:
return fmt.Errorf("%w: %v", errInvalidMsgCode, msg.Code)
}
}
// ServiceGetAccountRangeQuery assembles the response to an account range query.
// It is exposed to allow external packages to test protocol behavior.
func ServiceGetAccountRangeQuery(chain *core.BlockChain, req *GetAccountRangePacket) ([]*AccountData, [][]byte) {
if req.Bytes > softResponseLimit {
req.Bytes = softResponseLimit
}
// Retrieve the requested state and bail out if non existent
tr, err := trie.New(req.Root, backend.Chain().StateCache().TrieDB())
tr, err := trie.New(req.Root, chain.StateCache().TrieDB())
if err != nil {
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
return nil, nil
}
it, err := backend.Chain().Snapshots().AccountIterator(req.Root, req.Origin)
it, err := chain.Snapshots().AccountIterator(req.Root, req.Origin)
if err != nil {
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
return nil, nil
}
// Iterate over the requested range and pile accounts up
var (
@ -202,47 +322,22 @@ func handleMessage(backend Backend, peer *Peer) error {
proof := light.NewNodeSet()
if err := tr.Prove(req.Origin[:], 0, proof); err != nil {
log.Warn("Failed to prove account range", "origin", req.Origin, "err", err)
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
return nil, nil
}
if last != (common.Hash{}) {
if err := tr.Prove(last[:], 0, proof); err != nil {
log.Warn("Failed to prove account range", "last", last, "err", err)
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{ID: req.ID})
return nil, nil
}
}
var proofs [][]byte
for _, blob := range proof.NodeList() {
proofs = append(proofs, blob)
}
// Send back anything accumulated
return p2p.Send(peer.rw, AccountRangeMsg, &AccountRangePacket{
ID: req.ID,
Accounts: accounts,
Proof: proofs,
})
return accounts, proofs
}
case msg.Code == AccountRangeMsg:
// A range of accounts arrived to one of our previous requests
res := new(AccountRangePacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// Ensure the range is monotonically increasing
for i := 1; i < len(res.Accounts); i++ {
if bytes.Compare(res.Accounts[i-1].Hash[:], res.Accounts[i].Hash[:]) >= 0 {
return fmt.Errorf("accounts not monotonically increasing: #%d [%x] vs #%d [%x]", i-1, res.Accounts[i-1].Hash[:], i, res.Accounts[i].Hash[:])
}
}
requestTracker.Fulfil(peer.id, peer.version, AccountRangeMsg, res.ID)
return backend.Handle(peer, res)
case msg.Code == GetStorageRangesMsg:
// Decode the storage retrieval request
var req GetStorageRangesPacket
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
func ServiceGetStorageRangesQuery(chain *core.BlockChain, req *GetStorageRangesPacket) ([][]*StorageData, [][]byte) {
if req.Bytes > softResponseLimit {
req.Bytes = softResponseLimit
}
@ -275,9 +370,9 @@ func handleMessage(backend Backend, peer *Peer) error {
limit, req.Limit = common.BytesToHash(req.Limit), nil
}
// Retrieve the requested state and bail out if non existent
it, err := backend.Chain().Snapshots().StorageIterator(req.Root, account, origin)
it, err := chain.Snapshots().StorageIterator(req.Root, account, origin)
if err != nil {
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
return nil, nil
}
// Iterate over the requested range and pile slots up
var (
@ -315,27 +410,27 @@ func handleMessage(backend Backend, peer *Peer) error {
if origin != (common.Hash{}) || abort {
// Request started at a non-zero hash or was capped prematurely, add
// the endpoint Merkle proofs
accTrie, err := trie.New(req.Root, backend.Chain().StateCache().TrieDB())
accTrie, err := trie.New(req.Root, chain.StateCache().TrieDB())
if err != nil {
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
return nil, nil
}
var acc types.StateAccount
if err := rlp.DecodeBytes(accTrie.Get(account[:]), &acc); err != nil {
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
return nil, nil
}
stTrie, err := trie.New(acc.Root, backend.Chain().StateCache().TrieDB())
stTrie, err := trie.New(acc.Root, chain.StateCache().TrieDB())
if err != nil {
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
return nil, nil
}
proof := light.NewNodeSet()
if err := stTrie.Prove(origin[:], 0, proof); err != nil {
log.Warn("Failed to prove storage range", "origin", req.Origin, "err", err)
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
return nil, nil
}
if last != (common.Hash{}) {
if err := stTrie.Prove(last[:], 0, proof); err != nil {
log.Warn("Failed to prove storage range", "last", last, "err", err)
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{ID: req.ID})
return nil, nil
}
}
for _, blob := range proof.NodeList() {
@ -347,37 +442,12 @@ func handleMessage(backend Backend, peer *Peer) error {
