* focus on performance improvement in many aspects.
1. Do BlockBody verification concurrently;
2. Do calculation of intermediate root concurrently;
3. Preload accounts before processing blocks;
4. Make the snapshot layers configurable.
5. Reuse some object to reduce GC.
add
* rlp: improve decoder stream implementation (#22858)
This commit makes various cleanup changes to rlp.Stream.
* rlp: shrink Stream struct
This removes a lot of unused padding space in Stream by reordering the
fields. The size of Stream changes from 120 bytes to 88 bytes. Stream
instances are internally cached and reused using sync.Pool, so this does
not improve performance.
* rlp: simplify list stack
The list stack kept track of the size of the current list context as
well as the current offset into it. The size had to be stored in the
stack in order to subtract it from the remaining bytes of any enclosing
list in ListEnd. It seems that this can be implemented in a simpler
way: just subtract the size from the enclosing list context in List instead.
* rlp: use atomic.Value for type cache (#22902)
All encoding/decoding operations read the type cache to find the
writer/decoder function responsible for a type. When analyzing CPU
profiles of geth during sync, I found that the use of sync.RWMutex in
cache lookups appears in the profiles. It seems we are running into
CPU cache contention problems when package rlp is heavily used
on all CPU cores during sync.
This change makes it use atomic.Value + a writer lock instead of
sync.RWMutex. In the common case where the typeinfo entry is present in
the cache, we simply fetch the map and lookup the type.
* rlp: optimize byte array handling (#22924)
This change improves the performance of encoding/decoding [N]byte.
name old time/op new time/op delta
DecodeByteArrayStruct-8 336ns ± 0% 246ns ± 0% -26.98% (p=0.000 n=9+10)
EncodeByteArrayStruct-8 225ns ± 1% 148ns ± 1% -34.12% (p=0.000 n=10+10)
name old alloc/op new alloc/op delta
DecodeByteArrayStruct-8 120B ± 0% 48B ± 0% -60.00% (p=0.000 n=10+10)
EncodeByteArrayStruct-8 0.00B 0.00B ~ (all equal)
* rlp: optimize big.Int decoding for size <= 32 bytes (#22927)
This change grows the static integer buffer in Stream to 32 bytes,
making it possible to decode 256bit integers without allocating a
temporary buffer.
In the recent commit 088da24, Stream struct size decreased from 120
bytes down to 88 bytes. This commit grows the struct to 112 bytes again,
but the size change will not degrade performance because Stream
instances are internally cached in sync.Pool.
name old time/op new time/op delta
DecodeBigInts-8 12.2µs ± 0% 8.6µs ± 4% -29.58% (p=0.000 n=9+10)
name old speed new speed delta
DecodeBigInts-8 230MB/s ± 0% 326MB/s ± 4% +42.04% (p=0.000 n=9+10)
* eth/protocols/eth, les: avoid Raw() when decoding HashOrNumber (#22841)
Getting the raw value is not necessary to decode this type, and
decoding it directly from the stream is faster.
* fix testcase
* debug no lazy
* fix can not repair
* address comments
Co-authored-by: Felix Lange <fjl@twurst.com>
* all: add thousandths separators for big numbers on log messages
* p2p/sentry: drop accidental file
* common, log: add fast number formatter
* common, eth/protocols/snap: simplifty fancy num types
* log: handle nil big ints
This adds support for EIP-2718 typed transactions as well as EIP-2930
access list transactions (tx type 1). These EIPs are scheduled for the
Berlin fork.
There very few changes to existing APIs in core/types, and several new APIs
to deal with access list transactions. In particular, there are two new
constructor functions for transactions: types.NewTx and types.SignNewTx.
Since the canonical encoding of typed transactions is not RLP-compatible,
Transaction now has new methods for encoding and decoding: MarshalBinary
and UnmarshalBinary.
The existing EIP-155 signer does not support the new transaction types.
All code dealing with transaction signatures should be updated to use the
newer EIP-2930 signer. To make this easier for future updates, we have
added new constructor functions for types.Signer: types.LatestSigner and
types.LatestSignerForChainID.
