// Copyright 2019 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package snapshot import ( "encoding/binary" "fmt" "math" "math/rand" "sync" "sync/atomic" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/rlp" bloomfilter "github.com/holiman/bloomfilter/v2" "golang.org/x/exp/slices" ) var ( // aggregatorMemoryLimit is the maximum size of the bottom-most diff layer // that aggregates the writes from above until it's flushed into the disk // layer. // // Note, bumping this up might drastically increase the size of the bloom // filters that's stored in every diff layer. Don't do that without fully // understanding all the implications. aggregatorMemoryLimit = uint64(4 * 1024 * 1024) // aggregatorItemLimit is an approximate number of items that will end up // in the agregator layer before it's flushed out to disk. A plain account // weighs around 14B (+hash), a storage slot 32B (+hash), a deleted slot // 0B (+hash). Slots are mostly set/unset in lockstep, so that average at // 16B (+hash). All in all, the average entry seems to be 15+32=47B. Use a // smaller number to be on the safe side. aggregatorItemLimit = aggregatorMemoryLimit / 42 // bloomTargetError is the target false positive rate when the aggregator // layer is at its fullest. The actual value will probably move around up // and down from this number, it's mostly a ballpark figure. // // Note, dropping this down might drastically increase the size of the bloom // filters that's stored in every diff layer. Don't do that without fully // understanding all the implications. bloomTargetError = 0.02 // bloomSize is the ideal bloom filter size given the maximum number of items // it's expected to hold and the target false positive error rate. bloomSize = math.Ceil(float64(aggregatorItemLimit) * math.Log(bloomTargetError) / math.Log(1/math.Pow(2, math.Log(2)))) // bloomFuncs is the ideal number of bits a single entry should set in the // bloom filter to keep its size to a minimum (given it's size and maximum // entry count). bloomFuncs = math.Round((bloomSize / float64(aggregatorItemLimit)) * math.Log(2)) // the bloom offsets are runtime constants which determines which part of the // account/storage hash the hasher functions looks at, to determine the // bloom key for an account/slot. This is randomized at init(), so that the // global population of nodes do not all display the exact same behaviour with // regards to bloom content bloomDestructHasherOffset = 0 bloomAccountHasherOffset = 0 bloomStorageHasherOffset = 0 ) func init() { // Init the bloom offsets in the range [0:24] (requires 8 bytes) bloomDestructHasherOffset = rand.Intn(25) bloomAccountHasherOffset = rand.Intn(25) bloomStorageHasherOffset = rand.Intn(25) // The destruct and account blooms must be different, as the storage slots // will check for destruction too for every bloom miss. It should not collide // with modified accounts. for bloomAccountHasherOffset == bloomDestructHasherOffset { bloomAccountHasherOffset = rand.Intn(25) } } // diffLayer represents a collection of modifications made to a state snapshot // after running a block on top. It contains one sorted list for the account trie // and one-one list for each storage tries. // // The goal of a diff layer is to act as a journal, tracking recent modifications // made to the state, that have not yet graduated into a semi-immutable state. type diffLayer struct { origin *diskLayer // Base disk layer to directly use on bloom misses parent snapshot // Parent snapshot modified by this one, never nil memory uint64 // Approximate guess as to how much memory we use root common.Hash // Root hash to which this snapshot diff belongs to stale atomic.Bool // Signals that the layer became stale (state progressed) // destructSet is a very special helper marker. If an account is marked as // deleted, then it's recorded in this set. However it's allowed that an account // is included here but still available in other sets(e.g. storageData). The // reason is the diff layer includes all the changes in a *block*. It can // happen that in the tx_1, account A is self-destructed while in the tx_2 // it's recreated. But we still need this marker to indicate the "old" A is // deleted, all data in other set belongs to the "new" A. destructSet map[common.Hash]struct{} // Keyed markers for deleted (and potentially) recreated accounts accountList []common.Hash // List of account for iteration. If it exists, it's