break
}
}
// Send back anything accumulated
return p2p.Send(peer.rw, StorageRangesMsg, &StorageRangesPacket{
ID: req.ID,
Slots: slots,
Proof: proofs,
})
return slots, proofs
}
case msg.Code == StorageRangesMsg:
// A range of storage slots arrived to one of our previous requests
res := new(StorageRangesPacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// Ensure the ranges are monotonically increasing
for i, slots := range res.Slots {
for j := 1; j < len(slots); j++ {
if bytes.Compare(slots[j-1].Hash[:], slots[j].Hash[:]) >= 0 {
return fmt.Errorf("storage slots not monotonically increasing for account #%d: #%d [%x] vs #%d [%x]", i, j-1, slots[j-1].Hash[:], j, slots[j].Hash[:])
}
}
}
requestTracker.Fulfil(peer.id, peer.version, StorageRangesMsg, res.ID)
return backend.Handle(peer, res)
case msg.Code == GetByteCodesMsg:
// Decode bytecode retrieval request
var req GetByteCodesPacket
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// ServiceGetByteCodesQuery assembles the response to a byte codes query.
// It is exposed to allow external packages to test protocol behavior.
func ServiceGetByteCodesQuery(chain *core.BlockChain, req *GetByteCodesPacket) [][]byte {
if req.Bytes > softResponseLimit {
req.Bytes = softResponseLimit
}
@ -394,7 +464,7 @@ func handleMessage(backend Backend, peer *Peer) error {
// Peers should not request the empty code, but if they do, at
// least sent them back a correct response without db lookups
codes = append(codes, []byte{})
} else if blob, err := backend.Chain().ContractCode(hash); err == nil {
} else if blob, err := chain.ContractCode(hash); err == nil {
codes = append(codes, blob)
bytes += uint64(len(blob))
}
@ -402,46 +472,30 @@ func handleMessage(backend Backend, peer *Peer) error {
break
}
}
// Send back anything accumulated
return p2p.Send(peer.rw, ByteCodesMsg, &ByteCodesPacket{
ID: req.ID,
Codes: codes,
})
return codes
}
case msg.Code == ByteCodesMsg:
// A batch of byte codes arrived to one of our previous requests
res := new(ByteCodesPacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
requestTracker.Fulfil(peer.id, peer.version, ByteCodesMsg, res.ID)
return backend.Handle(peer, res)
case msg.Code == GetTrieNodesMsg:
// Decode trie node retrieval request
var req GetTrieNodesPacket
if err := msg.Decode(&req); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
// ServiceGetTrieNodesQuery assembles the response to a trie nodes query.
// It is exposed to allow external packages to test protocol behavior.
func ServiceGetTrieNodesQuery(chain *core.BlockChain, req *GetTrieNodesPacket, start time.Time) ([][]byte, error) {
if req.Bytes > softResponseLimit {
req.Bytes = softResponseLimit
}
// Make sure we have the state associated with the request
triedb := backend.Chain().StateCache().TrieDB()
triedb := chain.StateCache().TrieDB()
accTrie, err := trie.NewSecure(req.Root, triedb)
if err != nil {
// We don't have the requested state available, bail out
return p2p.Send(peer.rw, TrieNodesMsg, &TrieNodesPacket{ID: req.ID})
return nil, nil
}
snap := backend.Chain().Snapshots().Snapshot(req.Root)
snap := chain.Snapshots().Snapshot(req.Root)
if snap == nil {
// We don't have the requested state snapshotted yet, bail out.
// In reality we could still serve using the account and storage
// tries only, but let's protect the node a bit while it's doing
// snapshot generation.
return p2p.Send(peer.rw, TrieNodesMsg, &TrieNodesPacket{ID: req.ID})
return nil, nil
}
// Retrieve trie nodes until the packet size limit is reached
var (
@ -453,7 +507,7 @@ func handleMessage(backend Backend, peer *Peer) error {
switch len(pathset) {
case 0:
// Ensure we penalize invalid requests
return fmt.Errorf("%w: zero-item pathset requested", errBadRequest)
return nil, fmt.Errorf("%w: zero-item pathset requested", errBadRequest)
case 1:
// If we're only retrieving an account trie node, fetch it directly
@ -497,25 +551,7 @@ func handleMessage(backend Backend, peer *Peer) error {
break
}
}
// Send back anything accumulated
return p2p.Send(peer.rw, TrieNodesMsg, &TrieNodesPacket{
ID: req.ID,
Nodes: nodes,
})
case msg.Code == TrieNodesMsg:
// A batch of trie nodes arrived to one of our previous requests
res := new(TrieNodesPacket)
if err := msg.Decode(res); err != nil {
return fmt.Errorf("%w: message %v: %v", errDecode, msg, err)
}
requestTracker.Fulfil(peer.id, peer.version, TrieNodesMsg, res.ID)
return backend.Handle(peer, res)
default:
return fmt.Errorf("%w: %v", errInvalidMsgCode, msg.Code)
}
return nodes, nil
}
// NodeInfo represents a short summary of the `snap` sub-protocol metadata

