// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . // Package state provides a caching layer atop the Ethereum state trie. package state import ( "errors" "fmt" "runtime" "sort" "sync" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/common/gopool" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/state/snapshot" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/metrics" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" "github.com/ethereum/go-ethereum/trie/trienode" "github.com/ethereum/go-ethereum/trie/triestate" "github.com/holiman/uint256" ) const ( defaultNumOfSlots = 100 // storageDeleteLimit denotes the highest permissible memory allocation // employed for contract storage deletion. storageDeleteLimit = 512 * 1024 * 1024 ) type revision struct { id int journalIndex int } // StateDB structs within the ethereum protocol are used to store anything // within the merkle trie. StateDBs take care of caching and storing // nested states. It's the general query interface to retrieve: // // * Contracts // * Accounts // // Once the state is committed, tries cached in stateDB (including account // trie, storage tries) will no longer be functional. A new state instance // must be created with new root and updated database for accessing post- // commit states. type StateDB struct { db Database prefetcherLock sync.Mutex prefetcher *triePrefetcher trie Trie noTrie bool hasher crypto.KeccakState snaps *snapshot.Tree // Nil if snapshot is not available snap snapshot.Snapshot // Nil if snapshot is not available // originalRoot is the pre-state root, before any changes were made. // It will be updated when the Commit is called. originalRoot common.Hash expectedRoot common.Hash // The state root in the block header stateRoot common.Hash // The calculation result of IntermediateRoot fullProcessed bool pipeCommit bool // These maps hold the state changes (including the corresponding // original value) that occurred in this **block**. AccountMux sync.Mutex // Mutex for accounts access StorageMux sync.Mutex // Mutex for storages access accounts map[common.Hash][]byte // The mutated accounts in 'slim RLP' encoding storages map[common.Hash]map[common.Hash][]byte // The mutated slots in prefix-zero trimmed rlp format accountsOrigin map[common.Address][]byte // The original value of mutated accounts in 'slim RLP' encoding storagesOrigin map[common.Address]map[common.Hash][]byte // The original value of mutated slots in prefix-zero trimmed rlp format // This map holds 'live' objects, which will get modified while processing // a state transition. stateObjects map[common.Address]*stateObject stateObjectsPending map[common.Address]struct{} // State objects finalized but not yet written to the trie stateObjectsDirty map[common.Address]struct{} // State objects modified in the current execution stateObjectsDestruct map[common.Address]*types.StateAccount // State objects destructed in the block along with its previous value storagePool *StoragePool // sharedPool to store L1 originStorage of stateObjects writeOnSharedStorage bool // Write to the shared origin storage of a stateObject while reading from the underlying storage layer. // DB error. // State objects are used by the consensus core and VM which are // unable to deal with database-level errors. Any error that occurs // during a database read is memoized here and will eventually be // returned by StateDB.Commit. Notably, this error is also shared // by all cached state objects in case the database failure occurs // when accessing state of accounts. dbErr error // The refund counter, also used by state transitioning. refund uint64 // The tx context and all occurred logs in the scope of transaction. thash common.Hash txIndex int logs map[common.Hash][]*types.Log logSize uint // Preimages occurred seen by VM in the scope of block. preimages map[common.Hash][]byte // Per-transaction access list accessList *accessList // Transient storage transientStorage transientStorage // Journal of state modifications. This is the backbone of // Snapshot and RevertToSnapshot. journal *journal validRevisions []revision nextRevisionId int // Measurements gathered during execution for debugging purposes // MetricsMux should be used in more places, but will affect on performance, so following meteration is not accruate MetricsMux sync.Mutex AccountReads time.Duration AccountHashes time.Duration AccountUpdates time.Duration AccountCommits time.Duration StorageReads time.Duration StorageHashes time.Duration StorageUpdates time.Duration StorageCommits time.Duration SnapshotAccountReads time.Duration SnapshotStorageReads time.Duration SnapshotCommits time.Duration TrieDBCommits time.Duration AccountUpdated int StorageUpdated int AccountDeleted int StorageDeleted int // Testing hooks onCommit func(states *triestate.Set) // Hook invoked when commit is performed } // NewWithSharedPool creates a new state with sharedStorge on layer 1.5 func NewWithSharedPool(root common.Hash, db Database, snaps *snapshot.Tree) (*StateDB, error) { statedb, err := New(root, db, snaps) if err != nil { return nil, err } statedb.storagePool = NewStoragePool() return statedb, nil } // New creates a new state from a given trie. func New(root common.Hash, db Database, snaps *snapshot.Tree) (*StateDB, error) { sdb := &StateDB{ db: db, originalRoot: root, snaps: snaps, accounts: make(map[common.Hash][]byte), storages: make(map[common.Hash]map[common.Hash][]byte), accountsOrigin: make(map[common.Address][]byte), storagesOrigin: make(map[common.Address]map[common.Hash][]byte), stateObjects: make(map[common.Address]*stateObject, defaultNumOfSlots), stateObjectsPending: make(map[common.Address]struct{}, defaultNumOfSlots), stateObjectsDirty: make(map[common.Address]struct{}, defaultNumOfSlots), stateObjectsDestruct: make(map[common.Address]*types.StateAccount, defaultNumOfSlots), logs: make(map[common.Hash][]*types.Log), preimages: make(map[common.Hash][]byte), journal: newJournal(), accessList: newAccessList(), transientStorage: newTransientStorage(), hasher: crypto.NewKeccakState(), } if sdb.snaps != nil { sdb.snap = sdb.snaps.Snapshot(root) } tr, err := db.OpenTrie(root) // return error when 1. failed to open trie and 2. the snap is nil or the snap is not nil and done verification if err != nil && (sdb.snap == nil || sdb.snap.Verified()) { return nil, err } _, sdb.noTrie = tr.