sorted, otherwise it's nil accountData map[common.Hash][]byte // Keyed accounts for direct retrieval (nil means deleted) storageList map[common.Hash][]common.Hash // List of storage slots for iterated retrievals, one per account. Any existing lists are sorted if non-nil storageData map[common.Hash]map[common.Hash][]byte // Keyed storage slots for direct retrieval. one per account (nil means deleted) verifiedCh chan struct{} // the difflayer is verified when verifiedCh is nil or closed valid bool // mark the difflayer is valid or not. diffed *bloomfilter.Filter // Bloom filter tracking all the diffed items up to the disk layer lock sync.RWMutex } // destructBloomHasher is a wrapper around a common.Hash to satisfy the interface // API requirements of the bloom library used. It's used to convert a destruct // event into a 64 bit mini hash. type destructBloomHasher common.Hash func (h destructBloomHasher) Write(p []byte) (n int, err error) { panic("not implemented") } func (h destructBloomHasher) Sum(b []byte) []byte { panic("not implemented") } func (h destructBloomHasher) Reset() { panic("not implemented") } func (h destructBloomHasher) BlockSize() int { panic("not implemented") } func (h destructBloomHasher) Size() int { return 8 } func (h destructBloomHasher) Sum64() uint64 { return binary.BigEndian.Uint64(h[bloomDestructHasherOffset : bloomDestructHasherOffset+8]) } // accountBloomHasher is a wrapper around a common.Hash to satisfy the interface // API requirements of the bloom library used. It's used to convert an account // hash into a 64 bit mini hash. type accountBloomHasher common.Hash func (h accountBloomHasher) Write(p []byte) (n int, err error) { panic("not implemented") } func (h accountBloomHasher) Sum(b []byte) []byte { panic("not implemented") } func (h accountBloomHasher) Reset() { panic("not implemented") } func (h accountBloomHasher) BlockSize() int { panic("not implemented") } func (h accountBloomHasher) Size() int { return 8 } func (h accountBloomHasher) Sum64() uint64 { return binary.BigEndian.Uint64(h[bloomAccountHasherOffset : bloomAccountHasherOffset+8]) } // storageBloomHasher is a wrapper around a [2]common.Hash to satisfy the interface // API requirements of the bloom library used. It's used to convert an account // hash into a 64 bit mini hash. type storageBloomHasher [2]common.Hash func (h storageBloomHasher) Write(p []byte) (n int, err error) { panic("not implemented") } func (h storageBloomHasher) Sum(b []byte) []byte { panic("not implemented") } func (h storageBloomHasher) Reset() { panic("not implemented") } func (h storageBloomHasher) BlockSize() int { panic("not implemented") } func (h storageBloomHasher) Size() int { return 8 } func (h storageBloomHasher) Sum64() uint64 { return binary.BigEndian.Uint64(h[0][bloomStorageHasherOffset:bloomStorageHasherOffset+8]) ^ binary.BigEndian.Uint64(h[1][bloomStorageHasherOffset:bloomStorageHasherOffset+8]) } // newDiffLayer creates a new diff on top of an existing snapshot, whether that's a low // level persistent database or a hierarchical diff already. func newDiffLayer(parent snapshot, root common.Hash, destructs map[common.Hash]struct{}, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte, verified chan struct{}) *diffLayer { // Create the new layer with some pre-allocated data segments dl := &diffLayer{ parent: parent, root: root, destructSet: destructs, accountData: accounts, storageData: storage, storageList: make(map[common.Hash][]common.Hash), verifiedCh: verified, } switch parent := parent.(type) { case *diskLayer: dl.rebloom(parent) case *diffLayer: dl.rebloom(parent.origin) default: panic("unknown parent type") } // Sanity check that accounts or storage slots are never nil for accountHash, blob := range accounts { if blob == nil { panic(fmt.Sprintf("account %#x nil", accountHash)) } // Determine memory size and track the dirty writes dl.memory += uint64(common.HashLength + len(blob)) snapshotDirtyAccountWriteMeter.Mark(int64(len(blob))) } for accountHash, slots := range storage { if slots == nil { panic(fmt.Sprintf("storage %#x nil", accountHash)) } // Determine memory size and track the dirty writes for _, data := range slots { dl.memory += uint64(common.HashLength + len(data)) snapshotDirtyStorageWriteMeter.Mark(int64(len(data))) } } dl.memory += uint64(len(destructs) * common.HashLength) return dl } // rebloom discards the layer's current bloom and rebuilds it from scratch based // on the parent's and the local diffs. func (dl *diffLayer) rebloom(origin *diskLayer) { dl.lock.Lock() defer dl.lock.Unlock() defer func(start time.Time) { snapshotBloomIndexTimer.Update(time.Since(start)) }(time.Now()) // Inject the new origin that triggered the rebloom dl.origin = origin // Retrieve the parent bloom or create a fresh empty one if parent, ok := dl.parent.