This change also adds support for the YoloV3 testnet.
Co-authored-by: Martin Holst Swende <martin@swende.se>
Co-authored-by: Felix Lange <fjl@twurst.com>
Co-authored-by: Ryan Schneider <ryanleeschneider@gmail.com>
The PR makes use of the stacktrie, which is is more lenient on resource consumption, than the regular trie, in cases where we only need it for DeriveSha
A lot of times when we hit 'core' errors, example: invalid tx, the information provided is
insufficient. We miss several pieces of information: what account has nonce too high,
and what transaction in that block was offending?
This PR adds that information, using the new type of wrapped errors.
It also adds a testcase which (partly) verifies the output from the errors.
The first commit changes all usage of direct equality-checks on core errors, into
using errors.Is. The second commit adds contextual information. This wraps most
of the core errors with more information, and also wraps it one more time in
stateprocessor, to further provide tx index and tx hash, if such a tx is encoutered in
a block. The third commit uses the chainmaker to try to generate chains with such
errors in them, thus triggering the errors and checking that the generated string meets
expectations.
* cmd, core, eth: init tx lookup in background
* core/rawdb: tiny log fixes to make it clearer what's happening
* core, eth: fix rebase errors
* core/rawdb: make reindexing less generic, but more optimal
* rlp: implement rlp list iterator
* core/rawdb: new implementation of tx indexing/unindex using generic tx iterator and hashing rlp-data
* core/rawdb, cmd/utils: fix review concerns
* cmd/utils: fix merge issue
* core/rawdb: add some log formatting polishes
Co-authored-by: rjl493456442 <garyrong0905@gmail.com>
Co-authored-by: Péter Szilágyi <peterke@gmail.com>
This is a resubmit of #20668 which rewrites the problematic test
without any additional goroutines. It also documents the test better.
The purpose of this test is checking whether log events are sent
correctly when importing blocks. The test was written at a time when
blockchain events were delivered asynchronously, making the check hard
to pull off. Now that core.BlockChain delivers events synchronously
during the call to InsertChain, the test can be simplified.
Co-authored-by: BurtonQin <bobbqqin@gmail.com>
This change:
- removes the PostChainEvents method on core.BlockChain.
- sorts 'removed log' events by block number.
- fire the NewChainHead event if we inject a canonical block into the chain
even if the entire insertion is not successful.
- guarantees correct event ordering in all cases.
* core, eth: some fixes for freezer
* vendor, core/rawdb, cmd/geth: add db inspector
* core, cmd/utils: check ancient store path forceily
* cmd/geth, common, core/rawdb: a few fixes
* cmd/geth: support windows file rename and fix rename error
* core: support ancient plugin
* core, cmd: streaming file copy
* cmd, consensus, core, tests: keep genesis in leveldb
* core: write txlookup during ancient init
* core: bump database version
* all: freezer style syncing
core, eth, les, light: clean up freezer relative APIs
core, eth, les, trie, ethdb, light: clean a bit
core, eth, les, light: add unit tests
core, light: rewrite setHead function
core, eth: fix downloader unit tests
core: add receipt chain insertion test
core: use constant instead of hardcoding table name
core: fix rollback
core: fix setHead
core/rawdb: remove canonical block first and then iterate side chain
core/rawdb, ethdb: add hasAncient interface
eth/downloader: calculate ancient limit via cht first
core, eth, ethdb: lots of fixes
* eth/downloader: print ancient disable log only for fast sync
* core: import known blocks if they can be inserted as canonical blocks
* core: insert knowns blocks
* core: remove useless
* core: doesn't process head block in reorg function
The current trie memory database/cache that we do pruning on stores
trie nodes as binary rlp encoded blobs, and also stores the node
relationships/references for GC purposes. However, most of the trie
nodes (everything apart from a value node) is in essence just a
collection of references.
This PR switches out the RLP encoded trie blobs with the
collapsed-but-not-serialized trie nodes. This permits most of the
references to be recovered from within the node data structure,
avoiding the need to track them a second time (expensive memory wise).