(*trie.EmptyTrie) sdb.trie = tr return sdb, nil } func (s *StateDB) EnableWriteOnSharedStorage() { s.writeOnSharedStorage = true } // In mining mode, we will try multi-fillTransactions to get the most profitable one. // StateDB will be created for each fillTransactions with same block height. // Share a single triePrefetcher to avoid too much prefetch routines. func (s *StateDB) TransferPrefetcher(prev *StateDB) { if prev == nil { return } var fetcher *triePrefetcher prev.prefetcherLock.Lock() fetcher = prev.prefetcher prev.prefetcher = nil prev.prefetcherLock.Unlock() s.prefetcherLock.Lock() s.prefetcher = fetcher s.prefetcherLock.Unlock() } // StartPrefetcher initializes a new trie prefetcher to pull in nodes from the // state trie concurrently while the state is mutated so that when we reach the // commit phase, most of the needed data is already hot. func (s *StateDB) StartPrefetcher(namespace string) { if s.noTrie { return } s.prefetcherLock.Lock() defer s.prefetcherLock.Unlock() if s.prefetcher != nil { s.prefetcher.close() s.prefetcher = nil } if s.snap != nil { parent := s.snap.Parent() if parent != nil { s.prefetcher = newTriePrefetcher(s.db, s.originalRoot, parent.Root(), namespace) } else { s.prefetcher = newTriePrefetcher(s.db, s.originalRoot, common.Hash{}, namespace) } } } // StopPrefetcher terminates a running prefetcher and reports any leftover stats // from the gathered metrics. func (s *StateDB) StopPrefetcher() { if s.noTrie { return } s.prefetcherLock.Lock() if s.prefetcher != nil { s.prefetcher.close() s.prefetcher = nil } s.prefetcherLock.Unlock() } func (s *StateDB) TriePrefetchInAdvance(block *types.Block, signer types.Signer) { // s is a temporary throw away StateDB, s.prefetcher won't be resetted to nil // so no need to add lock for s.prefetcher prefetcher := s.prefetcher if prefetcher == nil { return } accounts := make(map[common.Address]struct{}, block.Transactions().Len()<<1) for _, tx := range block.Transactions() { from, err := types.Sender(signer, tx) if err != nil { // invalid block, skip prefetch return } accounts[from] = struct{}{} if tx.To() != nil { accounts[*tx.To()] = struct{}{} } } addressesToPrefetch := make([][]byte, 0, len(accounts)) for addr := range accounts { addressesToPrefetch = append(addressesToPrefetch, common.CopyBytes(addr[:])) // Copy needed for closure } if len(addressesToPrefetch) > 0 { prefetcher.prefetch(common.Hash{}, s.originalRoot, common.Address{}, addressesToPrefetch) } } // Mark that the block is processed by diff layer func (s *StateDB) SetExpectedStateRoot(root common.Hash) { s.expectedRoot = root } // Enable the pipeline commit function of statedb func (s *StateDB) EnablePipeCommit() { if s.snap != nil && s.snaps.Layers() > 1 { // after big merge, disable pipeCommit for now, // because `s.db.TrieDB().Update` should be called after `s.trie.Commit(true)` s.pipeCommit = false } } // IsPipeCommit checks whether pipecommit is enabled on the statedb or not func (s *StateDB) IsPipeCommit() bool { return s.pipeCommit } // Mark that the block is full processed func (s *StateDB) MarkFullProcessed() { s.fullProcessed = true } // setError remembers the first non-nil error it is called with. func (s *StateDB) setError(err error) { if s.dbErr == nil { s.dbErr = err } } func (s *StateDB) NoTrie() bool { return s.noTrie } // Error returns the memorized database failure occurred earlier. func (s *StateDB) Error() error { return s.dbErr } // Not thread safe func (s *StateDB) Trie() (Trie, error) { if s.trie == nil { err := s.WaitPipeVerification() if err != nil { return nil, err } tr, err := s.db.OpenTrie(s.originalRoot) if err != nil { return nil, err } s.trie = tr } return s.trie, nil } func (s *StateDB) AddLog(log *types.Log) { s.journal.append(addLogChange{txhash: s.thash}) log.TxHash = s.thash log.TxIndex = uint(s.txIndex) log.Index = s.logSize s.logs[s.thash] = append(s.logs[s.thash], log) s.logSize++ } // GetLogs returns the logs matching the specified transaction hash, and annotates // them with the given blockNumber and blockHash. func (s *StateDB) GetLogs(hash common.Hash, blockNumber uint64, blockHash common.Hash) []*types.Log { logs := s.logs[hash] for _, l := range logs { l.BlockNumber = blockNumber l.BlockHash = blockHash } return logs } func (s *StateDB) Logs() []*types.Log { var logs []*types.Log for _, lgs := range s.logs { logs = append(logs, lgs...) } return logs } // AddPreimage records a SHA3 preimage seen by the VM. func (s *StateDB) AddPreimage(hash common.Hash, preimage []byte) { if _, ok := s.preimages[hash]; !ok { s.journal.append(addPreimageChange{hash: hash}) pi := make([]byte, len(preimage)) copy(pi, preimage) s.preimages[hash] = pi } } // Preimages returns a list of SHA3 preimages that have been submitted. func (s *StateDB) Preimages() map[common.Hash][]byte { return s.preimages } // AddRefund adds gas to the refund counter func (s *StateDB) AddRefund(gas uint64) { s.journal.append(refundChange{prev: s.refund}) s.refund += gas } // SubRefund removes gas from the refund counter. // This method will panic if the refund counter goes below zero func (s *StateDB) SubRefund(gas uint64) { s.journal.append(refundChange{prev: s.refund}) if gas > s.refund { panic(fmt.Sprintf("Refund counter below zero (gas: %d > refund: %d)", gas, s.refund)) } s.refund -= gas } // Exist reports whether the given account address exists in the state. // Notably this also returns true for self-destructed accounts. func (s *StateDB) Exist(addr common.Address) bool { return s.getStateObject(addr) != nil } // Empty returns whether the state object is either non-existent // or empty according to the EIP161 specification (balance = nonce = code = 0) func (s *StateDB) Empty(addr common.Address) bool { so := s.getStateObject(addr) return so == nil || so.empty() } // GetBalance retrieves the balance from the given address or 0 if object not found func (s *StateDB) GetBalance(addr common.Address) *uint256.Int { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.Balance() } return common.U2560 } // GetNonce retrieves the nonce from the given address or 0 if object not found func (s *StateDB) GetNonce(addr common.Address) uint64 { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.Nonce() } return 0 } // GetStorageRoot retrieves the storage root from the given address or empty // if object not found. func (s *StateDB) GetStorageRoot(addr common.Address) common.Hash { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.Root() } return common.Hash{} } // TxIndex returns the current transaction index set by Prepare. func (s *StateDB) TxIndex() int { return s.txIndex } func (s *StateDB) GetCode(addr common.Address) []byte { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.Code() } return nil } func (s *StateDB) GetRoot(addr common.Address) common.Hash { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.data.Root } return common.Hash{} } func (s *StateDB) GetCodeSize(addr common.Address) int { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.CodeSize() } return 0 } func (s *StateDB) GetCodeHash(addr common.Address) common.Hash { stateObject := s.getStateObject(addr) if stateObject != nil { return common.BytesToHash(stateObject.CodeHash()) } return common.Hash{} } // GetState retrieves a value from the given account's storage trie. func (s *StateDB) GetState(addr common.Address, hash common.Hash) common.Hash { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.GetState(hash) } return common.Hash{} } // GetCommittedState retrieves a value from the given account's committed storage trie. func (s *StateDB) GetCommittedState(addr common.Address, hash common.Hash) common.Hash { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.GetCommittedState(hash) } return common.Hash{} } // Database retrieves the low level database supporting the lower level trie ops. func (s *StateDB) Database() Database { return s.db } func (s *StateDB) HasSelfDestructed(addr common.Address) bool { stateObject := s.getStateObject(addr) if stateObject != nil { return stateObject.selfDestructed } return false } /* * SETTERS */ // AddBalance adds amount to the account associated with addr. func (s *StateDB) AddBalance(addr common.Address, amount *uint256.Int) { stateObject := s.getOrNewStateObject(addr) if stateObject != nil { stateObject.AddBalance(amount) } } // SubBalance subtracts amount from the account associated with addr. func (s *StateDB) SubBalance(addr common.Address, amount *uint256.Int) { stateObject := s.getOrNewStateObject(addr) if stateObject != nil { stateObject.SubBalance(amount) } } func (s *StateDB) SetBalance(addr common.Address, amount *uint256.Int) { stateObject := s.getOrNewStateObject(addr) if stateObject != nil { stateObject.SetBalance(amount) } } func (s *StateDB) SetNonce(addr common.Address, nonce uint64) { stateObject := s.getOrNewStateObject(addr) if stateObject != nil { stateObject.SetNonce(nonce) } } func (s *StateDB) SetCode(addr common.Address, code []byte) { stateObject := s.getOrNewStateObject(addr) if stateObject != nil { stateObject.SetCode(crypto.Keccak256Hash(code), code) } } func (s *StateDB) SetState(addr common.Address, key, value common.Hash) { stateObject := s.getOrNewStateObject(addr) if stateObject != nil { stateObject.SetState(key, value) } } // SetStorage replaces the entire storage for the specified account with given // storage. This function should only be used for debugging and the mutations // must be discarded afterwards. func (s *StateDB) SetStorage(addr common.Address, storage map[common.Hash]common.Hash) { // SetStorage needs to wipe existing storage. We achieve this by pretending // that the account self-destructed earlier in this block, by flagging // it in stateObjectsDestruct. The effect of doing so is that storage lookups // will not hit disk, since it is assumed that the disk-data is belonging // to a previous incarnation of the object. // // TODO(rjl493456442) this function should only be supported by 'unwritable' // state and all mutations made should all be discarded afterwards. if _, ok := s.stateObjectsDestruct[addr]; !ok { s.stateObjectsDestruct[addr] = nil } stateObject := s.getOrNewStateObject(addr) for k, v := range storage { stateObject.SetState(k, v) } } // SelfDestruct marks the given account as selfdestructed. // This clears the account balance. // // The account's state object is still available until the state is committed, // getStateObject will return a non-nil account after SelfDestruct. func (s *StateDB) SelfDestruct(addr common.Address) { stateObject := s.getStateObject(addr) if stateObject == nil { return } s.journal.append(selfDestructChange{ account: &addr, prev: stateObject.selfDestructed, prevbalance: new(uint256.Int).Set(stateObject.Balance()), }) stateObject.markSelfdestructed() stateObject.data.Balance = new(uint256.Int) } func (s *StateDB) Selfdestruct6780(addr common.Address) { stateObject := s.getStateObject(addr) if stateObject == nil { return } if stateObject.created { s.SelfDestruct(addr) } } // SetTransientState sets transient storage for a given account. It // adds the change to the journal so that it can be rolled back // to its previous value if there is a revert. func (s *StateDB) SetTransientState(addr common.Address, key, value common.Hash) { prev := s.GetTransientState(addr, key) if prev == value { return } s.journal.append(transientStorageChange{ account: &addr, key: key, prevalue: prev, }) s.setTransientState(addr, key, value) } // setTransientState is a lower level setter for transient storage. It // is called during a revert to prevent modifications to the journal. func (s *StateDB) setTransientState(addr common.Address, key, value common.Hash) { s.transientStorage.Set(addr, key, value) } // GetTransientState gets transient storage for a given account. func (s *StateDB) GetTransientState(addr common.Address, key common.Hash) common.Hash { return s.transientStorage.Get(addr, key) } // // Setting, updating & deleting state object methods. // // updateStateObject writes the given object to the trie. func (s *StateDB) updateStateObject(obj *stateObject) { if s.noTrie { return } // Track the amount of time wasted on updating the account from the trie if metrics.EnabledExpensive { defer func(start time.Time) { s.AccountUpdates += time.Since(start) }(time.Now()) } // Encode the account and update the account trie addr := obj.Address() if err := s.trie.UpdateAccount(addr, &obj.data); err != nil { s.setError(fmt.Errorf("updateStateObject (%x) error: %v", addr[:], err)) } if obj.dirtyCode { s.trie.UpdateContractCode(obj.Address(), common.BytesToHash(obj.CodeHash()), obj.code) } // Track the original value of mutated account, nil means it was not present. // Skip if it has been tracked (because updateStateObject may be called // multiple times in a block). if _, ok := s.accountsOrigin[obj.address]; !ok { if obj.origin == nil { s.accountsOrigin[obj.address] = nil } else { s.accountsOrigin[obj.address] = types.SlimAccountRLP(*obj.origin) } } } // deleteStateObject removes the given object from the state trie. func (s *StateDB) deleteStateObject(obj *stateObject) { if s.noTrie { return } // Track the amount of time wasted on deleting the account from the trie if metrics.EnabledExpensive { defer func(start time.Time) { s.AccountUpdates += time.Since(start) }(time.Now()) } // Delete the account from the trie addr := obj.Address() if err := s.trie.DeleteAccount(addr); err != nil { s.setError(fmt.Errorf("deleteStateObject (%x) error: %v", addr[:], err)) } } // getStateObject retrieves a state object given by the address, returning nil if // the object is not found or was deleted in this execution context. If you need // to differentiate between non-existent/just-deleted, use getDeletedStateObject. func (s *StateDB) getStateObject(addr common.Address) *stateObject { if obj := s.getDeletedStateObject(addr); obj != nil && !obj.deleted { return obj } return nil } // getDeletedStateObject is similar to getStateObject, but instead of returning // nil for a deleted state object, it returns the actual object with the deleted // flag set. This is needed by the state journal to revert to the correct s- // destructed object instead of wiping all knowledge about the state object. func (s *StateDB) getDeletedStateObject(addr common.Address) *stateObject { // Prefer live objects if any is available if obj := s.stateObjects[addr]; obj != nil { return obj } // If no live objects are available, attempt to use snapshots var data *types.StateAccount if s.snap != nil { start := time.Now() acc, err := s.snap.Account(crypto.HashData(s.hasher, addr.Bytes())) if metrics.EnabledExpensive { s.SnapshotAccountReads += time.Since(start) } if err == nil { if acc == nil { return nil } data = &types.StateAccount{ Nonce: acc.Nonce, Balance: acc.Balance, CodeHash: acc.CodeHash, Root: common.BytesToHash(acc.Root), } if len(data.CodeHash) == 0 { data.CodeHash = types.EmptyCodeHash.Bytes() } if data.Root == (common.Hash{}) { data.Root = types.EmptyRootHash } } } // If snapshot unavailable or reading from it failed, load from the database if data == nil { if s.trie == nil { tr, err := s.db.OpenTrie(s.originalRoot) if err != nil { s.setError(errors.New("failed to open trie tree")) return nil } s.trie = tr } start := time.Now() var err error data, err = s.trie.GetAccount(addr) if metrics.EnabledExpensive { s.AccountReads += time.Since(start) } if err != nil { s.setError(fmt.Errorf("getDeleteStateObject (%x) error: %w", addr.Bytes(), err)) return nil } if data == nil { return nil } } // Insert into the live set obj := newObject(s, addr, data) s.setStateObject(obj) return obj } func (s *StateDB) setStateObject(object *stateObject) { s.stateObjects[object.Address()] = object } // getOrNewStateObject retrieves a state object or create a new state object if nil. func (s *StateDB) getOrNewStateObject(addr