(*diffLayer); ok { parent.lock.RLock() dl.diffed, _ = parent.diffed.Copy() parent.lock.RUnlock() } else { dl.diffed, _ = bloomfilter.New(uint64(bloomSize), uint64(bloomFuncs)) } // Iterate over all the accounts and storage slots and index them for hash := range dl.destructSet { dl.diffed.Add(destructBloomHasher(hash)) } for hash := range dl.accountData { dl.diffed.Add(accountBloomHasher(hash)) } for accountHash, slots := range dl.storageData { for storageHash := range slots { dl.diffed.Add(storageBloomHasher{accountHash, storageHash}) } } // Calculate the current false positive rate and update the error rate meter. // This is a bit cheating because subsequent layers will overwrite it, but it // should be fine, we're only interested in ballpark figures. k := float64(dl.diffed.K()) n := float64(dl.diffed.N()) m := float64(dl.diffed.M()) snapshotBloomErrorGauge.Update(math.Pow(1.0-math.Exp((-k)*(n+0.5)/(m-1)), k)) } // Root returns the root hash for which this snapshot was made. func (dl *diffLayer) Root() common.Hash { return dl.root } // WaitAndGetVerifyRes will wait until the diff layer been verified and return the verification result func (dl *diffLayer) WaitAndGetVerifyRes() bool { if dl.verifiedCh == nil { return true } <-dl.verifiedCh return dl.valid } func (dl *diffLayer) MarkValid() { dl.valid = true } // Represent whether the difflayer is been verified, does not means it is a valid or invalid difflayer func (dl *diffLayer) Verified() bool { if dl.verifiedCh == nil { return true } select { case <-dl.verifiedCh: return true default: return false } } func (dl *diffLayer) CorrectAccounts(accounts map[common.Hash][]byte) { dl.lock.Lock() defer dl.lock.Unlock() dl.accountData = accounts } // Parent returns the subsequent layer of a diff layer. func (dl *diffLayer) Parent() snapshot { dl.lock.RLock() defer dl.lock.RUnlock() return dl.parent } // Stale return whether this layer has become stale (was flattened across) or if // it's still live. func (dl *diffLayer) Stale() bool { return dl.stale.Load() } // Account directly retrieves the account associated with a particular hash in // the snapshot slim data format. func (dl *diffLayer) Account(hash common.Hash) (*types.SlimAccount, error) { data, err := dl.AccountRLP(hash) if err != nil { return nil, err } if len(data) == 0 { // can be both nil and []byte{} return nil, nil } account := new(types.SlimAccount) if err := rlp.DecodeBytes(data, account); err != nil { panic(err) } return account, nil } // Accounts directly retrieves all accounts in current snapshot in // the snapshot slim data format. func (dl *diffLayer) Accounts() (map[common.Hash]*types.SlimAccount, error) { dl.lock.RLock() defer dl.lock.RUnlock() accounts := make(map[common.Hash]*types.SlimAccount, len(dl.accountData)) for hash, data := range dl.accountData { account := new(types.SlimAccount) if err := rlp.DecodeBytes(data, account); err != nil { return nil, err } accounts[hash] = account } return accounts, nil } // AccountRLP directly retrieves the account RLP associated with a particular // hash in the snapshot slim data format. // // Note the returned account is not a copy, please don't modify it. func (dl *diffLayer) AccountRLP(hash common.Hash) ([]byte, error) { // Check staleness before reaching further. dl.lock.RLock() if dl.Stale() { dl.lock.RUnlock() return nil, ErrSnapshotStale } // Check the bloom filter first whether there's even a point in reaching into // all the maps in all the layers below hit := dl.diffed.Contains(accountBloomHasher(hash)) if !hit { hit = dl.diffed.Contains(destructBloomHasher(hash)) } var origin *diskLayer if !hit { origin = dl.origin // extract origin while holding the lock } dl.lock.RUnlock() // If the bloom filter misses, don't even bother with traversing the memory // diff layers, reach straight into the bottom persistent disk layer if origin != nil { snapshotBloomAccountMissMeter.Mark(1) return origin.AccountRLP(hash) } // The bloom filter hit, start poking in the internal maps return dl.accountRLP(hash, 0) } // accountRLP is an internal version of AccountRLP that