@ -33,9 +33,9 @@ type Peer struct {
logger log.Logger // Contextual logger with the peer id injected
}
// newPeer create a wrapper for a network connection and negotiated protocol
// NewPeer create a wrapper for a network connection and negotiated protocol
// version.
func newPeer(version uint, p *p2p.Peer, rw p2p.MsgReadWriter) *Peer {
func NewPeer(version uint, p *p2p.Peer, rw p2p.MsgReadWriter) *Peer {
id := p.ID().String()
return &Peer{
id: id,

@ -27,7 +27,7 @@ import (
// Constants to match up protocol versions and messages
const (
snap1 = 1
SNAP1 = 1
)
// ProtocolName is the official short name of the `snap` protocol used during
@ -36,11 +36,11 @@ const ProtocolName = "snap"
// ProtocolVersions are the supported versions of the `snap` protocol (first
// is primary).
var ProtocolVersions = []uint{snap1}
var ProtocolVersions = []uint{SNAP1}
// protocolLengths are the number of implemented message corresponding to
// different protocol versions.
var protocolLengths = map[uint]uint64{snap1: 8}
var protocolLengths = map[uint]uint64{SNAP1: 8}
// maxMessageSize is the maximum cap on the size of a protocol message.
const maxMessageSize = 10 * 1024 * 1024

@ -325,10 +325,10 @@ type healTask struct {
codeTasks map[common.Hash]struct{} // Set of byte code tasks currently queued for retrieval
}
// syncProgress is a database entry to allow suspending and resuming a snapshot state
// SyncProgress is a database entry to allow suspending and resuming a snapshot state
// sync. Opposed to full and fast sync, there is no way to restart a suspended
// snap sync without prior knowledge of the suspension point.
type syncProgress struct {
type SyncProgress struct {
Tasks []*accountTask // The suspended account tasks (contract tasks within)
// Status report during syncing phase
@ -342,12 +342,15 @@ type syncProgress struct {
// Status report during healing phase
TrienodeHealSynced uint64 // Number of state trie nodes downloaded
TrienodeHealBytes common.StorageSize // Number of state trie bytes persisted to disk
TrienodeHealDups uint64 // Number of state trie nodes already processed
TrienodeHealNops uint64 // Number of state trie nodes not requested
BytecodeHealSynced uint64 // Number of bytecodes downloaded
BytecodeHealBytes common.StorageSize // Number of bytecodes persisted to disk
BytecodeHealDups uint64 // Number of bytecodes already processed
BytecodeHealNops uint64 // Number of bytecodes not requested
}
// SyncPending is analogous to SyncProgress, but it's used to report on pending
// ephemeral sync progress that doesn't get persisted into the database.
type SyncPending struct {
TrienodeHeal uint64 // Number of state trie nodes pending
BytecodeHeal uint64 // Number of bytecodes pending
}
// SyncPeer abstracts out the methods required for a peer to be synced against
@ -671,7 +674,7 @@ func (s *Syncer) Sync(root common.Hash, cancel chan struct{}) error {
// loadSyncStatus retrieves a previously aborted sync status from the database,
// or generates a fresh one if none is available.
func (s *Syncer) loadSyncStatus() {
var progress syncProgress
var progress SyncProgress
if status := rawdb.ReadSnapshotSyncStatus(s.db); status != nil {
if err := json.Unmarshal(status, &progress); err != nil {
@ -775,7 +778,7 @@ func (s *Syncer) saveSyncStatus() {
}
}
// Store the actual progress markers
progress := &syncProgress{
progress := &SyncProgress{
Tasks: s.tasks,
AccountSynced: s.accountSynced,
AccountBytes: s.accountBytes,
@ -795,6 +798,31 @@ func (s *Syncer) saveSyncStatus() {
rawdb.WriteSnapshotSyncStatus(s.db, status)
}
// Progress returns the snap sync status statistics.
func (s *Syncer) Progress() (*SyncProgress, *SyncPending) {
s.lock.Lock()
defer s.lock.Unlock()
progress := &SyncProgress{
AccountSynced: s.accountSynced,
AccountBytes: s.accountBytes,
BytecodeSynced: s.bytecodeSynced,
BytecodeBytes: s.bytecodeBytes,
StorageSynced: s.storageSynced,
StorageBytes: s.storageBytes,
TrienodeHealSynced: s.trienodeHealSynced,
TrienodeHealBytes: s.trienodeHealBytes,
BytecodeHealSynced: s.bytecodeHealSynced,
BytecodeHealBytes: s.bytecodeHealBytes,
}
pending := new(SyncPending)
if s.healer != nil {
pending.TrienodeHeal = uint64(len(s.healer.trieTasks))
pending.BytecodeHeal = uint64(len(s.healer.codeTasks))
}
return progress, pending
}
// cleanAccountTasks removes account range retrieval tasks that have already been
// completed.
func (s *Syncer) cleanAccountTasks() {

