crypto, crypto/secp256k1: add CompressPubkey (#15626)

This adds the inverse to DecompressPubkey and improves a few minor
details in crypto/secp256k1.
This commit is contained in:
Felix Lange 2017-12-15 10:40:09 +01:00 committed by GitHub
parent 1f2176dedc
commit c6069a627c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 118 additions and 52 deletions

@ -34,7 +34,6 @@ package secp256k1
import (
"crypto/elliptic"
"math/big"
"sync"
"unsafe"
"github.com/ethereum/go-ethereum/common/math"
@ -42,7 +41,7 @@ import (
/*
#include "libsecp256k1/include/secp256k1.h"
extern int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
*/
import "C"
@ -236,7 +235,7 @@ func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int,
math.ReadBits(By, point[32:])
pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
res := C.secp256k1_pubkey_scalar_mul(context, pointPtr, scalarPtr)
res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
// Unpack the result and clear temporaries.
x := new(big.Int).SetBytes(point[:32])
@ -263,14 +262,10 @@ func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
// X9.62.
func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
byteLen := (BitCurve.BitSize + 7) >> 3
ret := make([]byte, 1+2*byteLen)
ret[0] = 4 // uncompressed point
xBytes := x.Bytes()
copy(ret[1+byteLen-len(xBytes):], xBytes)
yBytes := y.Bytes()
copy(ret[1+2*byteLen-len(yBytes):], yBytes)
ret[0] = 4 // uncompressed point flag
math.ReadBits(x, ret[1:1+byteLen])
math.ReadBits(y, ret[1+byteLen:])
return ret
}
@ -289,24 +284,21 @@ func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
return
}
var (
initonce sync.Once
theCurve *BitCurve
)
var theCurve = new(BitCurve)
// S256 returns a BitCurve which implements secp256k1 (see SEC 2 section 2.7.1)
func init() {
// See SEC 2 section 2.7.1
// curve parameters taken from:
// http://www.secg.org/collateral/sec2_final.pdf
theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
theCurve.BitSize = 256
}
// S256 returns a BitCurve which implements secp256k1.
func S256() *BitCurve {
initonce.Do(func() {
// See SEC 2 section 2.7.1
// curve parameters taken from:
// http://www.secg.org/collateral/sec2_final.pdf
theCurve = new(BitCurve)
theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
theCurve.BitSize = 256
})
return theCurve
}