common.Address) *stateObject { stateObject := s.getStateObject(addr) if stateObject == nil { stateObject, _ = s.createObject(addr) } return stateObject } // createObject creates a new state object. If there is an existing account with // the given address, it is overwritten and returned as the second return value. func (s *StateDB) createObject(addr common.Address) (newobj, prev *stateObject) { prev = s.getDeletedStateObject(addr) // Note, prev might have been deleted, we need that! newobj = newObject(s, addr, nil) if prev == nil { s.journal.append(createObjectChange{account: &addr}) } else { // The original account should be marked as destructed and all cached // account and storage data should be cleared as well. Note, it must // be done here, otherwise the destruction event of "original account" // will be lost. _, prevdestruct := s.stateObjectsDestruct[prev.address] if !prevdestruct { s.stateObjectsDestruct[prev.address] = prev.origin } // There may be some cached account/storage data already since IntermediateRoot // will be called for each transaction before byzantium fork which will always // cache the latest account/storage data. prevAccount, ok := s.accountsOrigin[prev.address] s.journal.append(resetObjectChange{ account: &addr, prev: prev, prevdestruct: prevdestruct, prevAccount: s.accounts[prev.addrHash], prevStorage: s.storages[prev.addrHash], prevAccountOriginExist: ok, prevAccountOrigin: prevAccount, prevStorageOrigin: s.storagesOrigin[prev.address], }) delete(s.accounts, prev.addrHash) delete(s.storages, prev.addrHash) delete(s.accountsOrigin, prev.address) delete(s.storagesOrigin, prev.address) } s.setStateObject(newobj) if prev != nil && !prev.deleted { return newobj, prev } return newobj, nil } // CreateAccount explicitly creates a state object. If a state object with the address // already exists the balance is carried over to the new account. // // CreateAccount is called during the EVM CREATE operation. The situation might arise that // a contract does the following: // // 1. sends funds to sha(account ++ (nonce + 1)) // 2. tx_create(sha(account ++ nonce)) (note that this gets the address of 1) // // Carrying over the balance ensures that Ether doesn't disappear. func (s *StateDB) CreateAccount(addr common.Address) { newObj, prev := s.createObject(addr) if prev != nil { newObj.setBalance(prev.data.Balance) } } // Copy creates a deep, independent copy of the state. // Snapshots of the copied state cannot be applied to the copy. func (s *StateDB) Copy() *StateDB { return s.copyInternal(false) } // It is mainly for state prefetcher to do trie prefetch right now. func (s *StateDB) CopyDoPrefetch() *StateDB { return s.copyInternal(true) } // If doPrefetch is true, it tries to reuse the prefetcher, the copied StateDB will do active trie prefetch. // otherwise, just do inactive copy trie prefetcher. func (s *StateDB) copyInternal(doPrefetch bool) *StateDB { // Copy all the basic fields, initialize the memory ones state := &StateDB{ db: s.db, trie: s.db.CopyTrie(s.trie), // noTrie:s.noTrie, // expectedRoot: s.expectedRoot, // stateRoot: s.stateRoot, originalRoot: s.originalRoot, // fullProcessed: s.fullProcessed, // pipeCommit: s.pipeCommit, accounts: make(map[common.Hash][]byte), storages: make(map[common.Hash]map[common.Hash][]byte), accountsOrigin: make(map[common.Address][]byte), storagesOrigin: make(map[common.Address]map[common.Hash][]byte), stateObjects: make(map[common.Address]*stateObject, len(s.journal.dirties)), stateObjectsPending: make(map[common.Address]struct{}, len(s.stateObjectsPending)), stateObjectsDirty: make(map[common.Address]struct{}, len(s.journal.dirties)), stateObjectsDestruct: make(map[common.Address]*types.StateAccount, len(s.stateObjectsDestruct)), storagePool: s.storagePool, // writeOnSharedStorage: s.writeOnSharedStorage, refund: s.refund, logs: make(map[common.Hash][]*types.Log, len(s.logs)), logSize: s.logSize, preimages: make(map[common.Hash][]byte, len(s.preimages)), journal: newJournal(), hasher: crypto.NewKeccakState(), // In order for the block producer to be able to use and make additions // to the snapshot tree, we need to copy that as well. Otherwise, any // block mined by ourselves will cause gaps in the tree, and force the // miner to operate trie-backed only. snaps: s.snaps, snap: s.snap, } // Copy the dirty states, logs, and preimages for addr := range s.journal.dirties { // As documented [here](https://github.com/ethereum/go-ethereum/pull/16485#issuecomment-380438527), // and in the Finalise-method, there is a case where an object is in the journal but not // in the stateObjects: OOG after touch on ripeMD prior to Byzantium. Thus, we need to check for // nil if object, exist := s.stateObjects[addr]; exist { // Even though the original object is dirty, we are not copying the journal, // so we need to make sure that any side-effect the journal would have caused // during a commit (or similar op) is already applied to the copy. state.stateObjects[addr] = object.deepCopy(state) state.stateObjectsDirty[addr] = struct{}{} // Mark the copy dirty to force internal (code/state) commits state.stateObjectsPending[addr] = struct{}{} // Mark the copy pending to force external (account) commits } } // Above, we don't copy the actual journal. This means that if the copy // is copied, the loop above will be a no-op, since the copy's journal // is empty. Thus, here we iterate over stateObjects, to enable copies // of copies. for addr := range s.stateObjectsPending { if _, exist := state.stateObjects[addr]; !exist { state.stateObjects[addr] = s.stateObjects[addr].deepCopy(state) } state.stateObjectsPending[addr] = struct{}{} } for addr := range s.stateObjectsDirty { if _, exist := state.stateObjects[addr]; !exist { state.stateObjects[addr] = s.stateObjects[addr].deepCopy(state) } state.stateObjectsDirty[addr] = struct{}{} } // Deep copy the destruction markers. for addr, value := range s.stateObjectsDestruct { state.stateObjectsDestruct[addr] = value } // Deep copy the state changes made in the scope of block // along with their original values. state.accounts = copySet(s.accounts) state.storages = copy2DSet(s.storages) state.accountsOrigin = copySet(s.accountsOrigin) state.storagesOrigin = copy2DSet(s.storagesOrigin) // Deep copy the logs occurred in the scope of block for hash, logs := range s.logs { cpy := make([]*types.Log, len(logs)) for i, l := range logs { cpy[i] = new(types.Log) *cpy[i] = *l } state.logs[hash] = cpy } // Deep copy the preimages occurred in the scope of block for hash, preimage := range s.preimages { state.preimages[hash] = preimage } // Do we need to copy the access list and transient storage? // In practice: No. At the start of a transaction, these two lists are empty. // In practice, we only ever copy state _between_ transactions/blocks, never // in the middle of a transaction. However, it doesn't cost us much to copy // empty lists, so we do it anyway to not blow up if we ever decide copy them // in the middle of a transaction. if s.accessList != nil { state.accessList = s.accessList.Copy() } state.transientStorage = s.transientStorage.Copy() state.prefetcher = s.prefetcher if s.prefetcher != nil && !doPrefetch { // If there's a prefetcher running, make an inactive copy of it that can // only access data but does not actively preload (since the user will not // know that they need to explicitly terminate an active copy). state.prefetcher = state.prefetcher.copy() } return state } // Snapshot returns an identifier for the current revision of the state. func (s *StateDB) Snapshot() int { id := s.nextRevisionId s.nextRevisionId++ s.validRevisions = append(s.validRevisions, revision{id, s.journal.length()}) return id } // RevertToSnapshot reverts all state changes made since the given revision. func (s *StateDB) RevertToSnapshot(revid int) { // Find the snapshot in the stack of valid snapshots. idx := sort.Search(len(s.validRevisions), func(i int) bool { return s.validRevisions[i].id >= revid }) if idx == len(s.validRevisions) || s.validRevisions[idx].id != revid { panic(fmt.Errorf("revision id %v cannot be reverted", revid)) } snapshot := s.validRevisions[idx].journalIndex // Replay the journal to undo changes and remove invalidated snapshots s.journal.revert(s, snapshot) s.validRevisions = s.validRevisions[:idx] } // GetRefund returns the current value of the refund counter. func (s *StateDB) GetRefund() uint64 { return s.refund } // WaitPipeVerification waits until the snapshot been verified func (s *StateDB) WaitPipeVerification() error { // Need to wait for the parent trie to commit if s.snap != nil { if valid := s.snap.WaitAndGetVerifyRes(); !valid { return errors.New("verification on parent snap failed") } } return nil } // Finalise finalises the state by removing the destructed objects and clears // the journal as well as the refunds. Finalise, however, will not push any updates // into the tries just yet. Only IntermediateRoot or Commit will do that. func (s *StateDB) Finalise(deleteEmptyObjects bool) { addressesToPrefetch := make([][]byte, 0, len(s.journal.dirties)) for addr := range s.journal.dirties { obj, exist := s.stateObjects[addr] if !exist { // ripeMD is 'touched' at block 1714175, in tx 0x1237f737031e40bcde4a8b7e717b2d15e3ecadfe49bb1bbc71ee9deb09c6fcf2 // That tx goes out of gas, and although the notion of 'touched' does not exist there, the // touch-event will still be recorded in the journal. Since ripeMD is a special snowflake, // it will persist in the journal even though the journal is reverted. In this special circumstance, // it may exist in `s.journal.dirties` but not in `s.stateObjects`. // Thus, we can safely ignore it here continue } if obj.selfDestructed || (deleteEmptyObjects && obj.empty()) { obj.deleted = true // We need to maintain account deletions explicitly (will remain // set indefinitely). Note only the first occurred self-destruct // event is tracked. if _, ok := s.stateObjectsDestruct[obj.address]; !ok { s.stateObjectsDestruct[obj.address] = obj.origin } // Note, we can't do this only at the end of a block because multiple // transactions within the same block might self destruct and then // resurrect an account; but the snapshotter needs both events. delete(s.accounts, obj.addrHash) // Clear out any previously updated account data (may be recreated via a resurrect) delete(s.storages, obj.addrHash) // Clear out any previously updated storage data (may be recreated via a resurrect) delete(s.accountsOrigin, obj.address) // Clear out any previously updated account data (may be recreated via a resurrect) delete(s.storagesOrigin, obj.address) // Clear out any previously updated storage data (may be recreated via a resurrect) } else { obj.finalise(true) // Prefetch slots in the background } obj.created = false s.stateObjectsPending[addr] = struct{}{} s.stateObjectsDirty[addr] = struct{}{} // At this point, also ship the address off to the precacher. The precacher // will start loading tries, and when the change is eventually committed, // the commit-phase will be a lot faster addressesToPrefetch = append(addressesToPrefetch, common.CopyBytes(addr[:])) // Copy needed for closure } prefetcher := s.prefetcher if prefetcher != nil && len(addressesToPrefetch) > 0 { if s.snap.Verified() { prefetcher.prefetch(common.Hash{}, s.originalRoot, common.Address{}, addressesToPrefetch) } else if prefetcher.rootParent != (common.Hash{}) { prefetcher.prefetch(common.Hash{}, prefetcher.rootParent, common.Address{}, addressesToPrefetch) } } // Invalidate journal because reverting across transactions is not allowed. s.clearJournalAndRefund() } // IntermediateRoot computes the current root hash of the state trie. // It is called in between transactions to get the root hash that // goes into transaction receipts. func (s *StateDB) IntermediateRoot(deleteEmptyObjects bool) common.Hash { // Finalise all the dirty storage states and write them into the tries s.Finalise(deleteEmptyObjects) s.AccountsIntermediateRoot() return s.StateIntermediateRoot() } // CorrectAccountsRoot will fix account roots in pipecommit mode func (s *StateDB) CorrectAccountsRoot(blockRoot common.Hash) { var snapshot snapshot.Snapshot if blockRoot == (common.Hash{}) { snapshot = s.snap } else if s.snaps != nil { snapshot = s.snaps.Snapshot(blockRoot) } if snapshot == nil { return } if accounts, err := snapshot.Accounts(); err == nil && accounts != nil { for _, obj := range s.stateObjects { if !obj.deleted { if account, exist := accounts[crypto.Keccak256Hash(obj.address[:])]; exist { if len(account.Root) == 0 { obj.data.Root = types.EmptyRootHash } else { obj.data.Root = common.BytesToHash(account.Root) } } } } } } // PopulateSnapAccountAndStorage tries to populate required accounts and storages for pipecommit func (s *StateDB) PopulateSnapAccountAndStorage() { for addr := range s.stateObjectsPending { if obj := s.stateObjects[addr]; !obj.deleted { if s.snap != nil { s.populateSnapStorage(obj) s.accounts[obj.addrHash] = types.SlimAccountRLP(obj.data) } } } } // populateSnapStorage tries to populate required storages for pipecommit, and returns a flag to indicate whether the storage root changed or not func (s *StateDB) populateSnapStorage(obj *stateObject) bool { for key, value := range obj.dirtyStorage { obj.pendingStorage[key] = value } if len(obj.pendingStorage) == 0 { return false } hasher := crypto.NewKeccakState() var storage map[common.Hash][]byte for key, value := range obj.pendingStorage { var v []byte if (value != common.Hash{}) { // Encoding []byte cannot fail, ok to ignore the error. v, _ = rlp.EncodeToBytes(common.TrimLeftZeroes(value[:])) } // If state snapshotting is active, cache the data til commit if obj.db.snap != nil { if storage == nil { // Retrieve the old storage map, if available, create a new one otherwise if storage = obj.db.storages[obj.addrHash]; storage == nil { storage = make(map[common.Hash][]byte) obj.db.storages[obj.addrHash] = storage } } storage[crypto.HashData(hasher, key[:])] = v // v will be nil if value is 0x00 } } return true } func (s *StateDB) AccountsIntermediateRoot() { tasks := make(chan func()) finishCh := make(chan struct{}) defer close(finishCh) wg := sync.WaitGroup{} for i := 0; i < runtime.NumCPU(); i++ { go func() { for { select { case task := <-tasks: task() case <-finishCh: return } } }() } // Although naively it makes sense to retrieve the account trie and then do // the contract storage and account updates sequentially, that short circuits // the account prefetcher. Instead, let's process all the storage updates // first, giving the account prefetches just a few more milliseconds of time // to pull useful data from disk. for addr := range s.stateObjectsPending { if obj := s.stateObjects[addr]; !obj.deleted { wg.Add(1) tasks <- func() { obj.updateRoot() // Cache the data until