/* This file is part of go-ethereum go-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. go-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with go-ethereum. If not, see . */ /** * @authors * Gustav Simonsson * @date 2015 * */ /* This key store behaves as KeyStorePlain with the difference that the private key is encrypted and on disk uses another JSON encoding. Cryptography: 1. Encryption key is first 16 bytes of SHA3-256 of first 16 bytes of scrypt derived key from user passphrase. Scrypt parameters (work factors) [1][2] are defined as constants below. 2. Scrypt salt is 32 random bytes from CSPRNG. It's stored in plain next to ciphertext in key file. 3. MAC is SHA3-256 of concatenation of ciphertext and last 16 bytes of scrypt derived key. 4. Plaintext is the EC private key bytes. 5. Encryption algo is AES 128 CBC [3][4] 6. CBC IV is 16 random bytes from CSPRNG. It's stored in plain next to ciphertext in key file. 7. Plaintext padding is PKCS #7 [5][6] Encoding: 1. On disk, the ciphertext, MAC, salt and IV are encoded in a nested JSON object. cat a key file to see the structure. 2. byte arrays are base64 JSON strings. 3. The EC private key bytes are in uncompressed form [7]. They are a big-endian byte slice of the absolute value of D [8][9]. References: 1. http://www.tarsnap.com/scrypt/scrypt-slides.pdf 2. http://stackoverflow.com/questions/11126315/what-are-optimal-scrypt-work-factors 3. http://en.wikipedia.org/wiki/Advanced_Encryption_Standard 4. http://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher-block_chaining_.28CBC.29 5. https://leanpub.com/gocrypto/read#leanpub-auto-block-cipher-modes 6. http://tools.ietf.org/html/rfc2315 7. http://bitcoin.stackexchange.com/questions/3059/what-is-a-compressed-bitcoin-key 8. http://golang.org/pkg/crypto/ecdsa/#PrivateKey 9. https://golang.org/pkg/math/big/#Int.Bytes */ package crypto import ( "bytes" "crypto/aes" "crypto/cipher" "encoding/json" "errors" "io" "os" "path/filepath" "code.google.com/p/go-uuid/uuid" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/crypto/randentropy" "golang.org/x/crypto/scrypt" ) const ( // 2^18 / 8 / 1 uses 256MB memory and approx 1s CPU time on a modern CPU. scryptN = 1 << 18 scryptr = 8 scryptp = 1 scryptdkLen = 32 ) type keyStorePassphrase struct { keysDirPath string } func NewKeyStorePassphrase(path string) KeyStore2 { return &keyStorePassphrase{path} } func (ks keyStorePassphrase) GenerateNewKey(rand io.Reader, auth string) (key *Key, err error) { return GenerateNewKeyDefault(ks, rand, auth) } func (ks keyStorePassphrase) GetKey(keyAddr common.Address, auth string) (key *Key, err error) { keyBytes, keyId, err := DecryptKey(ks, keyAddr, auth) if err != nil { return nil, err } key = &Key{ Id: uuid.UUID(keyId), Address: keyAddr, PrivateKey: ToECDSA(keyBytes), } return key, err } func (ks keyStorePassphrase) GetKeyAddresses() (addresses []common.Address, err error) { return GetKeyAddresses(ks.keysDirPath) } func (ks keyStorePassphrase) StoreKey(key *Key, auth string) (err error) { authArray := []byte(auth) salt := randentropy.GetEntropyCSPRNG(32) derivedKey, err := scrypt.Key(authArray, salt, scryptN, scryptr, scryptp, scryptdkLen) if err != nil { return err } encryptKey := Sha3(derivedKey[:16])[:16] keyBytes := FromECDSA(key.PrivateKey) toEncrypt := PKCS7Pad(keyBytes) AES128Block, err := aes.NewCipher(encryptKey) if err != nil { return err } iv := randentropy.GetEntropyCSPRNG(aes.BlockSize) // 16 AES128CBCEncrypter := cipher.NewCBCEncrypter(AES128Block, iv) cipherText := make([]byte, len(toEncrypt)) AES128CBCEncrypter.CryptBlocks(cipherText, toEncrypt) mac := Sha3(derivedKey[16:32], cipherText) cipherStruct := cipherJSON{ mac, salt, iv, cipherText, } keyStruct := encryptedKeyJSON{ key.Id, key.Address.Bytes(), cipherStruct, } keyJSON, err := json.Marshal(keyStruct) if err != nil { return err } return WriteKeyFile(key.Address, ks.keysDirPath, keyJSON) } func (ks keyStorePassphrase) DeleteKey(keyAddr common.Address, auth string) (err error) { // only delete if correct passphrase is given _, _, err = DecryptKey(ks, keyAddr, auth) if err != nil { return err } keyDirPath := filepath.Join(ks.keysDirPath, keyAddr.Hex()) return os.RemoveAll(keyDirPath) } func DecryptKey(ks keyStorePassphrase, keyAddr common.Address, auth string) (keyBytes []byte, keyId []byte, err error) { fileContent, err := GetKeyFile(ks.keysDirPath, keyAddr) if err != nil { return nil, nil, err } keyProtected := new(encryptedKeyJSON) err = json.Unmarshal(fileContent, keyProtected) keyId = keyProtected.Id mac := keyProtected.Crypto.MAC salt := keyProtected.Crypto.Salt iv := keyProtected.Crypto.IV cipherText := keyProtected.Crypto.CipherText authArray := []byte(auth) derivedKey, err := scrypt.Key(authArray, salt, scryptN, scryptr, scryptp, scryptdkLen) if err != nil { return nil, nil, err } calculatedMAC := Sha3(derivedKey[16:32], cipherText) if !bytes.Equal(calculatedMAC, mac) { err = errors.New("Decryption failed: MAC mismatch") return nil, nil, err } plainText, err := aesCBCDecrypt(Sha3(derivedKey[:16])[:16], cipherText, iv) if err != nil { return nil, nil, err } return plainText, keyId, err }