// Copyright 2018 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package rawdb import ( "bytes" "encoding/binary" "errors" "fmt" "math/big" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus/misc/eip4844" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/log" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/rlp" "golang.org/x/exp/slices" ) // ReadCanonicalHash retrieves the hash assigned to a canonical block number. func ReadCanonicalHash(db ethdb.Reader, number uint64) common.Hash { var data []byte db.ReadAncients(func(reader ethdb.AncientReaderOp) error { data, _ = reader.Ancient(ChainFreezerHashTable, number) if len(data) == 0 { // Get it by hash from leveldb data, _ = db.Get(headerHashKey(number)) } return nil }) return common.BytesToHash(data) } // WriteCanonicalHash stores the hash assigned to a canonical block number. func WriteCanonicalHash(db ethdb.KeyValueWriter, hash common.Hash, number uint64) { if err := db.Put(headerHashKey(number), hash.Bytes()); err != nil { log.Crit("Failed to store number to hash mapping", "err", err) } } // DeleteCanonicalHash removes the number to hash canonical mapping. func DeleteCanonicalHash(db ethdb.KeyValueWriter, number uint64) { if err := db.Delete(headerHashKey(number)); err != nil { log.Crit("Failed to delete number to hash mapping", "err", err) } } // ReadAllHashes retrieves all the hashes assigned to blocks at a certain heights, // both canonical and reorged forks included. func ReadAllHashes(db ethdb.Iteratee, number uint64) []common.Hash { prefix := headerKeyPrefix(number) hashes := make([]common.Hash, 0, 1) it := db.NewIterator(prefix, nil) defer it.Release() for it.Next() { if key := it.Key(); len(key) == len(prefix)+32 { hashes = append(hashes, common.BytesToHash(key[len(key)-32:])) } } return hashes } type NumberHash struct { Number uint64 Hash common.Hash } // ReadAllHashesInRange retrieves all the hashes assigned to blocks at certain // heights, both canonical and reorged forks included. // This method considers both limits to be _inclusive_. func ReadAllHashesInRange(db ethdb.Iteratee, first, last uint64) []*NumberHash { var ( start = encodeBlockNumber(first) keyLength = len(headerPrefix) + 8 + 32 hashes = make([]*NumberHash, 0, 1+last-first) it = db.NewIterator(headerPrefix, start) ) defer it.Release() for it.Next() { key := it.Key() if len(key) != keyLength { continue } num := binary.BigEndian.Uint64(key[len(headerPrefix) : len(headerPrefix)+8]) if num > last { break } hash := common.BytesToHash(key[len(key)-32:]) hashes = append(hashes, &NumberHash{num, hash}) } return hashes } // ReadAllCanonicalHashes retrieves all canonical number and hash mappings at the // certain chain range. If the accumulated entries reaches the given threshold, // abort the iteration and return the semi-finish result. func ReadAllCanonicalHashes(db ethdb.Iteratee, from uint64, to uint64, limit int) ([]uint64, []common.Hash) { // Short circuit if the limit is 0. if limit == 0 { return nil, nil } var ( numbers []uint64 hashes []common.Hash ) // Construct the key prefix of start point. start, end := headerHashKey(from), headerHashKey(to) it := db.NewIterator(nil, start) defer it.Release() for it.Next() { if bytes.Compare(it.Key(), end) >= 0 { break } if key := it.Key(); len(key) == len(headerPrefix)+8+1 && bytes.Equal(key[len(key)-1:], headerHashSuffix) { numbers = append(numbers, binary.BigEndian.Uint64(key[len(headerPrefix):len(headerPrefix)+8])) hashes = append(hashes, common.BytesToHash(it.Value())) // If the accumulated entries reaches the limit threshold, return. if len(numbers) >= limit { break } } } return numbers, hashes } // ReadHeaderNumber returns the header number assigned to a hash. func ReadHeaderNumber(db ethdb.KeyValueReader, hash common.Hash) *uint64 { data, _ := db.Get(headerNumberKey(hash)) if len(data) != 8 { return nil } number := binary.BigEndian.Uint64(data) return &number } // WriteHeaderNumber stores the hash->number mapping. func WriteHeaderNumber(db ethdb.KeyValueWriter, hash common.Hash, number uint64) { key := headerNumberKey(hash) enc := encodeBlockNumber(number) if err := db.Put(key, enc); err != nil { log.Crit("Failed to store hash to number mapping", "err", err) } } // DeleteHeaderNumber removes hash->number mapping. func DeleteHeaderNumber(db ethdb.KeyValueWriter, hash common.Hash) { if err := db.Delete(headerNumberKey(hash)); err != nil { log.Crit("Failed to delete hash to number mapping", "err", err) } } // ReadHeadHeaderHash retrieves the hash of the current canonical head header. func ReadHeadHeaderHash(db ethdb.KeyValueReader) common.Hash { data, _ := db.Get(headHeaderKey) if len(data) == 0 { return common.Hash{} } return common.BytesToHash(data) } // WriteHeadHeaderHash stores the hash of the current canonical head header. func WriteHeadHeaderHash(db ethdb.KeyValueWriter, hash common.Hash) { if err := db.Put(headHeaderKey, hash.Bytes()); err != nil { log.Crit("Failed to store last header's hash", "err", err) } } // ReadHeadBlockHash retrieves the hash of the current canonical head block. func ReadHeadBlockHash(db ethdb.KeyValueReader) common.Hash { data, _ := db.Get(headBlockKey) if len(data) == 0 { return common.Hash{} } return common.BytesToHash(data) } // WriteHeadBlockHash stores the head block's hash. func WriteHeadBlockHash(db ethdb.KeyValueWriter, hash common.Hash) { if err := db.Put(headBlockKey, hash.Bytes()); err != nil { log.Crit("Failed to store last block's hash", "err", err) } } // ReadHeadFastBlockHash retrieves the hash of the current fast-sync head block. func ReadHeadFastBlockHash(db ethdb.KeyValueReader) common.Hash { data, _ := db.Get(headFastBlockKey) if len(data) == 0 { return common.Hash{} } return common.BytesToHash(data) } // WriteHeadFastBlockHash stores the hash of the current fast-sync head block. func WriteHeadFastBlockHash(db ethdb.KeyValueWriter, hash common.Hash) { if err := db.Put(headFastBlockKey, hash.Bytes()); err != nil { log.Crit("Failed to store last fast block's hash", "err", err) } } // ReadLastPivotNumber retrieves the number of the last pivot block. If the node // full synced, the last pivot will always be nil. func ReadLastPivotNumber(db ethdb.KeyValueReader) *uint64 { data, _ := db.Get(lastPivotKey) if len(data) == 0 { return nil } var pivot uint64 if err := rlp.DecodeBytes(data, &pivot); err != nil { log.Error("Invalid pivot block number in database", "err", err) return nil } return &pivot } // WriteLastPivotNumber stores the number of the last pivot block. func WriteLastPivotNumber(db ethdb.KeyValueWriter, pivot uint64) { enc, err := rlp.EncodeToBytes(pivot) if err != nil { log.Crit("Failed to encode pivot block number", "err", err) } if err := db.Put(lastPivotKey, enc); err != nil { log.Crit("Failed to store pivot block number", "err", err) } } // ReadTxIndexTail retrieves the number of oldest indexed block // whose transaction indices has been indexed. func ReadTxIndexTail(db ethdb.KeyValueReader) *uint64 { data, _ := db.Get(txIndexTailKey) if len(data) != 8 { return nil } number := binary.BigEndian.Uint64(data) return &number } // WriteTxIndexTail stores the number of oldest indexed block // into database. func WriteTxIndexTail(db ethdb.KeyValueWriter, number uint64) { if err := db.Put(txIndexTailKey, encodeBlockNumber(number)); err != nil { log.Crit("Failed to store the transaction index tail", "err", err) } } // ReadFastTxLookupLimit retrieves the tx lookup limit used in fast sync. func ReadFastTxLookupLimit(db ethdb.KeyValueReader) *uint64 { data, _ := db.Get(fastTxLookupLimitKey) if len(data) != 8 { return nil } number := binary.BigEndian.Uint64(data) return &number } // WriteFastTxLookupLimit stores the txlookup limit used in fast sync into database. func WriteFastTxLookupLimit(db ethdb.KeyValueWriter, number uint64) { if err := db.Put(fastTxLookupLimitKey, encodeBlockNumber(number)); err != nil { log.Crit("Failed to store transaction lookup limit for fast sync", "err", err) } } // ReadHeaderRange returns the rlp-encoded headers, starting at 'number', and going // backwards towards genesis. This method assumes that the caller already has // placed a cap on count, to prevent DoS issues. // Since this method operates in head-towards-genesis mode, it will return an empty // slice in case the head ('number') is missing. Hence, the caller must ensure that // the head ('number') argument is actually an existing header. // // N.B: Since the input is a number, as opposed to a hash, it's implicit that // this method only operates on canon headers. func ReadHeaderRange(db ethdb.Reader, number uint64, count uint64) []rlp.RawValue { var rlpHeaders []rlp.RawValue if count == 0 { return rlpHeaders } i := number if count-1 > number { // It's ok to request block 0, 1 item count = number + 1 } limit, _ := db.Ancients() // First read live blocks if i >= limit { // If we need to read live blocks, we need to figure out the hash first hash := ReadCanonicalHash(db, number) for ; i >= limit && count > 0; i-- { if data, _ := db.Get(headerKey(i, hash)); len(data) > 0 { rlpHeaders = append(rlpHeaders, data) // Get the parent hash for next query hash = types.HeaderParentHashFromRLP(data) } else { break // Maybe got moved to ancients } count-- } } if count == 0 { return rlpHeaders } // read remaining from ancients max := count * 700 * 3 data, err := db.AncientRange(ChainFreezerHeaderTable, i+1-count, count, max) if err == nil && uint64(len(data)) == count { // the data is on the order [h, h+1, .., n] -- reordering needed for i := range data { rlpHeaders = append(rlpHeaders, data[len(data)-1-i]) } } return rlpHeaders } // ReadHeaderRLP retrieves a block header in its raw RLP database encoding. func ReadHeaderRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue { var data []byte db.ReadAncients(func(reader ethdb.AncientReaderOp) error { // First try to look up the data in ancient database. Extra hash // comparison is necessary since ancient database only maintains // the canonical data. data, _ = reader.Ancient(ChainFreezerHeaderTable, number) if len(data) > 0 && crypto.Keccak256Hash(data) == hash { return nil } // If not, try reading from leveldb data, _ = db.Get(headerKey(number, hash)) return nil }) return data } // HasHeader verifies the existence of a block header corresponding to the hash. func HasHeader(db ethdb.Reader, hash common.Hash, number uint64) bool { if isCanon(db, number, hash) { return true } if has, err := db.Has(headerKey(number, hash)); !has || err != nil { return false } return true } // ReadHeader retrieves the block header corresponding to the hash. func ReadHeader(db ethdb.Reader, hash common.Hash, number uint64) *types.Header { data := ReadHeaderRLP(db, hash, number) if len(data) == 0 { return nil } header := new(types.Header) if err := rlp.Decode(bytes.NewReader(data), header); err != nil { log.Error("Invalid block header RLP", "hash", hash, "err", err) return nil } return header } // WriteHeader stores a block header into the database and also stores the hash- // to-number mapping. func WriteHeader(db ethdb.KeyValueWriter, header *types.Header) { var ( hash = header.Hash() number = header.Number.Uint64() ) // Write the hash -> number mapping WriteHeaderNumber(db, hash, number) // Write the encoded header data, err := rlp.EncodeToBytes(header) if err != nil { log.Crit("Failed to RLP encode header", "err", err) } key := headerKey(number, hash) if err := db.Put(key, data); err != nil { log.Crit("Failed to store header", "err", err) } } // DeleteHeader removes all block header data associated with a hash. func DeleteHeader(db ethdb.KeyValueWriter, hash common.Hash, number uint64) { deleteHeaderWithoutNumber(db, hash, number) if err := db.Delete(headerNumberKey(hash)); err != nil { log.Crit("Failed to delete hash to number mapping", "err", err) } } // deleteHeaderWithoutNumber removes only the block header but does not remove // the hash to number mapping. func deleteHeaderWithoutNumber(db ethdb.KeyValueWriter, hash common.Hash, number uint64) { if err := db.Delete(headerKey(number, hash)); err != nil { log.Crit("Failed to delete header", "err", err) } } // isCanon is an internal utility method, to check whether the given number/hash // is part of the ancient (canon) set. func isCanon(reader ethdb.AncientReaderOp, number uint64, hash common.Hash) bool { h, err := reader.Ancient(ChainFreezerHashTable, number) if err != nil { return false } return bytes.Equal(h, hash[:]) } // ReadBodyRLP retrieves the block body (transactions and uncles) in RLP encoding. func ReadBodyRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue { // First try to look up the data in ancient database. Extra hash // comparison is necessary since ancient database only maintains // the canonical data. var data []byte db.ReadAncients(func(reader ethdb.AncientReaderOp) error { // Check if the data is in ancients if isCanon(reader, number, hash) { data, _ = reader.Ancient(ChainFreezerBodiesTable, number) return nil } // If not, try reading from leveldb data, _ = db.Get(blockBodyKey(number, hash)) return nil }) return data } // ReadCanonicalBodyRLP retrieves the block body (transactions and uncles) for the canonical // block at number, in RLP encoding. func ReadCanonicalBodyRLP(db ethdb.Reader, number uint64) rlp.RawValue { var data []byte db.ReadAncients(func(reader ethdb.AncientReaderOp) error { data, _ = reader.Ancient(ChainFreezerBodiesTable, number) if len(data) > 0 { return nil } // Block is not in ancients, read from leveldb by hash and number. // Note: ReadCanonicalHash cannot be used here because it also // calls ReadAncients internally. hash, _ := db.Get(headerHashKey(number)) data, _ = db.Get(blockBodyKey(number, common.BytesToHash(hash))) return nil }) return data } // WriteBodyRLP stores an RLP encoded block body into the database. func WriteBodyRLP(db ethdb.KeyValueWriter, hash common.Hash, number uint64, rlp rlp.RawValue) { if err := db.Put(blockBodyKey(number, hash), rlp); err != nil { log.Crit("Failed to store block body", "err", err) } } // HasBody verifies the existence of a block body corresponding to the hash. func HasBody(db ethdb.Reader, hash common.Hash, number uint64) bool { if isCanon(db, number, hash) { return true } if has, err := db.Has(blockBodyKey(number, hash)); !has || err != nil { return false } return true } // ReadBody retrieves the block body corresponding to the hash. func ReadBody(db ethdb.Reader, hash common.Hash, number uint64) *types.Body { data := ReadBodyRLP(db, hash, number) if len(data) == 0 { return nil } body := new(types.Body) if err := rlp.Decode(bytes.NewReader(data), body); err != nil { log.Error("Invalid block body RLP", "hash", hash, "err", err) return nil } return body } // WriteBody stores a block body into the database. func WriteBody(db ethdb.KeyValueWriter, hash common.Hash, number uint64, body *types.Body) { data, err := rlp.EncodeToBytes(body) if err != nil { log.Crit("Failed to RLP encode body", "err", err) } WriteBodyRLP(db, hash, number, data) } func WriteDiffLayer(db ethdb.KeyValueWriter, hash common.Hash, layer *types.DiffLayer) { data, err := rlp.EncodeToBytes(layer) if err != nil { log.Crit("Failed to RLP encode diff layer", "err", err) } WriteDiffLayerRLP(db, hash, data) } func WriteDiffLayerRLP(db ethdb.KeyValueWriter, blockHash common.Hash, rlp rlp.RawValue) { if err := db.Put(diffLayerKey(blockHash), rlp); err != nil { log.Crit("Failed to store diff layer", "err", err) } } func ReadDiffLayer(db ethdb.KeyValueReader, blockHash common.Hash) *types.DiffLayer { data := ReadDiffLayerRLP(db, blockHash) if len(data) == 0 { return nil } diff := new(types.DiffLayer) if err := rlp.Decode(bytes.NewReader(data), diff); err != nil { log.Error("Invalid diff layer RLP", "hash", blockHash, "err", err) return nil } return diff } func ReadDiffLayerRLP(db ethdb.KeyValueReader, blockHash common.Hash) rlp.RawValue { data, _ := db.Get(diffLayerKey(blockHash)) return data } func DeleteDiffLayer(db ethdb.KeyValueWriter, blockHash common.Hash) { if err := db.Delete(diffLayerKey(blockHash)); err != nil { log.Crit("Failed to delete diffLayer", "err", err) } } // DeleteBody removes all block body data associated with a hash. func DeleteBody(db ethdb.KeyValueWriter, hash common.Hash, number uint64) { if err := db.Delete(blockBodyKey(number, hash)); err != nil { log.Crit("Failed to delete block body", "err", err) } } // ReadTdRLP retrieves a block's total difficulty corresponding to the hash in RLP encoding. func ReadTdRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue { var data []byte db.ReadAncients(func(reader ethdb.AncientReaderOp) error { // Check if the data is in ancients if isCanon(reader, number, hash) { data, _ = reader.Ancient(ChainFreezerDifficultyTable, number) return nil } // If not, try reading from leveldb data, _ = db.Get(headerTDKey(number, hash)) return nil }) return data } // ReadTd retrieves a block's total difficulty corresponding to the hash. func ReadTd(db ethdb.Reader, hash common.Hash, number uint64) *big.Int { data := ReadTdRLP(db, hash, number) if len(data) == 0 { return nil } td := new(big.Int) if err := rlp.Decode(bytes.NewReader(data), td); err != nil { log.Error("Invalid block total difficulty RLP", "hash", hash, "err", err) return nil } return td } // WriteTd stores the total difficulty of a block into the database. func WriteTd(db ethdb.KeyValueWriter, hash common.Hash, number uint64, td *big.Int) { data, err := rlp.EncodeToBytes(td) if err != nil { log.Crit("Failed to RLP encode block total difficulty", "err", err) } if err := db.Put(headerTDKey(number, hash), data); err != nil { log.Crit("Failed to store block total difficulty", "err", err) } } // DeleteTd removes all block total difficulty data associated with a hash. func DeleteTd(db ethdb.KeyValueWriter, hash common.Hash, number uint64) { if err := db.Delete(headerTDKey(number, hash)); err != nil { log.Crit("Failed to delete block total difficulty", "err", err) } } // HasReceipts verifies the existence of all the transaction receipts belonging // to a block. func HasReceipts(db ethdb.Reader, hash common.Hash, number uint64) bool { if isCanon(db, number, hash) { return true } if has, err := db.Has(blockReceiptsKey(number, hash)); !has || err != nil { return false } return true } // ReadReceiptsRLP retrieves all the transaction receipts belonging to a block in RLP encoding. func ReadReceiptsRLP(db ethdb.Reader, hash common.Hash, number uint64) rlp.RawValue { var data []byte db.ReadAncients(func(reader ethdb.AncientReaderOp) error { // Check if the data is in ancients if isCanon(reader, number, hash) { data, _ = reader.Ancient(ChainFreezerReceiptTable, number) return nil } // If not, try reading from leveldb data, _ = db.Get(blockReceiptsKey(number, hash)) return nil }) return data } // ReadRawReceipts retrieves all the transaction receipts belonging to a block. // The receipt metadata fields are not guaranteed to be populated, so they // should not be used. Use ReadReceipts instead if the metadata is needed. func ReadRawReceipts(db ethdb.Reader, hash common.Hash, number uint64) types.Receipts { // Retrieve the flattened receipt slice data := ReadReceiptsRLP(db, hash, number) if len(data) == 0 { return nil } // Convert the receipts from their storage form to their internal representation storageReceipts := []*types.ReceiptForStorage{} if err := rlp.DecodeBytes(data, &storageReceipts); err != nil { log.Error("Invalid receipt array RLP", "hash", hash, "err", err) return nil } receipts := make(types.Receipts, len(storageReceipts)) for