commit. Note, this update mechanism is not symmetric // to the deletion, because whereas it is enough to track account updates // at commit time, deletions need tracking at transaction boundary level to // ensure we capture state clearing. s.AccountMux.Lock() s.accounts[obj.addrHash] = types.SlimAccountRLP(obj.data) s.AccountMux.Unlock() wg.Done() } } } wg.Wait() } func (s *StateDB) StateIntermediateRoot() common.Hash { // If there was a trie prefetcher operating, it gets aborted and irrevocably // modified after we start retrieving tries. Remove it from the statedb after // this round of use. // // This is weird pre-byzantium since the first tx runs with a prefetcher and // the remainder without, but pre-byzantium even the initial prefetcher is // useless, so no sleep lost. prefetcher := s.prefetcher defer s.StopPrefetcher() // Now we're about to start to write changes to the trie. The trie is so far // _untouched_. We can check with the prefetcher, if it can give us a trie // which has the same root, but also has some content loaded into it. if prefetcher != nil { if trie := prefetcher.trie(common.Hash{}, s.originalRoot); trie != nil { s.trie = trie } } if s.trie == nil { tr, err := s.db.OpenTrie(s.originalRoot) if err != nil { panic(fmt.Sprintf("failed to open trie tree %s", s.originalRoot)) } s.trie = tr } usedAddrs := make([][]byte, 0, len(s.stateObjectsPending)) if !s.noTrie { for addr := range s.stateObjectsPending { if obj := s.stateObjects[addr]; obj.deleted { s.deleteStateObject(obj) } else { s.updateStateObject(obj) } usedAddrs = append(usedAddrs, common.CopyBytes(addr[:])) // Copy needed for closure } if prefetcher != nil { prefetcher.used(common.Hash{}, s.originalRoot, usedAddrs) } } if len(s.stateObjectsPending) > 0 { s.stateObjectsPending = make(map[common.Address]struct{}) } // Track the amount of time wasted on hashing the account trie if metrics.EnabledExpensive { defer func(start time.Time) { s.AccountHashes += time.Since(start) }(time.Now()) } if s.noTrie { return s.expectedRoot } else { return s.trie.Hash() } } // SetTxContext sets the current transaction hash and index which are // used when the EVM emits new state logs. It should be invoked before // transaction execution. func (s *StateDB) SetTxContext(thash common.Hash, ti int) { s.thash = thash s.txIndex = ti s.accessList = nil // can't delete this line now, because StateDB.Prepare is not called before processsing a system transaction } func (s *StateDB) clearJournalAndRefund() { if len(s.journal.entries) > 0 { s.journal = newJournal() s.refund = 0 } s.validRevisions = s.validRevisions[:0] // Snapshots can be created without journal entries } // fastDeleteStorage is the function that efficiently deletes the storage trie // of a specific account. It leverages the associated state snapshot for fast // storage iteration and constructs trie node deletion markers by creating // stack trie with iterated slots. func (s *StateDB) fastDeleteStorage(addrHash common.Hash, root common.Hash) (bool, common.StorageSize, map[common.Hash][]byte, *trienode.NodeSet, error) { iter, err := s.snaps.StorageIterator(s.originalRoot, addrHash, common.Hash{}) if err != nil { return false, 0, nil, nil, err } defer iter.Release() var ( size common.StorageSize nodes = trienode.NewNodeSet(addrHash) slots = make(map[common.Hash][]byte) ) options := trie.NewStackTrieOptions() options = options.WithWriter(func(path []byte, hash common.Hash, blob []byte) { nodes.AddNode(path, trienode.NewDeleted()) size += common.StorageSize(len(path)) }) stack := trie.NewStackTrie(options) for iter.Next() { if size > storageDeleteLimit { return true, size, nil, nil, nil } slot := common.CopyBytes(iter.Slot()) if err := iter.Error(); err != nil { // error might occur after Slot function return false, 0, nil, nil, err } size += common.StorageSize(common.HashLength + len(slot)) slots[iter.Hash()] = slot if err := stack.Update(iter.Hash().Bytes(), slot); err != nil { return false, 0, nil, nil, err } } if err := iter.Error(); err != nil { // error might occur during iteration return false, 0, nil, nil, err } if stack.Hash() != root { return false, 0, nil, nil, fmt.Errorf("snapshot is not matched, exp %x, got %x", root, stack.Hash()) } return false, size, slots, nodes, nil } // slowDeleteStorage serves as a less-efficient alternative to "fastDeleteStorage," // employed when the associated state snapshot is not available. It iterates the // storage slots along with all internal trie nodes via trie directly. func (s *StateDB) slowDeleteStorage(addr common.Address, addrHash common.Hash, root common.Hash) (bool, common.StorageSize, map[common.Hash][]byte, *trienode.NodeSet, error) { tr, err := s.db.OpenStorageTrie(s.originalRoot, addr, root, s.trie) if err != nil { return false, 0, nil, nil, fmt.Errorf("failed to open storage trie, err: %w", err) } // skip deleting storages for EmptyTrie if _, ok := tr.(*trie.EmptyTrie); ok { return false, 0, nil, nil, nil } it, err := tr.NodeIterator(nil) if err != nil { return false, 0, nil, nil, fmt.Errorf("failed to open storage iterator, err: %w", err) } var ( size common.StorageSize nodes = trienode.NewNodeSet(addrHash) slots = make(map[common.Hash][]byte) ) for it.Next(true) { if size > storageDeleteLimit { return true, size, nil, nil, nil } if it.Leaf() { slots[common.BytesToHash(it.LeafKey())] = common.CopyBytes(it.LeafBlob()) size += common.StorageSize(common.HashLength + len(it.LeafBlob())) continue } if it.Hash() == (common.Hash{}) { continue } size += common.StorageSize(len(it.Path())) nodes.AddNode(it.Path(), trienode.NewDeleted()) } if err := it.Error(); err != nil { return false, 0, nil, nil, err } return false, size, slots, nodes, nil } // deleteStorage is designed to delete the storage trie of a designated account. // It could potentially be terminated if the storage size is excessively large, // potentially leading to an out-of-memory panic. The function will make an attempt // to utilize an efficient strategy if the associated state snapshot is reachable; // otherwise, it will resort to a less-efficient approach. func (s *StateDB) deleteStorage(addr common.Address, addrHash common.Hash, root common.Hash) (bool, map[common.Hash][]byte, *trienode.NodeSet, error) { var ( start = time.Now() err error aborted bool size common.StorageSize slots map[common.Hash][]byte nodes *trienode.NodeSet ) // The fast approach can be failed if the snapshot is not fully // generated, or it's internally corrupted. Fallback to the slow // one just in case. if s.snap != nil { aborted, size, slots, nodes, err = s.fastDeleteStorage(addrHash, root) } if s.snap == nil || err != nil { aborted, size, slots, nodes, err = s.slowDeleteStorage(addr, addrHash, root) } if err != nil { return false, nil, nil, err } if metrics.EnabledExpensive { if aborted { slotDeletionSkip.Inc(1) } n := int64(len(slots)) slotDeletionMaxCount.UpdateIfGt(int64(len(slots))) slotDeletionMaxSize.UpdateIfGt(int64(size)) slotDeletionTimer.UpdateSince(start) slotDeletionCount.Mark(n) slotDeletionSize.Mark(int64(size)) } return aborted, slots, nodes, nil } // handleDestruction processes all destruction markers and deletes the account // and associated storage slots if necessary. There are four possible situations // here: // // - the account was not existent and be marked as destructed // // - the account was not existent and be marked as destructed, // however, it's resurrected