@ -19,7 +19,7 @@ static secp256k1_context* secp256k1_context_create_sign_verify() {
return secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
}
// secp256k1_ecdsa_recover_pubkey recovers the public key of an encoded compact signature.
// secp256k1_ext_ecdsa_recover recovers the public key of an encoded compact signature.
//
// Returns: 1: recovery was successful
// 0: recovery was not successful
@ -27,7 +27,7 @@ static secp256k1_context* secp256k1_context_create_sign_verify() {
// Out: pubkey_out: the serialized 65-byte public key of the signer (cannot be NULL)
// In: sigdata: pointer to a 65-byte signature with the recovery id at the end (cannot be NULL)
// msgdata: pointer to a 32-byte message (cannot be NULL)
static int secp256k1_ecdsa_recover_pubkey(
static int secp256k1_ext_ecdsa_recover(
const secp256k1_context* ctx,
unsigned char *pubkey_out,
const unsigned char *sigdata,
@ -46,7 +46,7 @@ static int secp256k1_ecdsa_recover_pubkey(
return secp256k1_ec_pubkey_serialize(ctx, pubkey_out, &outputlen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
}
// secp256k1_ecdsa_verify_enc verifies an encoded compact signature.
// secp256k1_ext_ecdsa_verify verifies an encoded compact signature.
//
// Returns: 1: signature is valid
// 0: signature is invalid
@ -55,7 +55,7 @@ static int secp256k1_ecdsa_recover_pubkey(
// msgdata: pointer to a 32-byte message (cannot be NULL)
// pubkeydata: pointer to public key data (cannot be NULL)
// pubkeylen: length of pubkeydata
static int secp256k1_ecdsa_verify_enc(
static int secp256k1_ext_ecdsa_verify(
const secp256k1_context* ctx,
const unsigned char *sigdata,
const unsigned char *msgdata,
@ -74,28 +74,34 @@ static int secp256k1_ecdsa_verify_enc(
return secp256k1_ecdsa_verify(ctx, &sig, msgdata, &pubkey);
}
// secp256k1_decompress_pubkey decompresses a public key.
// secp256k1_ext_reencode_pubkey decodes then encodes a public key. It can be used to
// convert between public key formats. The input/output formats are chosen depending on the
// length of the input/output buffers.
//
// Returns: 1: public key is valid
// 0: public key is invalid
// Returns: 1: conversion successful
// 0: conversion unsuccessful
// Args: ctx: pointer to a context object (cannot be NULL)
// Out: pubkey_out: the serialized 65-byte public key (cannot be NULL)
// In: pubkeydata: pointer to 33 bytes of compressed public key data (cannot be NULL)
static int secp256k1_decompress_pubkey(
// Out: out: output buffer that will contain the reencoded key (cannot be NULL)
// In: outlen: length of out (33 for compressed keys, 65 for uncompressed keys)
// pubkeydata: the input public key (cannot be NULL)
// pubkeylen: length of pubkeydata
static int secp256k1_ext_reencode_pubkey(
const secp256k1_context* ctx,
unsigned char *pubkey_out,
const unsigned char *pubkeydata
unsigned char *out,
size_t outlen,
const unsigned char *pubkeydata,
size_t pubkeylen
) {
secp256k1_pubkey pubkey;
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeydata, 33)) {
if (!secp256k1_ec_pubkey_parse(ctx, &pubkey, pubkeydata, pubkeylen)) {
return 0;
}
size_t outputlen = 65;
return secp256k1_ec_pubkey_serialize(ctx, pubkey_out, &outputlen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
unsigned int flag = (outlen == 33) ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED;
return secp256k1_ec_pubkey_serialize(ctx, out, &outlen, &pubkey, flag);
}
// secp256k1_pubkey_scalar_mul multiplies a point by a scalar in constant time.
// secp256k1_ext_scalar_mul multiplies a point by a scalar in constant time.
//
// Returns: 1: multiplication was successful
// 0: scalar was invalid (zero or overflow)
@ -104,7 +110,7 @@ static int secp256k1_decompress_pubkey(
// In: point: pointer to a 64-byte public point,
// encoded as two 256bit big-endian numbers.
// scalar: a 32-byte scalar with which to multiply the point
int secp256k1_pubkey_scalar_mul(const secp256k1_context* ctx, unsigned char *point, const unsigned char *scalar) {
int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, unsigned char *point, const unsigned char *scalar) {
int ret = 0;
int overflow = 0;
secp256k1_fe feX, feY;

@ -115,7 +115,7 @@ func RecoverPubkey(msg []byte, sig []byte) ([]byte, error) {
sigdata = (*C.uchar)(unsafe.Pointer(&sig[0]))
msgdata = (*C.uchar)(unsafe.Pointer(&msg[0]))
)
if C.secp256k1_ecdsa_recover_pubkey(context, (*C.uchar)(unsafe.Pointer(&pubkey[0])), sigdata, msgdata) == 0 {
if C.secp256k1_ext_ecdsa_recover(context, (*C.uchar)(unsafe.Pointer(&pubkey[0])), sigdata, msgdata) == 0 {
return nil, ErrRecoverFailed
}
return pubkey, nil
@ -130,22 +130,42 @@ func VerifySignature(pubkey, msg, signature []byte) bool {
sigdata := (*C.uchar)(unsafe.Pointer(&signature[0]))
msgdata := (*C.uchar)(unsafe.Pointer(&msg[0]))
keydata := (*C.uchar)(unsafe.Pointer(&pubkey[0]))
return C.secp256k1_ecdsa_verify_enc(context, sigdata, msgdata, keydata, C.size_t(len(pubkey))) != 0
return C.secp256k1_ext_ecdsa_verify(context, sigdata, msgdata, keydata, C.size_t(len(pubkey))) != 0
}
// DecompressPubkey parses a public key in the 33-byte compressed format.
// It returns non-nil coordinates if the public key is valid.
func DecompressPubkey(pubkey []byte) (X, Y *big.Int) {
func DecompressPubkey(pubkey []byte) (x, y *big.Int) {
if len(pubkey) != 33 {
return nil, nil
}
buf := make([]byte, 65)
bufdata := (*C.uchar)(unsafe.Pointer(&buf[0]))
pubkeydata := (*C.uchar)(unsafe.Pointer(&pubkey[0]))
if C.secp256k1_decompress_pubkey(context, bufdata, pubkeydata) == 0 {
var (
pubkeydata = (*C.uchar)(unsafe.Pointer(&pubkey[0]))
pubkeylen = C.size_t(len(pubkey))
out = make([]byte, 65)
outdata = (*C.uchar)(unsafe.Pointer(&out[0]))
outlen = C.size_t(len(out))
)
if C.secp256k1_ext_reencode_pubkey(context, outdata, outlen, pubkeydata, pubkeylen) == 0 {
return nil, nil
}
return new(big.Int).SetBytes(buf[1:33]), new(big.Int).SetBytes(buf[33:])
return new(big.Int).SetBytes(out[1:33]), new(big.Int).SetBytes(out[33:])
}
// CompressPubkey encodes a public key to 33-byte compressed format.
func CompressPubkey(x, y *big.Int) []byte {
var (
pubkey = S256().Marshal(x, y)
pubkeydata = (*C.uchar)(unsafe.Pointer(&pubkey[0]))
pubkeylen = C.size_t(len(pubkey))
out = make([]byte, 33)
outdata = (*C.uchar)(unsafe.Pointer(&out[0]))
outlen = C.size_t(len(out))
)
if C.secp256k1_ext_reencode_pubkey(context, outdata, outlen, pubkeydata, pubkeylen) == 0 {
panic("libsecp256k1 error")
}
return out
}
func checkSignature(sig []byte) error {

