// Copyright 2014 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package trie import ( "bytes" "encoding/binary" "errors" "fmt" "hash" "io/ioutil" "math/big" "math/rand" "os" "reflect" "testing" "testing/quick" "github.com/davecgh/go-spew/spew" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/ethdb" "github.com/ethereum/go-ethereum/ethdb/leveldb" "github.com/ethereum/go-ethereum/ethdb/memorydb" "github.com/ethereum/go-ethereum/rlp" "golang.org/x/crypto/sha3" ) func init() { spew.Config.Indent = " " spew.Config.DisableMethods = false } // Used for testing func newEmpty() *Trie { trie, _ := New(common.Hash{}, NewDatabase(memorydb.New())) return trie } func TestEmptyTrie(t *testing.T) { var trie Trie res := trie.Hash() exp := emptyRoot if res != exp { t.Errorf("expected %x got %x", exp, res) } } func TestNull(t *testing.T) { var trie Trie key := make([]byte, 32) value := []byte("test") trie.Update(key, value) if !bytes.Equal(trie.Get(key), value) { t.Fatal("wrong value") } } func TestMissingRoot(t *testing.T) { trie, err := New(common.HexToHash("0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33"), NewDatabase(memorydb.New())) if trie != nil { t.Error("New returned non-nil trie for invalid root") } if _, ok := err.(*MissingNodeError); !ok { t.Errorf("New returned wrong error: %v", err) } } func TestMissingNodeDisk(t *testing.T) { testMissingNode(t, false) } func TestMissingNodeMemonly(t *testing.T) { testMissingNode(t, true) } func testMissingNode(t *testing.T, memonly bool) { diskdb := memorydb.New() triedb := NewDatabase(diskdb) trie, _ := New(common.Hash{}, triedb) updateString(trie, "120000", "qwerqwerqwerqwerqwerqwerqwerqwer") updateString(trie, "123456", "asdfasdfasdfasdfasdfasdfasdfasdf") root, _, _ := trie.Commit(nil) if !memonly { triedb.Commit(root, true, nil) } trie, _ = New(root, triedb) _, err := trie.TryGet([]byte("120000")) if err != nil { t.Errorf("Unexpected error: %v", err) } trie, _ = New(root, triedb) _, err = trie.TryGet([]byte("120099")) if err != nil { t.Errorf("Unexpected error: %v", err) } trie, _ = New(root, triedb) _, err = trie.TryGet([]byte("123456")) if err != nil { t.Errorf("Unexpected error: %v", err) } trie, _ = New(root, triedb) err = trie.TryUpdate([]byte("120099"), []byte("zxcvzxcvzxcvzxcvzxcvzxcvzxcvzxcv")) if err != nil { t.Errorf("Unexpected error: %v", err) } trie, _ = New(root, triedb) err = trie.TryDelete([]byte("123456")) if err != nil { t.Errorf("Unexpected error: %v", err) } hash := common.HexToHash("0xe1d943cc8f061a0c0b98162830b970395ac9315654824bf21b73b891365262f9") if memonly { delete(triedb.dirties, hash) } else { diskdb.Delete(hash[:]) } trie, _ = New(root, triedb) _, err = trie.TryGet([]byte("120000")) if _, ok := err.(*MissingNodeError); !ok { t.Errorf("Wrong error: %v", err) } trie, _ = New(root, triedb) _, err = trie.TryGet([]byte("120099")) if _, ok := err.(*MissingNodeError); !ok { t.Errorf("Wrong error: %v", err) } trie, _ = New(root, triedb) _, err = trie.TryGet([]byte("123456")) if err != nil { t.Errorf("Unexpected error: %v", err) } trie, _ = New(root, triedb) err = trie.TryUpdate([]byte("120099"), []byte("zxcv")) if _, ok := err.(*MissingNodeError); !ok { t.Errorf("Wrong error: %v", err) } trie, _ = New(root, triedb) err = trie.TryDelete([]byte("123456")) if _, ok := err.