i, storageReceipt := range storageReceipts { receipts[i] = (*types.Receipt)(storageReceipt) } return receipts } // ReadReceipts retrieves all the transaction receipts belonging to a block, including // its corresponding metadata fields. If it is unable to populate these metadata // fields then nil is returned. // // The current implementation populates these metadata fields by reading the receipts' // corresponding block body, so if the block body is not found it will return nil even // if the receipt itself is stored. func ReadReceipts(db ethdb.Reader, hash common.Hash, number uint64, time uint64, config *params.ChainConfig) types.Receipts { // We're deriving many fields from the block body, retrieve beside the receipt receipts := ReadRawReceipts(db, hash, number) if receipts == nil { return nil } body := ReadBody(db, hash, number) if body == nil { log.Error("Missing body but have receipt", "hash", hash, "number", number) return nil } header := ReadHeader(db, hash, number) var baseFee *big.Int if header == nil { baseFee = big.NewInt(0) } else { baseFee = header.BaseFee } // Compute effective blob gas price. var blobGasPrice *big.Int if header != nil && header.ExcessBlobGas != nil { blobGasPrice = eip4844.CalcBlobFee(*header.ExcessBlobGas) } if err := receipts.DeriveFields(config, hash, number, time, baseFee, blobGasPrice, body.Transactions); err != nil { log.Error("Failed to derive block receipts fields", "hash", hash, "number", number, "err", err) return nil } return receipts } // WriteReceipts stores all the transaction receipts belonging to a block. func WriteReceipts(db ethdb.KeyValueWriter, hash common.Hash, number uint64, receipts types.Receipts) { // Convert the receipts into their storage form and serialize them storageReceipts := make([]*types.ReceiptForStorage, len(receipts)) for i, receipt := range receipts { storageReceipts[i] = (*types.ReceiptForStorage)(receipt) } bytes, err := rlp.EncodeToBytes(storageReceipts) if err != nil { log.Crit("Failed to encode block receipts", "err", err) } // Store the flattened receipt slice if err := db.Put(blockReceiptsKey(number, hash), bytes); err != nil { log.Crit("Failed to store block receipts", "err", err) } } // DeleteReceipts removes all receipt data associated with a block hash. func DeleteReceipts(db ethdb.KeyValueWriter, hash common.Hash, number uint64) { if err := db.Delete(blockReceiptsKey(number, hash)); err != nil { log.Crit("Failed to delete block receipts", "err", err) } } // storedReceiptRLP is the storage encoding of a receipt. // Re-definition in core/types/receipt.go. // TODO: Re-use the existing definition. type storedReceiptRLP struct { PostStateOrStatus []byte CumulativeGasUsed uint64 Logs []*types.Log } // ReceiptLogs is a barebone version of ReceiptForStorage which only keeps // the list of logs. When decoding a stored receipt into this object we // avoid creating the bloom filter. type receiptLogs struct { Logs []*types.Log } // DecodeRLP implements rlp.Decoder. func (r *receiptLogs) DecodeRLP(s *rlp.Stream) error { var stored storedReceiptRLP if err := s.Decode(&stored); err != nil { return err } r.Logs = stored.Logs return nil } // DeriveLogFields fills the logs in receiptLogs with information such as block number, txhash, etc. func deriveLogFields(receipts []*receiptLogs, hash common.Hash, number uint64, txs types.Transactions) error { logIndex := uint(0) if len(txs) != len(receipts) { return errors.New("transaction and receipt count mismatch") } for i := 0; i < len(receipts); i++ { txHash := txs[i].Hash() // The derived log fields can simply be set from the block and transaction for j := 0; j < len(receipts[i].Logs); j++ { receipts[i].Logs[j].BlockNumber = number receipts[i].Logs[j].BlockHash = hash receipts[i].Logs[j].TxHash = txHash receipts[i].Logs[j].TxIndex = uint(i) receipts[i].Logs[j].Index = logIndex logIndex++ } } return nil } // ReadLogs retrieves the logs