// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package core import ( "github.com/ethereum/go-ethereum/consensus" "github.com/ethereum/go-ethereum/core/state" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/core/vm" "github.com/ethereum/go-ethereum/params" ) const prefetchThread = 3 const checkInterval = 10 // statePrefetcher is a basic Prefetcher, which blindly executes a block on top // of an arbitrary state with the goal of prefetching potentially useful state // data from disk before the main block processor start executing. type statePrefetcher struct { config *params.ChainConfig // Chain configuration options bc *BlockChain // Canonical block chain engine consensus.Engine // Consensus engine used for block rewards } // NewStatePrefetcher initialises a new statePrefetcher. func NewStatePrefetcher(config *params.ChainConfig, bc *BlockChain, engine consensus.Engine) *statePrefetcher { return &statePrefetcher{ config: config, bc: bc, engine: engine, } } // Prefetch processes the state changes according to the Ethereum rules by running // the transaction messages using the statedb, but any changes are discarded. The // only goal is to pre-cache transaction signatures and snapshot clean state. func (p *statePrefetcher) Prefetch(block *types.Block, statedb *state.StateDB, cfg *vm.Config, interruptCh <-chan struct{}) { var ( header = block.Header() signer = types.MakeSigner(p.config, header.Number) ) transactions := block.Transactions() txChan := make(chan int, prefetchThread) // No need to execute the first batch, since the main processor will do it. for i := 0; i < prefetchThread; i++ { go func() { newStatedb := statedb.Copy() newStatedb.EnableWriteOnSharedStorage() gaspool := new(GasPool).AddGas(block.GasLimit()) blockContext := NewEVMBlockContext(header, p.bc, nil) evm := vm.NewEVM(blockContext, vm.TxContext{}, statedb, p.config, *cfg) // Iterate over and process the individual transactions for { select { case txIndex := <-txChan: tx := transactions[txIndex] // Convert the transaction into an executable message and pre-cache its sender msg, err := tx.AsMessageNoNonceCheck(signer) if err != nil { return // Also invalid block, bail out } newStatedb.Prepare(tx.Hash(), txIndex) precacheTransaction(msg, p.config, gaspool, newStatedb, header, evm) case <-interruptCh: // If block precaching was interrupted, abort return } } }() } // it should be in a separate goroutine, to avoid blocking the critical path. for i := 0; i < len(transactions); i++ { txChan <- i } } // PrefetchMining processes the state changes according to the Ethereum rules by running // the transaction messages using the statedb, but any changes are discarded. The // only goal is to pre-cache transaction signatures and snapshot clean state. Only used for mining stage func (p *statePrefetcher) PrefetchMining(txs *types.TransactionsByPriceAndNonce, header *types.Header, gasLimit uint64, statedb *state.StateDB, cfg vm.Config, interruptCh <-chan struct{}, txCurr **types.Transaction) { var signer = types.MakeSigner(p.config, header.Number) txCh := make(chan *types.Transaction, 2*prefetchThread) for i := 0; i < prefetchThread; i++ { go func(startCh <-chan *types.Transaction, stopCh <-chan struct{}) { idx := 0 newStatedb := statedb.Copy() newStatedb.EnableWriteOnSharedStorage() gaspool := new(GasPool).AddGas(gasLimit) blockContext := NewEVMBlockContext(header, p.bc, nil) evm := vm.NewEVM(blockContext, vm.TxContext{}, statedb, p.config, cfg) // Iterate over and process the individual transactions for { select { case tx := <-startCh: // Convert the transaction into an executable message and pre-cache its sender msg, err := tx.AsMessageNoNonceCheck(signer) if err != nil { return // Also invalid block, bail out } idx++ newStatedb.Prepare(tx.Hash(), idx) precacheTransaction(msg, p.config, gaspool, newStatedb, header, evm) gaspool = new(GasPool).AddGas(gasLimit) case <-stopCh: return } } }(txCh, interruptCh) } go func(txset *types.TransactionsByPriceAndNonce) { count := 0 for { select { case <-interruptCh: return default: if count++; count%checkInterval == 0 { txset.Forward(*txCurr) } tx := txset.Peek() if tx == nil { return } txCh <- tx txset.Shift() } } }(txs) } // precacheTransaction attempts to apply a transaction to the given state database // and uses the input parameters for its environment. The goal is not to execute // the transaction successfully, rather to warm up touched data slots. func precacheTransaction(msg types.Message, config *params.ChainConfig, gaspool *GasPool, statedb *state.StateDB, header *types.Header, evm *vm.EVM) { // Update the evm with the new transaction context. evm.Reset(NewEVMTxContext(msg), statedb) // Add addresses to access list if applicable ApplyMessage(evm, msg, gaspool) }