(*MissingNodeError); !ok { t.Errorf("Wrong error: %v", err) } } func TestInsert(t *testing.T) { trie := newEmpty() updateString(trie, "doe", "reindeer") updateString(trie, "dog", "puppy") updateString(trie, "dogglesworth", "cat") exp := common.HexToHash("8aad789dff2f538bca5d8ea56e8abe10f4c7ba3a5dea95fea4cd6e7c3a1168d3") root := trie.Hash() if root != exp { t.Errorf("case 1: exp %x got %x", exp, root) } trie = newEmpty() updateString(trie, "A", "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa") exp = common.HexToHash("d23786fb4a010da3ce639d66d5e904a11dbc02746d1ce25029e53290cabf28ab") root, _, err := trie.Commit(nil) if err != nil { t.Fatalf("commit error: %v", err) } if root != exp { t.Errorf("case 2: exp %x got %x", exp, root) } } func TestGet(t *testing.T) { trie := newEmpty() updateString(trie, "doe", "reindeer") updateString(trie, "dog", "puppy") updateString(trie, "dogglesworth", "cat") for i := 0; i < 2; i++ { res := getString(trie, "dog") if !bytes.Equal(res, []byte("puppy")) { t.Errorf("expected puppy got %x", res) } unknown := getString(trie, "unknown") if unknown != nil { t.Errorf("expected nil got %x", unknown) } if i == 1 { return } trie.Commit(nil) } } func TestDelete(t *testing.T) { trie := newEmpty() vals := []struct{ k, v string }{ {"do", "verb"}, {"ether", "wookiedoo"}, {"horse", "stallion"}, {"shaman", "horse"}, {"doge", "coin"}, {"ether", ""}, {"dog", "puppy"}, {"shaman", ""}, } for _, val := range vals { if val.v != "" { updateString(trie, val.k, val.v) } else { deleteString(trie, val.k) } } hash := trie.Hash() exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84") if hash != exp { t.Errorf("expected %x got %x", exp, hash) } } func TestEmptyValues(t *testing.T) { trie := newEmpty() vals := []struct{ k, v string }{ {"do", "verb"}, {"ether", "wookiedoo"}, {"horse", "stallion"}, {"shaman", "horse"}, {"doge", "coin"}, {"ether", ""}, {"dog", "puppy"}, {"shaman", ""}, } for _, val := range vals { updateString(trie, val.k, val.v) } hash := trie.Hash() exp := common.HexToHash("5991bb8c6514148a29db676a14ac506cd2cd5775ace63c30a4fe457715e9ac84") if hash != exp { t.Errorf("expected %x got %x", exp, hash) } } func TestReplication(t *testing.T) { trie := newEmpty() vals := []struct{ k, v string }{ {"do", "verb"}, {"ether", "wookiedoo"}, {"horse", "stallion"}, {"shaman", "horse"}, {"doge", "coin"}, {"dog", "puppy"}, {"somethingveryoddindeedthis is", "myothernodedata"}, } for _, val := range vals { updateString(trie, val.k, val.v) } exp, _, err := trie.Commit(nil) if err != nil { t.Fatalf("commit error: %v", err) } // create a new trie on top of the database and check that lookups work. trie2, err := New(exp, trie.db) if err != nil { t.Fatalf("can't recreate trie at %x: %v", exp, err) } for _, kv := range vals { if string(getString(trie2, kv.k)) != kv.v { t.Errorf("trie2 doesn't have %q => %q", kv.k, kv.v) } } hash, _, err := trie2.Commit(nil) if err != nil { t.Fatalf("commit error: %v", err) } if hash != exp { t.Errorf("root failure. expected %x got %x", exp, hash) } // perform some insertions on the new trie. vals2 := []struct{ k, v string }{ {"do", "verb"}, {"ether", "wookiedoo"}, {"horse", "stallion"}, // {"shaman", "horse"}, // {"doge", "coin"}, // {"ether", ""}, // {"dog", "puppy"}, // {"somethingveryoddindeedthis is", "myothernodedata"}, // {"shaman", ""}, } for _, val := range vals2 { updateString(trie2, val.k, val.v) } if hash := trie2.Hash(); hash != exp { t.Errorf("root failure. expected %x got %x", exp, hash) } } func TestLargeValue(t *testing.T) { trie := newEmpty() trie.Update([]byte("key1"), []byte{99, 99, 99, 99}) trie.Update([]byte("key2"), bytes.Repeat([]byte{1}, 32)) trie.Hash() } // TestRandomCases tests som cases that were found via random fuzzing func TestRandomCases(t *testing.T) { var rt = []randTestStep{ {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 0 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 1 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000002")}, // step 2 {op: 2, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 3 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 4 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 5 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 6 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 7 {op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000008")}, // step 8 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000009")}, // step 9 {op: 2, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 10 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 11 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 12 {op: 0, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("000000000000000d")}, // step 13 {op: 6, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 14 {op: 1, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("")}, // step 15 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 16 {op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000011")}, // step 17 {op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 18 {op: 3, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 19 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000014")}, // step 20 {op: 0, key: common.Hex2Bytes("d51b182b95d677e5f1c82508c0228de96b73092d78ce78b2230cd948674f66fd1483bd"), value: common.Hex2Bytes("0000000000000015")}, // step 21 {op: 0, key: common.Hex2Bytes("c2a38512b83107d665c65235b0250002882ac2022eb00711552354832c5f1d030d0e408e"), value: common.Hex2Bytes("0000000000000016")}, // step 22 {op: 5, key: common.Hex2Bytes(""), value: common.Hex2Bytes("")}, // step 23 {op: 1, key: common.Hex2Bytes("980c393656413a15c8da01978ed9f89feb80b502f58f2d640e3a2f5f7a99a7018f1b573befd92053ac6f78fca4a87268"), value: common.Hex2Bytes("")}, // step 24 {op: 1, key: common.Hex2Bytes("fd"), value: common.Hex2Bytes("")}, // step 25 } runRandTest(rt) } // randTest performs random trie operations. // Instances of this test are created by Generate. type randTest []randTestStep type randTestStep struct { op int key []byte // for opUpdate, opDelete, opGet value []byte // for opUpdate err error // for debugging } const ( opUpdate = iota opDelete opGet opCommit opHash opReset opItercheckhash opMax // boundary value, not an actual op ) func (randTest) Generate(r *rand.Rand, size int) reflect.Value { var allKeys [][]byte genKey := func() []byte { if len(allKeys) < 2 || r.Intn(100) < 10 { // new key key := make([]byte, r.Intn(50)) r.Read(key) allKeys = append(allKeys, key) return key } // use existing key return allKeys[r.Intn(len(allKeys))] } var steps randTest for i := 0; i < size; i++ { step := randTestStep{op: r.Intn(opMax)} switch step.op { case opUpdate: step.key = genKey() step.value = make([]byte, 8) binary.BigEndian.PutUint64(step.value, uint64(i)) case opGet, opDelete: step.key = genKey() } steps = append(steps, step) } return reflect.ValueOf(steps) } func runRandTest(rt randTest) bool { triedb := NewDatabase(memorydb.New()) tr, _ := New(common.Hash{}, triedb) values := make(map[string]string) // tracks content of the trie for i, step := range rt { // fmt.Printf("{op: %d, key: common.Hex2Bytes(\"%x\"), value: common.Hex2Bytes(\"%x\")}, // step %d\n", // step.op, step.key, step.value, i) switch step.op { case opUpdate: tr.Update(step.key, step.value) values[string(step.key)] = string(step.value) case opDelete: tr.Delete(step.key) delete(values, string(step.key)) case opGet: v := tr.Get(step.key) want := values[string(step.key)] if string(v) != want { rt[i].err = fmt.Errorf("mismatch for key 0x%x, got 0x%x want 0x%x", step.key, v, want) } case opCommit: _, _, rt[i].err = tr.Commit(nil) case opHash: tr.Hash() case opReset: hash, _, err := tr.Commit(nil) if err != nil { rt[i].err = err return false } newtr, err := New(hash, triedb) if err != nil { rt[i].err = err return false } tr = newtr case opItercheckhash: checktr, _ := New(common.Hash{}, triedb) it := NewIterator(tr.NodeIterator(nil)) for it.Next() { checktr.Update(it.Key, it.Value) } if tr.Hash() != checktr.Hash() { rt[i].err = fmt.Errorf("hash mismatch in opItercheckhash") } } // Abort the test on error. if rt[i].err != nil { return false } } return true } func TestRandom(t *testing.T) { if err := quick.Check(runRandTest, nil); err != nil { if cerr, ok := err.