later in the same block. // // - the account was existent and be marked as destructed // // - the account was existent and be marked as destructed, // however it's resurrected later in the same block. // // In case (a), nothing needs be deleted, nil to nil transition can be ignored. // // In case (b), nothing needs be deleted, nil is used as the original value for // newly created account and storages // // In case (c), **original** account along with its storages should be deleted, // with their values be tracked as original value. // // In case (d), **original** account along with its storages should be deleted, // with their values be tracked as original value. func (s *StateDB) handleDestruction(nodes *trienode.MergedNodeSet) (map[common.Address]struct{}, error) { // Short circuit if geth is running with hash mode. This procedure can consume // considerable time and storage deletion isn't supported in hash mode, thus // preemptively avoiding unnecessary expenses. incomplete := make(map[common.Address]struct{}) if s.db.TrieDB().Scheme() == rawdb.HashScheme { return incomplete, nil } for addr, prev := range s.stateObjectsDestruct { // The original account was non-existing, and it's marked as destructed // in the scope of block. It can be case (a) or (b). // - for (a), skip it without doing anything. // - for (b), track account's original value as nil. It may overwrite // the data cached in s.accountsOrigin set by 'updateStateObject'. addrHash := crypto.Keccak256Hash(addr[:]) if prev == nil { if _, ok := s.accounts[addrHash]; ok { s.accountsOrigin[addr] = nil // case (b) } continue } // It can overwrite the data in s.accountsOrigin set by 'updateStateObject'. s.accountsOrigin[addr] = types.SlimAccountRLP(*prev) // case (c) or (d) // Short circuit if the storage was empty. if prev.Root == types.EmptyRootHash { continue } // Remove storage slots belong to the account. aborted, slots, set, err := s.deleteStorage(addr, addrHash, prev.Root) if err != nil { return nil, fmt.Errorf("failed to delete storage, err: %w", err) } // The storage is too huge to handle, skip it but mark as incomplete. // For case (d), the account is resurrected might with a few slots // created. In this case, wipe the entire storage state diff because // of aborted deletion. if aborted { incomplete[addr] = struct{}{} delete(s.storagesOrigin, addr) continue } if s.storagesOrigin[addr] == nil { s.storagesOrigin[addr] = slots } else { // It can overwrite the data in s.storagesOrigin[addrHash] set by // 'object.updateTrie'. for key, val := range slots { s.storagesOrigin[addr][key] = val } } if err := nodes.Merge(set); err != nil { return nil, err } } return incomplete, nil } // Once the state is committed, tries cached in stateDB (including account // trie, storage tries) will no longer be functional. A new state instance // must be created with new root and updated database for accessing post- // commit states. // // The associated block number of the state transition is also provided // for more chain context. func (s *StateDB) Commit(block uint64, failPostCommitFunc func(), postCommitFuncs ...func() error) (common.Hash, *types.DiffLayer, error) { // Short circuit in case any database failure occurred earlier. if s.dbErr != nil { s.StopPrefetcher() return common.Hash{}, nil, fmt.Errorf("commit aborted due to earlier error: %v", s.dbErr) } // Finalize any pending changes and merge everything into the tries var ( diffLayer *types.DiffLayer verified chan struct{} snapUpdated chan struct{} incomplete map[common.Address]struct{} nodes = trienode.NewMergedNodeSet() ) if s.snap != nil { diffLayer = &types.DiffLayer{} } if s.pipeCommit { // async commit the MPT verified = make(chan struct{}) snapUpdated = make(chan struct{}) } commmitTrie := func() error { commitErr := func() error { if s.pipeCommit { <-snapUpdated // Due to state verification pipeline, the accounts roots are not updated, leading to the data in the difflayer is not correct, capture the correct data here s.AccountsIntermediateRoot() if parent := s.snap.Root(); parent != s.expectedRoot { accountData := make(map[common.Hash][]byte) for k, v := range s.accounts { accountData[crypto.Keccak256Hash(k[:])] = v } s.snaps.Snapshot(s.expectedRoot).CorrectAccounts(accountData) } s.snap = nil } if s.stateRoot = s.StateIntermediateRoot(); s.fullProcessed && s.expectedRoot != s.stateRoot { log.Error("Invalid merkle root", "remote", s.expectedRoot, "local", s.stateRoot) return fmt.Errorf("invalid merkle root (remote: %x local: %x)", s.expectedRoot, s.stateRoot) } var err error // Handle all state deletions first incomplete, err = s.handleDestruction(nodes) if err != nil { return err } tasks := make(chan func()) type taskResult struct { err error nodeSet *trienode.NodeSet } taskResults := make(chan taskResult, len(s.stateObjectsDirty)) tasksNum := 0 finishCh := make(chan struct{}) threads := gopool.Threads(len(s.stateObjectsDirty)) wg := sync.WaitGroup{} for i := 0; i < threads; i++ { wg.Add(1) go func() { defer wg.Done() for { select { case task := <-tasks: task() case <-finishCh: return } } }() } for addr := range s.stateObjectsDirty { if obj := s.stateObjects[addr]; !obj.deleted { tasks <- func() { // Write any storage changes in the state object to its storage trie if !s.noTrie { if set, err := obj.commit(); err != nil { taskResults <- taskResult{err, nil} return } else { taskResults <- taskResult{nil, set} } } else { taskResults <- taskResult{nil, nil} } } tasksNum++ } } for i := 0; i < tasksNum; i++ { res := <-taskResults if res.err != nil { close(finishCh) return res.err } // Merge the dirty nodes of storage trie into global set. It is possible // that the account was destructed and then resurrected in the same block. // In this case, the node set is shared by both accounts. if res.nodeSet != nil { if err := nodes.Merge(res.nodeSet); err != nil { return err } } } close(finishCh) if !s.noTrie { root, set, err := s.trie.Commit(true) if err != nil { return err } // Merge the dirty nodes of account trie into global set if set != nil { if err := nodes.Merge(set); err != nil { return err } } origin := s.originalRoot if origin == (common.Hash{}) { origin = types.EmptyRootHash } if root != origin { start := time.Now() set := triestate.New(s.accountsOrigin, s.storagesOrigin, incomplete) if err := s.db.TrieDB().Update(root, origin, block, nodes, set); err != nil { return err } s.originalRoot = root if metrics.EnabledExpensive { s.TrieDBCommits += time.Since(start) } if s.onCommit != nil { s.onCommit(set) } } } for _, postFunc := range postCommitFuncs { err := postFunc() if err != nil { return err } } wg.Wait() return nil }() if s.pipeCommit { if commitErr == nil { s.snaps.Snapshot(s.stateRoot).MarkValid() close(verified) } else { // The blockchain will do the further rewind if write block not finish yet close(verified) if failPostCommitFunc != nil { failPostCommitFunc() } log.Error("state verification failed", "err", commitErr) } } return commitErr } commitFuncs := []func() error{ func() error { codeWriter := s.db.DiskDB().NewBatch() for addr := range s.stateObjectsDirty { if obj := s.stateObjects[addr]; !obj.deleted { // Write any contract code associated with the state object if obj.code != nil && obj.dirtyCode { rawdb.WriteCode(codeWriter, common.BytesToHash(obj.CodeHash()), obj.code) obj.dirtyCode = false if s.snap != nil { diffLayer.Codes = append(diffLayer.Codes, types.DiffCode{ Hash: common.BytesToHash(obj.CodeHash()), Code: obj.code, }) } if codeWriter.ValueSize() > ethdb.IdealBatchSize { if err := codeWriter.Write(); err != nil { return err } codeWriter.Reset() } } } } if codeWriter.ValueSize() > 0 { if err := codeWriter.Write(); err != nil { log.Crit("Failed to commit dirty codes", "error", err) return err } } return nil }, func() error { // If snapshotting is enabled, update the snapshot tree with this new version if s.snap != nil { if metrics.EnabledExpensive { defer func(start time.Time) { s.SnapshotCommits += time.Since(start) }(time.Now()) } if s.pipeCommit { defer close(snapUpdated) // State verification pipeline - accounts root are not calculated here, just populate needed fields for process s.PopulateSnapAccountAndStorage() } diffLayer.Destructs, diffLayer.Accounts, diffLayer.Storages = s.SnapToDiffLayer() // Only update if there's a state transition (skip empty Clique blocks) if parent := s.snap.Root(); parent != s.expectedRoot { err := s.snaps.Update(s.expectedRoot, parent, s.convertAccountSet(s.stateObjectsDestruct), s.accounts, s.storages, verified) if err != nil { log.Warn("Failed to update snapshot tree", "from", parent, "to", s.expectedRoot, "err", err) } // Keep n diff layers in the memory // - head layer is paired with HEAD state // - head-1 layer is paired with HEAD-1 state // - head-(n-1) layer(bottom-most diff layer) is paired with HEAD-(n-1)state go func() { if err := s.snaps.Cap(s.expectedRoot, s.snaps.CapLimit()); err != nil { log.Warn("Failed to cap snapshot tree", "root", s.expectedRoot, "layers", s.snaps.CapLimit(), "err", err) } }() } } return nil }, } if s.pipeCommit { go commmitTrie() } else { defer s.StopPrefetcher() commitFuncs = append(commitFuncs, commmitTrie) } commitRes := make(chan error, len(commitFuncs)) for _, f := range commitFuncs { // commitFuncs[0] and commitFuncs[1] both read map `stateObjects`, but no conflicts tmpFunc := f go func() { commitRes <- tmpFunc() }() } for i := 0; i < len(commitFuncs); i++ { r := <-commitRes if r != nil { return common.Hash{}, nil, r } } root := s.stateRoot if s.pipeCommit { root = s.expectedRoot } else { s.snap = nil } if root == (common.Hash{}) { root = types.EmptyRootHash } // Clear all internal flags at the end of commit operation. s.accounts = make(map[common.Hash][]byte) s.storages = make(map[common.Hash]map[common.Hash][]byte) s.accountsOrigin = make(map[common.Address][]byte) s.storagesOrigin = make(map[common.Address]map[common.Hash][]byte) s.stateObjectsDirty = make(map[common.Address]struct{}) s.stateObjectsDestruct = make(map[common.Address]*types.StateAccount) return root, diffLayer, nil } func (s *StateDB) SnapToDiffLayer() ([]common.Address, []types.DiffAccount, []types.DiffStorage) { destructs := make([]common.Address, 0, len(s.stateObjectsDestruct)) for account := range s.stateObjectsDestruct { destructs = append(destructs, account) } accounts := make([]types.DiffAccount, 0, len(s.accounts)) for accountHash, account := range s.accounts { accounts = append(accounts, types.DiffAccount{ Account: accountHash, Blob: account, }) } storages := make([]types.DiffStorage, 0, len(s.storages)) for accountHash, storage := range s.storages { keys := make([]common.Hash, 0, len(storage)) values := make([][]byte, 0, len(storage)) for k, v := range storage { keys = append(keys, k) values = append(values, v) } storages = append(storages, types.DiffStorage{ Account: accountHash, Keys: keys, Vals: values, }) } return destructs, accounts, storages } // Prepare handles the preparatory steps for executing a state transition with. // This method must be invoked before state transition. // // Berlin fork: // - Add sender to access list (2929) // - Add destination to access list (2929) // - Add precompiles to access list (2929) // - Add the contents of the optional tx access list (2930) // // Potential EIPs: // - Reset access list (Berlin) // - Add coinbase to access list (EIP-3651) // - Reset transient storage (EIP-1153) func (s *StateDB) Prepare(rules params.Rules, sender, coinbase common.Address, dst *common.Address, precompiles []common.Address, list types.AccessList) { if rules.IsBerlin { // Clear out any leftover from previous executions al := newAccessList() s.accessList = al al.AddAddress(sender) if dst != nil { al.AddAddress(*dst) // If it's a create-tx, the destination will be added inside evm.create } for _, addr := range precompiles { al.AddAddress(addr) } for _, el := range list { al.AddAddress(el.Address) for _, key := range el.StorageKeys { al.AddSlot(el.Address, key) } } if rules.IsShanghai { // EIP-3651: warm coinbase al.AddAddress(coinbase) } } // Reset transient storage at the beginning of transaction execution s.transientStorage = newTransientStorage() } // AddAddressToAccessList adds the given address to the access list func (s *StateDB) AddAddressToAccessList(addr common.Address) { if s.accessList == nil { s.accessList = newAccessList() } if s.accessList.AddAddress(addr) { s.journal.append(accessListAddAccountChange{&addr}) } } // AddSlotToAccessList adds the given (address, slot)-tuple to the access list func (s *StateDB) AddSlotToAccessList(addr common.Address, slot common.Hash) { if s.accessList == nil { s.accessList = newAccessList() } addrMod, slotMod := s.accessList.AddSlot(addr, slot) if addrMod { // In practice, this should not happen, since there is no way to enter the // scope of 'address' without having the 'address' become already added // to the access list (via call-variant, create, etc). // Better safe than sorry, though s.journal.append(accessListAddAccountChange{&addr}) } if slotMod { s.journal.append(accessListAddSlotChange{ address: &addr, slot: &slot, }) } } // AddressInAccessList returns true if the given address is in the access list. func (s *StateDB) AddressInAccessList(addr common.Address) bool { if s.accessList == nil { return false } return s.accessList.ContainsAddress(addr) } // SlotInAccessList returns true if the given (address, slot)-tuple is in the access list. func (s *StateDB) SlotInAccessList(addr common.Address, slot common.Hash) (addressPresent bool, slotPresent bool) { if s.accessList == nil { return false, false } return s.accessList.Contains(addr, slot) } func (s *StateDB) GetStorage(address common.Address) *sync.Map { return s.storagePool.getStorage(address) } // convertAccountSet converts a provided account set from address keyed to hash keyed. func (s *StateDB) convertAccountSet(set map[common.Address]*types.StateAccount) map[common.Hash]struct{} { ret := make(map[common.Hash]struct{}, len(set)) for addr := range set { obj, exist := s.stateObjects[addr] if !exist { ret[crypto.Keccak256Hash(addr[:])] = struct{}{} } else { ret[obj.addrHash] = struct{}{} } } return ret } func (s *StateDB) GetSnap() snapshot.Snapshot { return s.snap } // copySet returns a deep-copied set. func copySet[k comparable](set map[k][]byte) map[k][]byte { copied := make(map[k][]byte, len(set)) for key, val := range set { copied[key] = common.CopyBytes(val) } return copied } // copy2DSet returns a two-dimensional deep-copied set. func copy2DSet[k comparable](set map[k]map[common.Hash][]byte) map[k]map[common.Hash][]byte { copied := make(map[k]map[common.Hash][]byte, len(set)) for addr, subset := range set { copied[addr] = make(map[common.Hash][]byte, len(subset)) for key, val := range subset { copied[addr][key] = common.CopyBytes(val) } } return copied }