skips the bloom filter // checks and uses the internal maps to try and retrieve the data. It's meant // to be used if a higher layer's bloom filter hit already. func (dl *diffLayer) accountRLP(hash common.Hash, depth int) ([]byte, error) { dl.lock.RLock() defer dl.lock.RUnlock() // If the layer was flattened into, consider it invalid (any live reference to // the original should be marked as unusable). if dl.Stale() { return nil, ErrSnapshotStale } // If the account is known locally, return it if data, ok := dl.accountData[hash]; ok { snapshotDirtyAccountHitMeter.Mark(1) snapshotDirtyAccountHitDepthHist.Update(int64(depth)) snapshotDirtyAccountReadMeter.Mark(int64(len(data))) snapshotBloomAccountTrueHitMeter.Mark(1) return data, nil } // If the account is known locally, but deleted, return it if _, ok := dl.destructSet[hash]; ok { snapshotDirtyAccountHitMeter.Mark(1) snapshotDirtyAccountHitDepthHist.Update(int64(depth)) snapshotDirtyAccountInexMeter.Mark(1) snapshotBloomAccountTrueHitMeter.Mark(1) return nil, nil } // Account unknown to this diff, resolve from parent if diff, ok := dl.parent.(*diffLayer); ok { return diff.accountRLP(hash, depth+1) } // Failed to resolve through diff layers, mark a bloom error and use the disk snapshotBloomAccountFalseHitMeter.Mark(1) return dl.parent.AccountRLP(hash) } // Storage directly retrieves the storage data associated with a particular hash, // within a particular account. If the slot is unknown to this diff, it's parent // is consulted. // // Note the returned slot is not a copy, please don't modify it. func (dl *diffLayer) Storage(accountHash, storageHash common.Hash) ([]byte, error) { // Check the bloom filter first whether there's even a point in reaching into // all the maps in all the layers below dl.lock.RLock() // Check staleness before reaching further. if dl.Stale() { dl.lock.RUnlock() return nil, ErrSnapshotStale } hit := dl.diffed.Contains(storageBloomHasher{accountHash, storageHash}) if !hit { hit = dl.diffed.Contains(destructBloomHasher(accountHash)) } var origin *diskLayer if !hit { origin = dl.origin // extract origin while holding the lock } dl.lock.RUnlock() // If the bloom filter misses, don't even bother with traversing the memory // diff layers, reach straight into the bottom persistent disk layer if origin != nil { snapshotBloomStorageMissMeter.Mark(1) return origin.Storage(accountHash, storageHash) } // The bloom filter hit, start poking in the internal maps return dl.storage(accountHash, storageHash, 0) } // storage is an internal version of Storage that skips the bloom filter checks // and uses the internal maps to try and retrieve the data. It's meant to be // used if a higher layer's bloom filter hit already. func (dl *diffLayer) storage(accountHash, storageHash common.Hash, depth int) ([]byte, error) { dl.lock.RLock() defer dl.lock.RUnlock() // If the layer was flattened into, consider it invalid (any live reference to // the original should be marked as unusable). if dl.Stale() { return nil, ErrSnapshotStale } // If the account is known locally, try to resolve the slot locally if storage, ok := dl.storageData[accountHash]; ok { if data, ok := storage[storageHash]; ok { snapshotDirtyStorageHitMeter.Mark(1) //snapshotDirtyStorageHitDepthHist.Update(int64(depth)) if n := len(data); n > 0 { snapshotDirtyStorageReadMeter.Mark(int64(n)) } else { snapshotDirtyStorageInexMeter.Mark(1) } snapshotBloomStorageTrueHitMeter.Mark(1) return data, nil } } // If the account is known locally, but deleted, return an empty slot if _, ok := dl.destructSet[accountHash]; ok { snapshotDirtyStorageHitMeter.Mark(1) //snapshotDirtyStorageHitDepthHist.Update(int64(depth)) snapshotDirtyStorageInexMeter.Mark(1) snapshotBloomStorageTrueHitMeter.Mark(1) return nil, nil } // Storage slot unknown to this diff, resolve from parent if diff, ok := dl.parent.(*diffLayer); ok { return diff.storage(accountHash, storageHash, depth+1) } // Failed to resolve through diff layers, mark a bloom error and use the disk snapshotBloomStorageFalseHitMeter.Mark(1) return dl.parent.Storage(accountHash, storageHash) } // Update creates a new layer on top of the existing snapshot diff tree with // the specified data items. func (dl *diffLayer) Update(blockRoot common.Hash, destructs map[common.Hash]struct{}, accounts map[common.Hash][]byte, storage map[common.Hash]map[common.Hash][]byte, verified chan struct{}) *diffLayer { return newDiffLayer(dl, blockRoot, destructs, accounts, storage, verified) } // flatten pushes all data from this point downwards, flattening everything into // a single diff at the bottom. Since usually the lowermost diff is the largest, // the flattening builds up from there in reverse. func (dl *diffLayer) flatten() snapshot { // If the parent is not diff, we're the first in line, return unmodified parent, ok := dl.parent.