// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "errors" "fmt" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/consensus/misc" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/systemcontracts" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/params" ) // StateProcessor is a basic Processor, which takes care of transitioning // state from one point to another. // // StateProcessor implements Processor. type StateProcessor struct { config *params.ChainConfig // Chain configuration options bc *BlockChain // Canonical block chain engine consensus.Engine // Consensus engine used for block rewards } // NewStateProcessor initialises a new StateProcessor. func NewStateProcessor(config *params.ChainConfig, bc *BlockChain, engine consensus.Engine) *StateProcessor { return &StateProcessor{ config: config, bc: bc, engine: engine, } } // Process processes the state changes according to the Ethereum rules by running // the transaction messages using the statedb and applying any rewards to both // the processor (coinbase) and any included uncles. // // Process returns the receipts and logs accumulated during the process and // returns the amount of gas that was used in the process. If any of the // transactions failed to execute due to insufficient gas it will return an error. func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB, cfg vm.Config) (*state.StateDB, types.Receipts, []*types.Log, uint64, error) { var ( usedGas = new(uint64) header = block.Header() blockHash = block.Hash() blockNumber = block.Number() allLogs []*types.Log gp = new(GasPool).AddGas(block.GasLimit()) ) var receipts = make([]*types.Receipt, 0) // Mutate the block and state according to any hard-fork specs if p.config.DAOForkSupport && p.config.DAOForkBlock != nil && p.config.DAOForkBlock.Cmp(block.Number()) == 0 { misc.ApplyDAOHardFork(statedb) } // Handle upgrade build-in system contract code systemcontracts.UpgradeBuildInSystemContract(p.config, block.Number(), statedb) var ( context = NewEVMBlockContext(header, p.bc, nil) vmenv = vm.NewEVM(context, vm.TxContext{}, statedb, p.config, cfg) signer = types.MakeSigner(p.config, header.Number, header.Time) txNum = len(block.Transactions()) ) // Iterate over and process the individual transactions posa, isPoSA := p.engine.(consensus.PoSA) commonTxs := make([]*types.Transaction, 0, txNum) // initialise bloom processors bloomProcessors := NewAsyncReceiptBloomGenerator(txNum) statedb.MarkFullProcessed() // usually do have two tx, one for validator set contract, another for system reward contract. systemTxs := make([]*types.Transaction, 0, 2) for i, tx := range block.Transactions() { if isPoSA { if isSystemTx, err := posa.IsSystemTransaction(tx, block.Header()); err != nil { bloomProcessors.Close() return statedb, nil, nil, 0, err } else if isSystemTx { systemTxs = append(systemTxs, tx) continue } } msg, err := TransactionToMessage(tx, signer, header.BaseFee) if err != nil { bloomProcessors.Close() return statedb, nil, nil, 0, err } statedb.SetTxContext(tx.Hash(), i) receipt, err := applyTransaction(msg, p.config, gp, statedb, blockNumber, blockHash, tx, usedGas, vmenv, bloomProcessors) if err != nil { bloomProcessors.Close() return statedb, nil, nil, 0, fmt.Errorf("could not apply tx %d [%v]: %w", i, tx.Hash().Hex(), err) } commonTxs = append(commonTxs, tx) receipts = append(receipts, receipt) } bloomProcessors.Close() // Fail if Shanghai not enabled and len(withdrawals) is non-zero. withdrawals := block.Withdrawals() if len(withdrawals) > 0 && !p.config.IsShanghai(block.Number(), block.Time()) { return nil, nil, nil, 0, errors.New("withdrawals before shanghai") } // Finalize the block, applying any consensus engine specific extras (e.g. block rewards) err := p.engine.Finalize(p.bc, header, statedb, &commonTxs, block.Uncles(), withdrawals, &receipts, &systemTxs, usedGas) if err != nil { return statedb, receipts, allLogs, *usedGas, err } for _, receipt := range receipts { allLogs = append(allLogs, receipt.Logs...) } return statedb, receipts, allLogs, *usedGas, nil } func applyTransaction(msg *Message, config *params.ChainConfig, gp *GasPool, statedb *state.StateDB, blockNumber *big.Int, blockHash common.Hash, tx *types.Transaction, usedGas *uint64, evm *vm.EVM, receiptProcessors ...ReceiptProcessor) (*types.Receipt, error) { // Create a new context to be used in the EVM environment. txContext := NewEVMTxContext(msg) evm.Reset(txContext, statedb) // Apply the transaction to the current state (included in the env). result, err := ApplyMessage(evm, msg, gp) if err != nil { return nil, err } // Update the state with pending changes. var root []byte if config.IsByzantium(blockNumber) { statedb.Finalise(true) } else { root = statedb.IntermediateRoot(config.IsEIP158(blockNumber)).Bytes() } *usedGas += result.UsedGas // Create a new receipt for the transaction, storing the intermediate root and gas used // by the tx. receipt := &types.Receipt{Type: tx.Type(), PostState: root, CumulativeGasUsed: *usedGas} if result.Failed() { receipt.Status = types.ReceiptStatusFailed } else { receipt.Status = types.ReceiptStatusSuccessful } receipt.TxHash = tx.Hash() receipt.GasUsed = result.UsedGas // If the transaction created a contract, store the creation address in the receipt. if msg.To == nil { receipt.ContractAddress = crypto.CreateAddress(evm.TxContext.Origin, tx.Nonce()) } // Set the receipt logs and create the bloom filter. receipt.Logs = statedb.GetLogs(tx.Hash(), blockNumber.Uint64(), blockHash) receipt.BlockHash = blockHash receipt.BlockNumber = blockNumber receipt.TransactionIndex = uint(statedb.TxIndex()) for _, receiptProcessor := range receiptProcessors { receiptProcessor.Apply(receipt) } return receipt, err } // ApplyTransaction attempts to apply a transaction to the given state database // and uses the input parameters for its environment. It returns the receipt // for the transaction, gas used and an error if the transaction failed, // indicating the block was invalid. func ApplyTransaction(config *params.ChainConfig, bc ChainContext, author *common.Address, gp *GasPool, statedb *state.StateDB, header *types.Header, tx *types.Transaction, usedGas *uint64, cfg vm.Config, receiptProcessors ...ReceiptProcessor) (*types.Receipt, error) { msg, err := TransactionToMessage(tx, types.MakeSigner(config, header.Number, header.Time), header.BaseFee) if err != nil { return nil, err } // Create a new context to be used in the EVM environment blockContext := NewEVMBlockContext(header, bc, author) vmenv := vm.NewEVM(blockContext, vm.TxContext{BlobHashes: tx.BlobHashes()}, statedb, config, cfg) defer func() { ite := vmenv.Interpreter() vm.EVMInterpreterPool.Put(ite) vm.EvmPool.Put(vmenv) }() return applyTransaction(msg, config, gp, statedb, header.Number, header.Hash(), tx, usedGas, vmenv, receiptProcessors...) }