for all transactions in a block. In case // receipts is not found, a nil is returned. // Note: ReadLogs does not derive unstored log fields. func ReadLogs(db ethdb.Reader, hash common.Hash, number uint64, config *params.ChainConfig) [][]*types.Log { // Retrieve the flattened receipt slice data := ReadReceiptsRLP(db, hash, number) if len(data) == 0 { return nil } receipts := []*receiptLogs{} if err := rlp.DecodeBytes(data, &receipts); err != nil { log.Error("Invalid receipt array RLP", "hash", hash, "err", err) return nil } logs := make([][]*types.Log, len(receipts)) for i, receipt := range receipts { logs[i] = receipt.Logs } return logs } // ReadBlock retrieves an entire block corresponding to the hash, assembling it // back from the stored header and body. If either the header or body could not // be retrieved nil is returned. // // Note, due to concurrent download of header and block body the header and thus // canonical hash can be stored in the database but the body data not (yet). func ReadBlock(db ethdb.Reader, hash common.Hash, number uint64) *types.Block { header := ReadHeader(db, hash, number) if header == nil { return nil } body := ReadBody(db, hash, number) if body == nil { return nil } return types.NewBlockWithHeader(header).WithBody(body.Transactions, body.Uncles).WithWithdrawals(body.Withdrawals) } // WriteBlock serializes a block into the database, header and body separately. func WriteBlock(db ethdb.KeyValueWriter, block *types.Block) { WriteBody(db, block.Hash(), block.NumberU64(), block.Body()) WriteHeader(db, block.Header()) } // WriteAncientBlocks writes entire block data into ancient store and returns the total written size. func WriteAncientBlocks(db ethdb.AncientWriter, blocks []*types.Block, receipts []types.Receipts, td *big.Int) (int64, error) { var ( tdSum = new(big.Int).Set(td) stReceipts []*types.ReceiptForStorage ) return db.ModifyAncients(func(op ethdb.AncientWriteOp) error { for i, block := range blocks { // Convert receipts to storage format and sum up total difficulty. stReceipts = stReceipts[:0] for _, receipt := range receipts[i] { stReceipts = append(stReceipts, (*types.ReceiptForStorage)(receipt)) } header := block.Header() if i > 0 { tdSum.Add(tdSum, header.Difficulty) } if err := writeAncientBlock(op, block, header, stReceipts, tdSum); err != nil { return err } } return nil }) } func writeAncientBlock(op ethdb.AncientWriteOp, block *types.Block, header *types.Header, receipts []*types.ReceiptForStorage, td *big.Int) error { num := block.NumberU64() if err := op.AppendRaw(ChainFreezerHashTable, num, block.Hash().Bytes()); err != nil { return fmt.Errorf("can't add block %d hash: %v", num, err) } if err := op.Append(ChainFreezerHeaderTable, num, header); err != nil { return fmt.Errorf("can't append block header %d: %v", num, err) } if err := op.Append(ChainFreezerBodiesTable, num, block.Body()); err != nil { return fmt.Errorf("can't append block body %d: %v", num, err) } if err := op.Append(ChainFreezerReceiptTable, num, receipts); err != nil { return fmt.Errorf("can't append block %d receipts: %v", num, err) } if err := op.Append(ChainFreezerDifficultyTable, num, td); err != nil { return fmt.Errorf("can't append block %d total difficulty: %v", num, err) } return nil } // DeleteBlock removes all block data associated with a hash. func DeleteBlock(db ethdb.KeyValueWriter, hash common.Hash, number uint64) { DeleteReceipts(db, hash, number) DeleteHeader(db, hash, number) DeleteBody(db, hash, number) DeleteTd(db, hash, number) } // DeleteBlockWithoutNumber removes all block data associated with a hash, except // the hash to number mapping. func DeleteBlockWithoutNumber(db ethdb.KeyValueWriter, hash common.Hash, number uint64) { DeleteReceipts(db, hash, number) deleteHeaderWithoutNumber(db, hash, number) DeleteBody(db, hash, number) DeleteTd(db, hash, number) } const badBlockToKeep = 10 type badBlock struct { Header *types.Header Body *types.Body } // ReadBadBlock retrieves the bad block with the corresponding block hash. func ReadBadBlock(db ethdb.Reader, hash common.Hash) *types.Block { blob, err := db.Get(badBlockKey) if err != nil { return nil } var badBlocks []*badBlock if err := rlp.DecodeBytes(blob, &badBlocks); err != nil { return nil } for _, bad := range badBlocks { if bad.Header.Hash() == hash { return types.NewBlockWithHeader(bad.Header).WithBody(bad.Body.Transactions, bad.Body.Uncles).WithWithdrawals(bad.Body.Withdrawals) } } return nil } // ReadAllBadBlocks retrieves all the bad blocks in the database. // All returned blocks are sorted in reverse order by number. func ReadAllBadBlocks(db ethdb.Reader) []*types.Block { blob, err := db.Get(badBlockKey) if err != nil { return nil } var badBlocks []*badBlock if err := rlp.DecodeBytes(blob, &badBlocks); err != nil { return nil } var blocks []*types.Block for _, bad := range badBlocks { blocks = append(blocks, types.NewBlockWithHeader(bad.Header).WithBody(bad.Body.Transactions, bad.Body.Uncles).WithWithdrawals(bad.Body.Withdrawals)) } return blocks } // WriteBadBlock serializes the bad block into the database. If the cumulated // bad blocks exceeds the limitation, the oldest will be dropped. func WriteBadBlock(db ethdb.KeyValueStore, block *types.Block) { blob, err := db.Get(badBlockKey) if err != nil { log.Warn("Failed to load old bad blocks", "error", err) } var badBlocks []*badBlock if len(blob) > 0 { if err := rlp.DecodeBytes(blob, &badBlocks); err != nil { log.Crit("Failed to decode old bad blocks", "error", err) } } for _, b := range badBlocks { if b.Header.Number.Uint64() == block.NumberU64() && b.Header.Hash() == block.Hash() { log.Info("Skip duplicated bad block", "number", block.NumberU64(), "hash", block.Hash()) return } } badBlocks = append(badBlocks, &badBlock{ Header: block.Header(), Body: block.Body(), }) slices.SortFunc(badBlocks, func(a, b *badBlock) int { // Note: sorting in descending number order. return -a.Header.Number.Cmp(b.Header.Number) }) if len(badBlocks) > badBlockToKeep { badBlocks = badBlocks[:badBlockToKeep] } data, err := rlp.EncodeToBytes(badBlocks) if err != nil { log.Crit("Failed to encode bad blocks", "err", err) } if err := db.Put(badBlockKey, data); err != nil { log.Crit("Failed to write bad blocks", "err", err) } } // DeleteBadBlocks deletes all the bad blocks from the database func DeleteBadBlocks(db ethdb.KeyValueWriter) { if err := db.Delete(badBlockKey); err != nil { log.Crit("Failed to delete bad blocks", "err", err) } } // FindCommonAncestor returns the last common ancestor of two block headers func FindCommonAncestor(db ethdb.Reader, a, b *types.Header) *types.Header { for bn := b.Number.Uint64(); a.Number.Uint64() > bn; { a = ReadHeader(db, a.ParentHash, a.Number.Uint64()-1) if a == nil { return nil } } for an := a.Number.Uint64(); an < b.Number.Uint64(); { b = ReadHeader(db, b.ParentHash, b.Number.Uint64()-1) if b == nil { return nil } } for a.Hash() != b.Hash() { a = ReadHeader(db, a.ParentHash, a.Number.Uint64()-1) if a == nil { return nil } b = ReadHeader(db, b.ParentHash, b.Number.Uint64()-1) if b == nil { return nil } } return a } // ReadHeadHeader returns the current canonical head header. func ReadHeadHeader(db ethdb.Reader) *types.Header { headHeaderHash := ReadHeadHeaderHash(db) if headHeaderHash == (common.Hash{}) { return nil } headHeaderNumber := ReadHeaderNumber(db, headHeaderHash) if headHeaderNumber == nil { return nil } return ReadHeader(db, headHeaderHash, *headHeaderNumber) } // ReadHeadBlock returns the current canonical head block. func ReadHeadBlock(db ethdb.Reader) *types.Block { headBlockHash := ReadHeadBlockHash(db) if headBlockHash == (common.Hash{}) { return nil } headBlockNumber := ReadHeaderNumber(db, headBlockHash) if headBlockNumber == nil { return nil } return ReadBlock(db, headBlockHash, *headBlockNumber) }