@ -165,10 +165,7 @@ func (cs *chainSyncer) nextSyncOp() *chainSyncOp {
return nil
}
mode, ourTD := cs.modeAndLocalHead()
if mode == downloader.FastSync && atomic.LoadUint32(&cs.handler.snapSync) == 1 {
// Fast sync via the snap protocol
mode = downloader.SnapSync
}
op := peerToSyncOp(mode, peer)
if op.td.Cmp(ourTD) <= 0 {
return nil // We're in sync.
@ -182,19 +179,19 @@ func peerToSyncOp(mode downloader.SyncMode, p *eth.Peer) *chainSyncOp {
}
func (cs *chainSyncer) modeAndLocalHead() (downloader.SyncMode, *big.Int) {
// If we're in fast sync mode, return that directly
if atomic.LoadUint32(&cs.handler.fastSync) == 1 {
// If we're in snap sync mode, return that directly
if atomic.LoadUint32(&cs.handler.snapSync) == 1 {
block := cs.handler.chain.CurrentFastBlock()
td := cs.handler.chain.GetTd(block.Hash(), block.NumberU64())
return downloader.FastSync, td
return downloader.SnapSync, td
}
// We are probably in full sync, but we might have rewound to before the
// fast sync pivot, check if we should reenable
// snap sync pivot, check if we should reenable
if pivot := rawdb.ReadLastPivotNumber(cs.handler.database); pivot != nil {
if head := cs.handler.chain.CurrentBlock(); head.NumberU64() < *pivot {
block := cs.handler.chain.CurrentFastBlock()
td := cs.handler.chain.GetTd(block.Hash(), block.NumberU64())
return downloader.FastSync, td
return downloader.SnapSync, td
}
}
// Nope, we're really full syncing
@ -211,15 +208,15 @@ func (cs *chainSyncer) startSync(op *chainSyncOp) {
// doSync synchronizes the local blockchain with a remote peer.
func (h *handler) doSync(op *chainSyncOp) error {
if op.mode == downloader.FastSync || op.mode == downloader.SnapSync {
// Before launch the fast sync, we have to ensure user uses the same
if op.mode == downloader.SnapSync {
// Before launch the snap sync, we have to ensure user uses the same
// txlookup limit.
// The main concern here is: during the fast sync Geth won't index the
// The main concern here is: during the snap sync Geth won't index the
// block(generate tx indices) before the HEAD-limit. But if user changes
// the limit in the next fast sync(e.g. user kill Geth manually and
// the limit in the next snap sync(e.g. user kill Geth manually and
// restart) then it will be hard for Geth to figure out the oldest block
// has been indexed. So here for the user-experience wise, it's non-optimal
// that user can't change limit during the fast sync. If changed, Geth
// that user can't change limit during the snap sync. If changed, Geth
// will just blindly use the original one.
limit := h.chain.TxLookupLimit()
if stored := rawdb.ReadFastTxLookupLimit(h.database); stored == nil {
@ -229,15 +226,11 @@ func (h *handler) doSync(op *chainSyncOp) error {
log.Warn("Update txLookup limit", "provided", limit, "updated", *stored)
}
}
// Run the sync cycle, and disable fast sync if we're past the pivot block
// Run the sync cycle, and disable snap sync if we're past the pivot block
err := h.downloader.Synchronise(op.peer.ID(), op.head, op.td, op.mode)
if err != nil {
return err
}
if atomic.LoadUint32(&h.fastSync) == 1 {
log.Info("Fast sync complete, auto disabling")
atomic.StoreUint32(&h.fastSync, 0)
}
if atomic.LoadUint32(&h.snapSync) == 1 {
log.Info("Snap sync complete, auto disabling")
atomic.StoreUint32(&h.snapSync, 0)