@ -76,6 +76,11 @@ func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
return &ecdsa.PublicKey{X: x, Y: y, Curve: S256()}, nil
}
// CompressPubkey encodes a public key to the 33-byte compressed format.
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
return secp256k1.CompressPubkey(pubkey.X, pubkey.Y)
}
// S256 returns an instance of the secp256k1 curve.
func S256() elliptic.Curve {
return secp256k1.S256()

@ -102,6 +102,11 @@ func DecompressPubkey(pubkey []byte) (*ecdsa.PublicKey, error) {
return key.ToECDSA(), nil
}
// CompressPubkey encodes a public key to the 33-byte compressed format.
func CompressPubkey(pubkey *ecdsa.PublicKey) []byte {
return (*btcec.PublicKey)(pubkey).SerializeCompressed()
}
// S256 returns an instance of the secp256k1 curve.
func S256() elliptic.Curve {
return btcec.S256()

@ -18,10 +18,13 @@ package crypto
import (
"bytes"
"crypto/ecdsa"
"reflect"
"testing"
"github.com/ethereum/go-ethereum/common"
"github.com/ethereum/go-ethereum/common/hexutil"
"github.com/ethereum/go-ethereum/common/math"
)
var (
@ -65,6 +68,11 @@ func TestVerifySignature(t *testing.T) {
if VerifySignature(testpubkey, testmsg, sig[:len(sig)-2]) {
t.Errorf("signature valid even though it's incomplete")
}
wrongkey := common.CopyBytes(testpubkey)
wrongkey[10]++
if VerifySignature(wrongkey, testmsg, sig) {
t.Errorf("signature valid with with wrong public key")
}
}
func TestDecompressPubkey(t *testing.T) {
@ -86,6 +94,36 @@ func TestDecompressPubkey(t *testing.T) {
}
}
func TestCompressPubkey(t *testing.T) {
key := &ecdsa.PublicKey{
Curve: S256(),
X: math.MustParseBig256("0xe32df42865e97135acfb65f3bae71bdc86f4d49150ad6a440b6f15878109880a"),
Y: math.MustParseBig256("0x0a2b2667f7e725ceea70c673093bf67663e0312623c8e091b13cf2c0f11ef652"),
}
compressed := CompressPubkey(key)
if !bytes.Equal(compressed, testpubkeyc) {
t.Errorf("wrong public key result: got %x, want %x", compressed, testpubkeyc)
}
}
func TestPubkeyRandom(t *testing.T) {
const runs = 200
for i := 0; i < runs; i++ {
key, err := GenerateKey()
if err != nil {
t.Fatalf("iteration %d: %v", i, err)
}
pubkey2, err := DecompressPubkey(CompressPubkey(&key.PublicKey))
if err != nil {
t.Fatalf("iteration %d: %v", i, err)
}
if !reflect.DeepEqual(key.PublicKey, *pubkey2) {
t.Fatalf("iteration %d: keys not equal", i)
}
}
}
func BenchmarkEcrecoverSignature(b *testing.B) {
for i := 0; i < b.N; i++ {
if _, err := Ecrecover(testmsg, testsig); err != nil {