(*diffLayer) if !ok { return dl } // Parent is a diff, flatten it first (note, apart from weird corned cases, // flatten will realistically only ever merge 1 layer, so there's no need to // be smarter about grouping flattens together). parent = parent.flatten().(*diffLayer) parent.lock.Lock() defer parent.lock.Unlock() // Before actually writing all our data to the parent, first ensure that the // parent hasn't been 'corrupted' by someone else already flattening into it if parent.stale.Swap(true) { panic("parent diff layer is stale") // we've flattened into the same parent from two children, boo } // Overwrite all the updated accounts blindly, merge the sorted list for hash := range dl.destructSet { parent.destructSet[hash] = struct{}{} delete(parent.accountData, hash) delete(parent.storageData, hash) } for hash, data := range dl.accountData { parent.accountData[hash] = data } // Overwrite all the updated storage slots (individually) for accountHash, storage := range dl.storageData { // If storage didn't exist (or was deleted) in the parent, overwrite blindly if _, ok := parent.storageData[accountHash]; !ok { parent.storageData[accountHash] = storage continue } // Storage exists in both parent and child, merge the slots comboData := parent.storageData[accountHash] for storageHash, data := range storage { comboData[storageHash] = data } } // Return the combo parent return &diffLayer{ parent: parent.parent, origin: parent.origin, root: dl.root, destructSet: parent.destructSet, accountData: parent.accountData, storageData: parent.storageData, storageList: make(map[common.Hash][]common.Hash), diffed: dl.diffed, memory: parent.memory + dl.memory, } } // AccountList returns a sorted list of all accounts in this diffLayer, including // the deleted ones. // // Note, the returned slice is not a copy, so do not modify it. func (dl *diffLayer) AccountList() []common.Hash { // If an old list already exists, return it dl.lock.RLock() list := dl.accountList dl.lock.RUnlock() if list != nil { return list } // No old sorted account list exists, generate a new one dl.lock.Lock() defer dl.lock.Unlock() dl.accountList = make([]common.Hash, 0, len(dl.destructSet)+len(dl.accountData)) for hash := range dl.accountData { dl.accountList = append(dl.accountList, hash) } for hash := range dl.destructSet { if _, ok := dl.accountData[hash]; !ok { dl.accountList = append(dl.accountList, hash) } } slices.SortFunc(dl.accountList, common.Hash.Cmp) dl.memory += uint64(len(dl.accountList) * common.HashLength) return dl.accountList } // StorageList returns a sorted list of all storage slot hashes in this diffLayer // for the given account. If the whole storage is destructed in this layer, then // an additional flag *destructed = true* will be returned, otherwise the flag is // false. Besides, the returned list will include the hash of deleted storage slot. // Note a special case is an account is deleted in a prior tx but is recreated in // the following tx with some storage slots set. In this case the returned list is // not empty but the flag is true. // // Note, the returned slice is not a copy, so do not modify it. func (dl *diffLayer) StorageList(accountHash common.Hash) ([]common.Hash, bool) { dl.lock.RLock() _, destructed := dl.destructSet[accountHash] if _, ok := dl.storageData[accountHash]; !ok { // Account not tracked by this layer dl.lock.RUnlock() return nil, destructed } // If an old list already exists, return it if list, exist := dl.storageList[accountHash]; exist { dl.lock.RUnlock() return list, destructed // the cached list can't be nil } dl.lock.RUnlock() // No old sorted account list exists, generate a new one dl.lock.Lock() defer dl.lock.Unlock() storageMap := dl.storageData[accountHash] storageList := make([]common.Hash, 0, len(storageMap)) for k := range storageMap { storageList = append(storageList, k) } slices.SortFunc(storageList, common.Hash.Cmp) dl.storageList[accountHash] = storageList dl.memory += uint64(len(dl.storageList)*common.HashLength + common.HashLength) return storageList, destructed }