@ -23,57 +23,74 @@ import (
"github.com/ethereum/go-ethereum/eth/downloader"
"github.com/ethereum/go-ethereum/eth/protocols/eth"
"github.com/ethereum/go-ethereum/eth/protocols/snap"
"github.com/ethereum/go-ethereum/p2p"
"github.com/ethereum/go-ethereum/p2p/enode"
)
// Tests that fast sync is disabled after a successful sync cycle.
func TestFastSyncDisabling66(t *testing.T) { testFastSyncDisabling(t, eth.ETH66) }
// Tests that snap sync is disabled after a successful sync cycle.
func TestSnapSyncDisabling66(t *testing.T) { testSnapSyncDisabling(t, eth.ETH66, snap.SNAP1) }
// Tests that fast sync gets disabled as soon as a real block is successfully
// Tests that snap sync gets disabled as soon as a real block is successfully
// imported into the blockchain.
func testFastSyncDisabling(t *testing.T, protocol uint) {
func testSnapSyncDisabling(t *testing.T, ethVer uint, snapVer uint) {
t.Parallel()
// Create an empty handler and ensure it's in fast sync mode
// Create an empty handler and ensure it's in snap sync mode
empty := newTestHandler()
if atomic.LoadUint32(&empty.handler.fastSync) == 0 {
t.Fatalf("fast sync disabled on pristine blockchain")
if atomic.LoadUint32(&empty.handler.snapSync) == 0 {
t.Fatalf("snap sync disabled on pristine blockchain")
}
defer empty.close()
// Create a full handler and ensure fast sync ends up disabled
// Create a full handler and ensure snap sync ends up disabled
full := newTestHandlerWithBlocks(1024)
if atomic.LoadUint32(&full.handler.fastSync) == 1 {
t.Fatalf("fast sync not disabled on non-empty blockchain")
if atomic.LoadUint32(&full.handler.snapSync) == 1 {
t.Fatalf("snap sync not disabled on non-empty blockchain")
}
defer full.close()
// Sync up the two handlers
emptyPipe, fullPipe := p2p.MsgPipe()
defer emptyPipe.Close()
defer fullPipe.Close()
// Sync up the two handlers via both `eth` and `snap`
caps := []p2p.Cap{{Name: "eth", Version: ethVer}, {Name: "snap", Version: snapVer}}
emptyPeer := eth.NewPeer(protocol, p2p.NewPeer(enode.ID{1}, "", nil), emptyPipe, empty.txpool)
fullPeer := eth.NewPeer(protocol, p2p.NewPeer(enode.ID{2}, "", nil), fullPipe, full.txpool)
defer emptyPeer.Close()
defer fullPeer.Close()
emptyPipeEth, fullPipeEth := p2p.MsgPipe()
defer emptyPipeEth.Close()
defer fullPipeEth.Close()
go empty.handler.runEthPeer(emptyPeer, func(peer *eth.Peer) error {
emptyPeerEth := eth.NewPeer(ethVer, p2p.NewPeer(enode.ID{1}, "", caps), emptyPipeEth, empty.txpool)
fullPeerEth := eth.NewPeer(ethVer, p2p.NewPeer(enode.ID{2}, "", caps), fullPipeEth, full.txpool)
defer emptyPeerEth.Close()
defer fullPeerEth.Close()
go empty.handler.runEthPeer(emptyPeerEth, func(peer *eth.Peer) error {
return eth.Handle((*ethHandler)(empty.handler), peer)
})
go full.handler.runEthPeer(fullPeer, func(peer *eth.Peer) error {
go full.handler.runEthPeer(fullPeerEth, func(peer *eth.Peer) error {
return eth.Handle((*ethHandler)(full.handler), peer)
})
emptyPipeSnap, fullPipeSnap := p2p.MsgPipe()
defer emptyPipeSnap.Close()
defer fullPipeSnap.Close()
emptyPeerSnap := snap.NewPeer(snapVer, p2p.NewPeer(enode.ID{1}, "", caps), emptyPipeSnap)
fullPeerSnap := snap.NewPeer(snapVer, p2p.NewPeer(enode.ID{2}, "", caps), fullPipeSnap)
go empty.handler.runSnapExtension(emptyPeerSnap, func(peer *snap.Peer) error {
return snap.Handle((*snapHandler)(empty.handler), peer)
})
go full.handler.runSnapExtension(fullPeerSnap, func(peer *snap.Peer) error {
return snap.Handle((*snapHandler)(full.handler), peer)
})
// Wait a bit for the above handlers to start
time.Sleep(250 * time.Millisecond)
// Check that fast sync was disabled
op := peerToSyncOp(downloader.FastSync, empty.handler.peers.peerWithHighestTD())
// Check that snap sync was disabled
op := peerToSyncOp(downloader.SnapSync, empty.handler.peers.peerWithHighestTD())
if err := empty.handler.doSync(op); err != nil {
t.Fatal("sync failed:", err)
}
if atomic.LoadUint32(&empty.handler.fastSync) == 1 {
t.Fatalf("fast sync not disabled after successful synchronisation")
if atomic.LoadUint32(&empty.handler.snapSync) == 1 {
t.Fatalf("snap sync not disabled after successful synchronisation")
}
}

@ -286,14 +286,6 @@ func (ec *Client) TransactionReceipt(ctx context.Context, txHash common.Hash) (*
return r, err
}
type rpcProgress struct {
StartingBlock hexutil.Uint64
CurrentBlock hexutil.Uint64
HighestBlock hexutil.Uint64
PulledStates hexutil.Uint64
KnownStates hexutil.Uint64
}
// SyncProgress retrieves the current progress of the sync algorithm. If there's
// no sync currently running, it returns nil.
func (ec *Client) SyncProgress(ctx context.Context) (*ethereum.SyncProgress, error) {
@ -306,17 +298,11 @@ func (ec *Client) SyncProgress(ctx context.Context) (*ethereum.SyncProgress, err
if err := json.Unmarshal(raw, &syncing); err == nil {
return nil, nil // Not syncing (always false)
}
var progress *rpcProgress
var progress *ethereum.SyncProgress
if err := json.Unmarshal(raw, &progress); err != nil {
return nil, err
}
return &ethereum.SyncProgress{
StartingBlock: uint64(progress.StartingBlock),
CurrentBlock: uint64(progress.CurrentBlock),
HighestBlock: uint64(progress.HighestBlock),
PulledStates: uint64(progress.PulledStates),
KnownStates: uint64(progress.KnownStates),
}, nil
return progress, nil
}
// SubscribeNewHead subscribes to notifications about the current blockchain head

