// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package state import ( "bytes" "math/big" "testing" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/rlp" "github.com/ethereum/go-ethereum/trie" ) // testAccount is the data associated with an account used by the state tests. type testAccount struct { address common.Address balance *big.Int nonce uint64 code []byte } // makeTestState create a sample test state to test node-wise reconstruction. func makeTestState() (Database, common.Hash, []*testAccount) { // Create an empty state db := NewDatabase(rawdb.NewMemoryDatabase()) state, _ := New(common.Hash{}, db, nil) // Fill it with some arbitrary data var accounts []*testAccount for i := byte(0); i < 96; i++ { obj := state.GetOrNewStateObject(common.BytesToAddress([]byte{i})) acc := &testAccount{address: common.BytesToAddress([]byte{i})} obj.AddBalance(big.NewInt(int64(11 * i))) acc.balance = big.NewInt(int64(11 * i)) obj.SetNonce(uint64(42 * i)) acc.nonce = uint64(42 * i) if i%3 == 0 { obj.SetCode(crypto.Keccak256Hash([]byte{i, i, i, i, i}), []byte{i, i, i, i, i}) acc.code = []byte{i, i, i, i, i} } if i%5 == 0 { for j := byte(0); j < 5; j++ { hash := crypto.Keccak256Hash([]byte{i, i, i, i, i, j, j}) obj.SetState(db, hash, hash) } } state.updateStateObject(obj) accounts = append(accounts, acc) } state.Finalise(false) state.AccountsIntermediateRoot() root, _, _ := state.Commit(nil) // Return the generated state return db, root, accounts } // checkStateAccounts cross references a reconstructed state with an expected // account array. func checkStateAccounts(t *testing.T, db ethdb.Database, root common.Hash, accounts []*testAccount) { // Check root availability and state contents state, err := New(root, NewDatabase(db), nil) if err != nil { t.Fatalf("failed to create state trie at %x: %v", root, err) } if err := checkStateConsistency(db, root); err != nil { t.Fatalf("inconsistent state trie at %x: %v", root, err) } for i, acc := range accounts { if balance := state.GetBalance(acc.address); balance.Cmp(acc.balance) != 0 { t.Errorf("account %d: balance mismatch: have %v, want %v", i, balance, acc.balance) } if nonce := state.GetNonce(acc.address); nonce != acc.nonce { t.Errorf("account %d: nonce mismatch: have %v, want %v", i, nonce, acc.nonce) } if code := state.GetCode(acc.address); !bytes.Equal(code, acc.code) { t.Errorf("account %d: code mismatch: have %x, want %x", i, code, acc.code) } } } // checkTrieConsistency checks that all nodes in a (sub-)trie are indeed present. func checkTrieConsistency(db ethdb.Database, root common.Hash) error { if v, _ := db.Get(root[:]); v == nil { return nil // Consider a non existent state consistent. } trie, err := trie.New(root, trie.NewDatabase(db)) if err != nil { return err } it := trie.NodeIterator(nil) for it.Next(true) { } return it.Error() } // checkStateConsistency checks that all data of a state root is present. func checkStateConsistency(db ethdb.Database, root common.Hash) error { // Create and iterate a state trie rooted in a sub-node if _, err := db.Get(root.Bytes()); err != nil { return nil // Consider a non existent state consistent. } state, err := New(root, NewDatabase(db), nil) if err != nil { return err } it := NewNodeIterator(state) for it.Next() { } return it.Error } // Tests that an empty state is not scheduled for syncing. func TestEmptyStateSync(t *testing.T) { empty := common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") sync := NewStateSync(empty, rawdb.NewMemoryDatabase(), nil) if nodes, paths, codes := sync.Missing(1); len(nodes) != 0 || len(paths) != 0 || len(codes) != 0 { t.Errorf(" content requested for empty state: %v, %v, %v", nodes, paths, codes) } } // Tests that given a root hash, a state can sync iteratively on a single thread, // requesting retrieval tasks and returning all of them in one go. func TestIterativeStateSyncIndividual(t *testing.T) { testIterativeStateSync(t, 1, false, false) } func TestIterativeStateSyncBatched(t *testing.T) { testIterativeStateSync(t, 100, false, false) } func TestIterativeStateSyncIndividualFromDisk(t *testing.T) { testIterativeStateSync(t, 1, true, false) } func TestIterativeStateSyncBatchedFromDisk(t *testing.T) { testIterativeStateSync(t, 100, true, false) } func TestIterativeStateSyncIndividualByPath(t *testing.T) { testIterativeStateSync(t, 1, false, true) } func TestIterativeStateSyncBatchedByPath(t *testing.T) { testIterativeStateSync(t, 100, false, true) } func testIterativeStateSync(t *testing.T, count int, commit bool, bypath bool) { // Create a random state to copy srcDb, srcRoot, srcAccounts := makeTestState() if commit { srcDb.TrieDB().Commit(srcRoot, false, nil) } srcTrie, _ := trie.New(srcRoot, srcDb.TrieDB()) // Create a destination state and sync with the scheduler dstDb := rawdb.NewMemoryDatabase() sched := NewStateSync(srcRoot, dstDb, nil) nodes, paths, codes := sched.Missing(count) var ( hashQueue []common.Hash pathQueue []trie.SyncPath ) if !bypath { hashQueue = append(append(hashQueue[:0], nodes...), codes...) } else { hashQueue = append(hashQueue[:0], codes...) pathQueue = append(pathQueue[:0], paths...) } for len(hashQueue)+len(pathQueue) > 0 { results := make([]trie.SyncResult, len(hashQueue)+len(pathQueue)) for i, hash := range hashQueue { data, err := srcDb.TrieDB().Node(hash) if err != nil { data, err = srcDb.ContractCode(common.Hash{}, hash) } if err != nil { t.Fatalf("failed to retrieve node data for hash %x", hash) } results[i] = trie.SyncResult{Hash: hash, Data: data} } for i, path := range pathQueue { if len(path) == 1 { data, _, err := srcTrie.TryGetNode(path[0]) if err != nil { t.Fatalf("failed to retrieve node data for path %x: %v", path, err) } results[len(hashQueue)+i] = trie.SyncResult{Hash: crypto.Keccak256Hash(data), Data: data} } else { var acc types.StateAccount if err := rlp.DecodeBytes(srcTrie.Get(path[0]), &acc); err != nil { t.Fatalf("failed to decode account on path %x: %v", path, err) } stTrie, err := trie.New(acc.Root, srcDb.TrieDB()) if err != nil { t.Fatalf("failed to retriev storage trie for path %x: %v", path, err) } data, _, err := stTrie.TryGetNode(path[1]) if err != nil { t.Fatalf("failed to retrieve node data for path %x: %v", path, err) } results[len(hashQueue)+i] = trie.SyncResult{Hash: crypto.Keccak256Hash(data), Data: data} } } for _, result := range results { if err := sched.Process(result); err != nil { t.Errorf("failed to process result %v", err) } } batch := dstDb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() nodes, paths, codes = sched.Missing(count) if !bypath { hashQueue = append(append(hashQueue[:0], nodes...), codes...) } else { hashQueue = append(hashQueue[:0], codes...) pathQueue = append(pathQueue[:0], paths...) } } // Cross check that the two states are in sync checkStateAccounts(t, dstDb, srcRoot, srcAccounts) } // Tests that the trie scheduler can correctly reconstruct the state even if only // partial results are returned, and the others sent only later. func TestIterativeDelayedStateSync(t *testing.T) { // Create a random state to copy srcDb, srcRoot, srcAccounts := makeTestState() // Create a destination state and sync with the scheduler dstDb := rawdb.NewMemoryDatabase() sched := NewStateSync(srcRoot, dstDb, nil) nodes, _, codes := sched.Missing(0) queue := append(append([]common.Hash{}, nodes...), codes...) for len(queue) > 0 { // Sync only half of the scheduled nodes results := make([]trie.SyncResult, len(queue)/2+1) for i, hash := range queue[:len(results)] { data, err := srcDb.TrieDB().Node(hash) if err != nil { data, err = srcDb.ContractCode(common.Hash{}, hash) } if err != nil { t.Fatalf("failed to retrieve node data for %x", hash) } results[i] = trie.SyncResult{Hash: hash, Data: data} } for _, result := range results { if err := sched.Process(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := dstDb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() nodes, _, codes = sched.Missing(0) queue = append(append(queue[len(results):], nodes...), codes...) } // Cross check that the two states are in sync checkStateAccounts(t, dstDb, srcRoot, srcAccounts) } // Tests that given a root hash, a trie can sync iteratively on a single thread, // requesting retrieval tasks and returning all of them in one go, however in a // random order. func TestIterativeRandomStateSyncIndividual(t *testing.T) { testIterativeRandomStateSync(t, 1) } func TestIterativeRandomStateSyncBatched(t *testing.T) { testIterativeRandomStateSync(t, 100) } func testIterativeRandomStateSync(t *testing.T, count int) { // Create a random state to copy srcDb, srcRoot, srcAccounts := makeTestState() // Create a destination state and sync with the scheduler dstDb := rawdb.NewMemoryDatabase() sched := NewStateSync(srcRoot, dstDb, nil) queue := make(map[common.Hash]struct{}) nodes, _, codes := sched.Missing(count) for _, hash := range append(nodes, codes...) { queue[hash] = struct{}{} } for len(queue) > 0 { // Fetch all the queued nodes in a random order results := make([]trie.SyncResult, 0, len(queue)) for hash := range queue { data, err := srcDb.TrieDB().Node(hash) if err != nil { data, err = srcDb.ContractCode(common.Hash{}, hash) } if err != nil { t.Fatalf("failed to retrieve node data for %x", hash) } results = append(results, trie.SyncResult{Hash: hash, Data: data}) } // Feed the retrieved results back and queue new tasks for _, result := range results { if err := sched.Process(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := dstDb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() queue = make(map[common.Hash]struct{}) nodes, _, codes = sched.Missing(count) for _, hash := range append(nodes, codes...) { queue[hash] = struct{}{} } } // Cross check that the two states are in sync checkStateAccounts(t, dstDb, srcRoot, srcAccounts) } // Tests that the trie scheduler can correctly reconstruct the state even if only // partial results are returned (Even those randomly), others sent only later. func TestIterativeRandomDelayedStateSync(t *testing.T) { // Create a random state to copy srcDb, srcRoot, srcAccounts := makeTestState() // Create a destination state and sync with the scheduler dstDb := rawdb.NewMemoryDatabase() sched := NewStateSync(srcRoot, dstDb, nil) queue := make(map[common.Hash]struct{}) nodes, _, codes := sched.Missing(0) for _, hash := range append(nodes, codes...) { queue[hash] = struct{}{} } for len(queue) > 0 { // Sync only half of the scheduled nodes, even those in random order results := make([]trie.SyncResult, 0, len(queue)/2+1) for hash := range queue { delete(queue, hash) data, err := srcDb.TrieDB().Node(hash) if err != nil { data, err = srcDb.ContractCode(common.Hash{}, hash) } if err != nil { t.Fatalf("failed to retrieve node data for %x", hash) } results = append(results, trie.SyncResult{Hash: hash, Data: data}) if len(results) >= cap(results) { break } } // Feed the retrieved results back and queue new tasks for _, result := range results { if err := sched.Process(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := dstDb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() for _, result := range results { delete(queue, result.Hash) } nodes, _, codes = sched.Missing(0) for _, hash := range append(nodes, codes...) { queue[hash] = struct{}{} } } // Cross check that the two states are in sync checkStateAccounts(t, dstDb, srcRoot, srcAccounts) } // Tests that at any point in time during a sync, only complete sub-tries are in // the database. func TestIncompleteStateSync(t *testing.T) { // Create a random state to copy srcDb, srcRoot, srcAccounts := makeTestState() // isCodeLookup to save some hashing var isCode = make(map[common.Hash]struct{}) for _, acc := range srcAccounts { if len(acc.code) > 0 { isCode[crypto.Keccak256Hash(acc.code)] = struct{}{} } } isCode[common.BytesToHash(emptyCodeHash)] = struct{}{} checkTrieConsistency(srcDb.TrieDB().DiskDB().(ethdb.Database), srcRoot) // Create a destination state and sync with the scheduler dstDb := rawdb.NewMemoryDatabase() sched := NewStateSync(srcRoot, dstDb, nil) var added []common.Hash nodes, _, codes := sched.Missing(1) queue := append(append([]common.Hash{}, nodes...), codes...) for len(queue) > 0 { // Fetch a batch of state nodes results := make([]trie.SyncResult, len(queue)) for i, hash := range queue { data, err := srcDb.TrieDB().Node(hash) if err != nil { data, err = srcDb.ContractCode(common.Hash{}, hash) } if err != nil { t.Fatalf("failed to retrieve node data for %x", hash) } results[i] = trie.SyncResult{Hash: hash, Data: data} } // Process each of the state nodes for _, result := range results { if err := sched.Process(result); err != nil { t.Fatalf("failed to process result %v", err) } } batch := dstDb.NewBatch() if err := sched.Commit(batch); err != nil { t.Fatalf("failed to commit data: %v", err) } batch.Write() for _, result := range results { added = append(added, result.Hash) // Check that all known sub-tries added so far are complete or missing entirely. if _, ok := isCode[result.Hash]; ok { continue } // Can't use checkStateConsistency here because subtrie keys may have odd // length and crash in LeafKey. if err := checkTrieConsistency(dstDb, result.Hash); err != nil { t.Fatalf("state inconsistent: %v", err) } } // Fetch the next batch to retrieve nodes, _, codes = sched.Missing(1) queue = append(append(queue[:0], nodes...), codes...) } // Sanity check that removing any node from the database is detected for _, node := range added[1:] { var ( key = node.Bytes() _, code = isCode[node] val []byte ) if code { val = rawdb.ReadCode(dstDb, node) rawdb.DeleteCode(dstDb, node) } else { val = rawdb.ReadTrieNode(dstDb, node) rawdb.DeleteTrieNode(dstDb, node) } if err := checkStateConsistency(dstDb, added[0]); err == nil { t.Fatalf("trie inconsistency not caught, missing: %x", key) } if code { rawdb.WriteCode(dstDb, node, val) } else { rawdb.WriteTrieNode(dstDb, node, val) } } }