@ -1220,23 +1220,47 @@ type SyncState struct {
func (s *SyncState) StartingBlock() hexutil.Uint64 {
return hexutil.Uint64(s.progress.StartingBlock)
}
func (s *SyncState) CurrentBlock() hexutil.Uint64 {
return hexutil.Uint64(s.progress.CurrentBlock)
}
func (s *SyncState) HighestBlock() hexutil.Uint64 {
return hexutil.Uint64(s.progress.HighestBlock)
}
func (s *SyncState) PulledStates() *hexutil.Uint64 {
ret := hexutil.Uint64(s.progress.PulledStates)
return &ret
func (s *SyncState) SyncedAccounts() hexutil.Uint64 {
return hexutil.Uint64(s.progress.SyncedAccounts)
}
func (s *SyncState) KnownStates() *hexutil.Uint64 {
ret := hexutil.Uint64(s.progress.KnownStates)
return &ret
func (s *SyncState) SyncedAccountBytes() hexutil.Uint64 {
return hexutil.Uint64(s.progress.SyncedAccountBytes)
}
func (s *SyncState) SyncedBytecodes() hexutil.Uint64 {
return hexutil.Uint64(s.progress.SyncedBytecodes)
}
func (s *SyncState) SyncedBytecodeBytes() hexutil.Uint64 {
return hexutil.Uint64(s.progress.SyncedBytecodeBytes)
}
func (s *SyncState) SyncedStorage() hexutil.Uint64 {
return hexutil.Uint64(s.progress.SyncedStorage)
}
func (s *SyncState) SyncedStorageBytes() hexutil.Uint64 {
return hexutil.Uint64(s.progress.SyncedStorageBytes)
}
func (s *SyncState) HealedTrienodes() hexutil.Uint64 {
return hexutil.Uint64(s.progress.HealedTrienodes)
}
func (s *SyncState) HealedTrienodeBytes() hexutil.Uint64 {
return hexutil.Uint64(s.progress.HealedTrienodeBytes)
}
func (s *SyncState) HealedBytecodes() hexutil.Uint64 {
return hexutil.Uint64(s.progress.HealedBytecodes)
}
func (s *SyncState) HealedBytecodeBytes() hexutil.Uint64 {
return hexutil.Uint64(s.progress.HealedBytecodeBytes)
}
func (s *SyncState) HealingTrienodes() hexutil.Uint64 {
return hexutil.Uint64(s.progress.HealingTrienodes)
}
func (s *SyncState) HealingBytecode() hexutil.Uint64 {
return hexutil.Uint64(s.progress.HealingBytecode)
}
// Syncing returns false in case the node is currently not syncing with the network. It can be up to date or has not
@ -1244,8 +1268,18 @@ func (s *SyncState) KnownStates() *hexutil.Uint64 {
// - startingBlock: block number this node started to synchronise from
// - currentBlock: block number this node is currently importing
// - highestBlock: block number of the highest block header this node has received from peers
// - pulledStates: number of state entries processed until now
// - knownStates: number of known state entries that still need to be pulled
// - syncedAccounts: number of accounts downloaded
// - syncedAccountBytes: number of account trie bytes persisted to disk
// - syncedBytecodes: number of bytecodes downloaded
// - syncedBytecodeBytes: number of bytecode bytes downloaded
// - syncedStorage: number of storage slots downloaded
// - syncedStorageBytes: number of storage trie bytes persisted to disk
// - healedTrienodes: number of state trie nodes downloaded
// - healedTrienodeBytes: number of state trie bytes persisted to disk
// - healedBytecodes: number of bytecodes downloaded
// - healedBytecodeBytes: number of bytecodes persisted to disk
// - healingTrienodes: number of state trie nodes pending
// - healingBytecode: number of bytecodes pending
func (r *Resolver) Syncing() (*SyncState, error) {
progress := r.backend.SyncProgress()

@ -297,12 +297,6 @@ const schema string = `
currentBlock: Long!
# HighestBlock is the latest known block number.
highestBlock: Long!
# PulledStates is the number of state entries fetched so far, or null
# if this is not known or not relevant.
pulledStates: Long
# KnownStates is the number of states the node knows of so far, or null
# if this is not known or not relevant.
knownStates: Long
}
# Pending represents the current pending state.

@ -101,8 +101,22 @@ type SyncProgress struct {
StartingBlock uint64 // Block number where sync began
CurrentBlock uint64 // Current block number where sync is at
HighestBlock uint64 // Highest alleged block number in the chain
PulledStates uint64 // Number of state trie entries already downloaded
KnownStates uint64 // Total number of state trie entries known about
// Fields belonging to snap sync
SyncedAccounts uint64 // Number of accounts downloaded
SyncedAccountBytes uint64 // Number of account trie bytes persisted to disk
SyncedBytecodes uint64 // Number of bytecodes downloaded
SyncedBytecodeBytes uint64 // Number of bytecode bytes downloaded
SyncedStorage uint64 // Number of storage slots downloaded
SyncedStorageBytes uint64 // Number of storage trie bytes persisted to disk
HealedTrienodes uint64 // Number of state trie nodes downloaded
HealedTrienodeBytes uint64 // Number of state trie bytes persisted to disk
HealedBytecodes uint64 // Number of bytecodes downloaded
HealedBytecodeBytes uint64 // Number of bytecodes persisted to disk
HealingTrienodes uint64 // Number of state trie nodes pending
HealingBytecode uint64 // Number of bytecodes pending
}
// ChainSyncReader wraps access to the node's current sync status. If there's no

@ -134,8 +134,18 @@ func (s *PublicEthereumAPI) Syncing() (interface{}, error) {
"startingBlock": hexutil.Uint64(progress.StartingBlock),
"currentBlock": hexutil.Uint64(progress.CurrentBlock),
"highestBlock": hexutil.Uint64(progress.HighestBlock),
"pulledStates": hexutil.Uint64(progress.PulledStates),
"knownStates": hexutil.Uint64(progress.KnownStates),
"syncedAccounts": hexutil.Uint64(progress.SyncedAccounts),
"syncedAccountBytes": hexutil.Uint64(progress.SyncedAccountBytes),
"syncedBytecodes": hexutil.Uint64(progress.SyncedBytecodes),
"syncedBytecodeBytes": hexutil.Uint64(progress.SyncedBytecodeBytes),
"syncedStorage": hexutil.Uint64(progress.SyncedStorage),
"syncedStorageBytes": hexutil.Uint64(progress.SyncedStorageBytes),
"healedTrienodes": hexutil.Uint64(progress.HealedTrienodes),
"healedTrienodeBytes": hexutil.Uint64(progress.HealedTrienodeBytes),
"healedBytecodes": hexutil.Uint64(progress.HealedBytecodes),
"healedBytecodeBytes": hexutil.Uint64(progress.HealedBytecodeBytes),
"healingTrienodes": hexutil.Uint64(progress.HealingTrienodes),
"healingBytecode": hexutil.Uint64(progress.HealingBytecode),
}, nil
}

File diff suppressed because one or more lines are too long

@ -3949,10 +3949,18 @@ var outputSyncingFormatter = function(result) {
result.startingBlock = utils.toDecimal(result.startingBlock);
result.currentBlock = utils.toDecimal(result.currentBlock);
result.highestBlock = utils.toDecimal(result.highestBlock);
if (result.knownStates) {
result.knownStates = utils.toDecimal(result.knownStates);
result.pulledStates = utils.toDecimal(result.pulledStates);
}
result.syncedAccounts = utils.toDecimal(result.syncedAccounts);
result.syncedAccountBytes = utils.toDecimal(result.syncedAccountBytes);
result.syncedBytecodes = utils.toDecimal(result.syncedBytecodes);
result.syncedBytecodeBytes = utils.toDecimal(result.syncedBytecodeBytes);
result.syncedStorage = utils.toDecimal(result.syncedStorage);
result.syncedStorageBytes = utils.toDecimal(result.syncedStorageBytes);
result.healedTrienodes = utils.toDecimal(result.healedTrienodes);
result.healedTrienodeBytes = utils.toDecimal(result.healedTrienodeBytes);
result.healedBytecodes = utils.toDecimal(result.healedBytecodes);
result.healedBytecodeBytes = utils.toDecimal(result.healedBytecodeBytes);
result.healingTrienodes = utils.toDecimal(result.healingTrienodes);
result.healingBytecode = utils.toDecimal(result.healingBytecode);
return result;
};

@ -231,9 +231,9 @@ func New(checkpoint uint64, stateDb ethdb.Database, stateBloom *trie.SyncBloom,
stateCh: make(chan dataPack),
SnapSyncer: snap.NewSyncer(stateDb),
stateSyncStart: make(chan *stateSync),
syncStatsState: stateSyncStats{
processed: rawdb.ReadFastTrieProgress(stateDb),
},
//syncStatsState: stateSyncStats{
// processed: rawdb.ReadFastTrieProgress(stateDb),
//},
trackStateReq: make(chan *stateReq),
}
go dl.stateFetcher()
@ -268,8 +268,8 @@ func (d *Downloader) Progress() ethereum.SyncProgress {
StartingBlock: d.syncStatsChainOrigin,
CurrentBlock: current,
HighestBlock: d.syncStatsChainHeight,
PulledStates: d.syncStatsState.processed,
KnownStates: d.syncStatsState.processed + d.syncStatsState.pending,
//PulledStates: d.syncStatsState.processed,
//KnownStates: d.syncStatsState.processed + d.syncStatsState.pending,
}
}

@ -1207,8 +1207,8 @@ func checkProgress(t *testing.T, d *Downloader, stage string, want ethereum.Sync
t.Helper()
p := d.Progress()
p.KnownStates, p.PulledStates = 0, 0
want.KnownStates, want.PulledStates = 0, 0
//p.KnownStates, p.PulledStates = 0, 0
//want.KnownStates, want.PulledStates = 0, 0
if p != want {
t.Fatalf("%s progress mismatch:\nhave %+v\nwant %+v", stage, p, want)
}

@ -22,7 +22,6 @@ import (
"time"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/core/rawdb"
"github.com/ethereum/go-ethereum/core/state"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/ethdb"
@ -610,6 +609,6 @@ func (s *stateSync) updateStats(written, duplicate, unexpected int, duration tim
log.Info("Imported new state entries", "count", written, "elapsed", common.PrettyDuration(duration), "processed", s.d.syncStatsState.processed, "pending", s.d.syncStatsState.pending, "trieretry", len(s.trieTasks), "coderetry", len(s.codeTasks), "duplicate", s.d.syncStatsState.duplicate, "unexpected", s.d.syncStatsState.unexpected)
}
if written > 0 {
rawdb.WriteFastTrieProgress(s.d.stateDB, s.d.syncStatsState.processed)
//rawdb.WriteFastTrieProgress(s.d.stateDB, s.d.syncStatsState.processed)
}
}

@ -60,8 +60,8 @@ func makeChain(n int, seed byte, parent *types.Block) ([]common.Hash, map[common
block.AddTx(tx)
}
// If the block number is a multiple of 5, add a bonus uncle to the block
if i%5 == 0 {
block.AddUncle(&types.Header{ParentHash: block.PrevBlock(i - 1).Hash(), Number: big.NewInt(int64(i - 1))})
if i > 0 && i%5 == 0 {
block.AddUncle(&types.Header{ParentHash: block.PrevBlock(i - 2).Hash(), Number: big.NewInt(int64(i - 1))})
}
})
hashes := make([]common.Hash, n+1)

@ -81,8 +81,18 @@ type SyncProgress struct {
func (p *SyncProgress) GetStartingBlock() int64 { return int64(p.progress.StartingBlock) }
func (p *SyncProgress) GetCurrentBlock() int64 { return int64(p.progress.CurrentBlock) }
func (p *SyncProgress) GetHighestBlock() int64 { return int64(p.progress.HighestBlock) }
func (p *SyncProgress) GetPulledStates() int64 { return int64(p.progress.PulledStates) }
func (p *SyncProgress) GetKnownStates() int64 { return int64(p.progress.KnownStates) }
func (p *SyncProgress) GetSyncedAccounts() int64 { return int64(p.progress.SyncedAccounts) }
func (p *SyncProgress) GetSyncedAccountBytes() int64 { return int64(p.progress.SyncedAccountBytes) }
func (p *SyncProgress) GetSyncedBytecodes() int64 { return int64(p.progress.SyncedBytecodes) }
func (p *SyncProgress) GetSyncedBytecodeBytes() int64 { return int64(p.progress.SyncedBytecodeBytes) }
func (p *SyncProgress) GetSyncedStorage() int64 { return int64(p.progress.SyncedStorage) }
func (p *SyncProgress) GetSyncedStorageBytes() int64 { return int64(p.progress.SyncedStorageBytes) }
func (p *SyncProgress) GetHealedTrienodes() int64 { return int64(p.progress.HealedTrienodes) }
func (p *SyncProgress) GetHealedTrienodeBytes() int64 { return int64(p.progress.HealedTrienodeBytes) }
func (p *SyncProgress) GetHealedBytecodes() int64 { return int64(p.progress.HealedBytecodes) }
func (p *SyncProgress) GetHealedBytecodeBytes() int64 { return int64(p.progress.HealedBytecodeBytes) }
func (p *SyncProgress) GetHealingTrienodes() int64 { return int64(p.progress.HealingTrienodes) }
func (p *SyncProgress) GetHealingBytecode() int64 { return int64(p.progress.HealingBytecode) }
// Topics is a set of topic lists to filter events with.
type Topics struct{ topics [][]common.Hash }

@ -121,10 +121,18 @@ type Peer struct {
// NewPeer returns a peer for testing purposes.
func NewPeer(id enode.ID, name string, caps []Cap) *Peer {
// Generate a fake set of local protocols to match as running caps. Almost
// no fields needs to be meaningful here as we're only using it to cross-
// check with the "remote" caps array.
protos := make([]Protocol, len(caps))
for i, cap := range caps {
protos[i].Name = cap.Name
protos[i].Version = cap.Version
}
pipe, _ := net.Pipe()
node := enode.SignNull(new(enr.Record), id)
conn := &conn{fd: pipe, transport: nil, node: node, caps: caps, name: name}
peer := newPeer(log.Root(), conn, nil)
peer := newPeer(log.Root(), conn, protos)
close(peer.closed) // ensures Disconnect doesn't block
return peer
}