(*quick.CheckError); ok { t.Fatalf("random test iteration %d failed: %s", cerr.Count, spew.Sdump(cerr.In)) } t.Fatal(err) } } func BenchmarkGet(b *testing.B) { benchGet(b, false) } func BenchmarkGetDB(b *testing.B) { benchGet(b, true) } func BenchmarkUpdateBE(b *testing.B) { benchUpdate(b, binary.BigEndian) } func BenchmarkUpdateLE(b *testing.B) { benchUpdate(b, binary.LittleEndian) } const benchElemCount = 20000 func benchGet(b *testing.B, commit bool) { trie := new(Trie) if commit { _, tmpdb := tempDB() trie, _ = New(common.Hash{}, tmpdb) } k := make([]byte, 32) for i := 0; i < benchElemCount; i++ { binary.LittleEndian.PutUint64(k, uint64(i)) trie.Update(k, k) } binary.LittleEndian.PutUint64(k, benchElemCount/2) if commit { trie.Commit(nil) } b.ResetTimer() for i := 0; i < b.N; i++ { trie.Get(k) } b.StopTimer() if commit { ldb := trie.db.diskdb.(*leveldb.Database) ldb.Close() os.RemoveAll(ldb.Path()) } } func benchUpdate(b *testing.B, e binary.ByteOrder) *Trie { trie := newEmpty() k := make([]byte, 32) b.ReportAllocs() for i := 0; i < b.N; i++ { e.PutUint64(k, uint64(i)) trie.Update(k, k) } return trie } // Benchmarks the trie hashing. Since the trie caches the result of any operation, // we cannot use b.N as the number of hashing rouns, since all rounds apart from // the first one will be NOOP. As such, we'll use b.N as the number of account to // insert into the trie before measuring the hashing. // BenchmarkHash-6 288680 4561 ns/op 682 B/op 9 allocs/op // BenchmarkHash-6 275095 4800 ns/op 685 B/op 9 allocs/op // pure hasher: // BenchmarkHash-6 319362 4230 ns/op 675 B/op 9 allocs/op // BenchmarkHash-6 257460 4674 ns/op 689 B/op 9 allocs/op // With hashing in-between and pure hasher: // BenchmarkHash-6 225417 7150 ns/op 982 B/op 12 allocs/op // BenchmarkHash-6 220378 6197 ns/op 983 B/op 12 allocs/op // same with old hasher // BenchmarkHash-6 229758 6437 ns/op 981 B/op 12 allocs/op // BenchmarkHash-6 212610 7137 ns/op 986 B/op 12 allocs/op func BenchmarkHash(b *testing.B) { // Create a realistic account trie to hash. We're first adding and hashing N // entries, then adding N more. addresses, accounts := makeAccounts(2 * b.N) // Insert the accounts into the trie and hash it trie := newEmpty() i := 0 for ; i < len(addresses)/2; i++ { trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) } trie.Hash() for ; i < len(addresses); i++ { trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) } b.ResetTimer() b.ReportAllocs() //trie.hashRoot(nil, nil) trie.Hash() } // Benchmarks the trie Commit following a Hash. Since the trie caches the result of any operation, // we cannot use b.N as the number of hashing rouns, since all rounds apart from // the first one will be NOOP. As such, we'll use b.N as the number of account to // insert into the trie before measuring the hashing. func BenchmarkCommitAfterHash(b *testing.B) { b.Run("no-onleaf", func(b *testing.B) { benchmarkCommitAfterHash(b, nil) }) var a types.StateAccount onleaf := func(paths [][]byte, hexpath []byte, leaf []byte, parent common.Hash) error { rlp.DecodeBytes(leaf, &a) return nil } b.Run("with-onleaf", func(b *testing.B) { benchmarkCommitAfterHash(b, onleaf) }) } func benchmarkCommitAfterHash(b *testing.B, onleaf LeafCallback) { // Make the random benchmark deterministic addresses, accounts := makeAccounts(b.N) trie := newEmpty() for i := 0; i < len(addresses); i++ { trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) } // Insert the accounts into the trie and hash it trie.Hash() b.ResetTimer() b.ReportAllocs() trie.Commit(onleaf) } func TestTinyTrie(t *testing.T) { // Create a realistic account trie to hash _, accounts := makeAccounts(5) trie := newEmpty() trie.Update(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001337"), accounts[3]) if exp, root := common.HexToHash("8c6a85a4d9fda98feff88450299e574e5378e32391f75a055d470ac0653f1005"), trie.Hash(); exp != root { t.Errorf("1: got %x, exp %x", root, exp) } trie.Update(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001338"), accounts[4]) if exp, root := common.HexToHash("ec63b967e98a5720e7f720482151963982890d82c9093c0d486b7eb8883a66b1"), trie.Hash(); exp != root { t.Errorf("2: got %x, exp %x", root, exp) } trie.Update(common.Hex2Bytes("0000000000000000000000000000000000000000000000000000000000001339"), accounts[4]) if exp, root := common.HexToHash("0608c1d1dc3905fa22204c7a0e43644831c3b6d3def0f274be623a948197e64a"), trie.Hash(); exp != root { t.Errorf("3: got %x, exp %x", root, exp) } checktr, _ := New(common.Hash{}, trie.db) it := NewIterator(trie.NodeIterator(nil)) for it.Next() { checktr.Update(it.Key, it.Value) } if troot, itroot := trie.Hash(), checktr.Hash(); troot != itroot { t.Fatalf("hash mismatch in opItercheckhash, trie: %x, check: %x", troot, itroot) } } func TestCommitAfterHash(t *testing.T) { // Create a realistic account trie to hash addresses, accounts := makeAccounts(1000) trie := newEmpty() for i := 0; i < len(addresses); i++ { trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) } // Insert the accounts into the trie and hash it trie.Hash() trie.Commit(nil) root := trie.Hash() exp := common.HexToHash("72f9d3f3fe1e1dd7b8936442e7642aef76371472d94319900790053c493f3fe6") if exp != root { t.Errorf("got %x, exp %x", root, exp) } root, _, _ = trie.Commit(nil) if exp != root { t.Errorf("got %x, exp %x", root, exp) } } func makeAccounts(size int) (addresses [][20]byte, accounts [][]byte) { // Make the random benchmark deterministic random := rand.New(rand.NewSource(0)) // Create a realistic account trie to hash addresses = make([][20]byte, size) for i := 0; i < len(addresses); i++ { data := make([]byte, 20) random.Read(data) copy(addresses[i][:], data) } accounts = make([][]byte, len(addresses)) for i := 0; i < len(accounts); i++ { var ( nonce = uint64(random.Int63()) root = emptyRoot code = crypto.Keccak256(nil) ) // The big.Rand function is not deterministic with regards to 64 vs 32 bit systems, // and will consume different amount of data from the rand source. //balance = new(big.Int).Rand(random, new(big.Int).Exp(common.Big2, common.Big256, nil)) // Therefore, we instead just read via byte buffer numBytes := random.Uint32() % 33 // [0, 32] bytes balanceBytes := make([]byte, numBytes) random.Read(balanceBytes) balance := new(big.Int).SetBytes(balanceBytes) data, _ := rlp.EncodeToBytes(&types.StateAccount{Nonce: nonce, Balance: balance, Root: root, CodeHash: code}) accounts[i] = data } return addresses, accounts } // spongeDb is a dummy db backend which accumulates writes in a sponge type spongeDb struct { sponge hash.Hash id string journal []string } func (s *spongeDb) Has(key []byte) (bool, error) { panic("implement me") } func (s *spongeDb) Get(key []byte) ([]byte, error) { return nil, errors.New("no such elem") } func (s *spongeDb) Delete(key []byte) error { panic("implement me") } func (s *spongeDb) NewBatch() ethdb.Batch { return &spongeBatch{s} } func (s *spongeDb) NewBatchWithSize(size int) ethdb.Batch { return &spongeBatch{s} } func (s *spongeDb) Stat(property string) (string, error) { panic("implement me") } func (s *spongeDb) Compact(start []byte, limit []byte) error { panic("implement me") } func (s *spongeDb) Close() error { return nil } func (s *spongeDb) Put(key []byte, value []byte) error { valbrief := value if len(valbrief) > 8 { valbrief = valbrief[:8] } s.journal = append(s.journal, fmt.Sprintf("%v: PUT([%x...], [%d bytes] %x...)\n", s.id, key[:8], len(value), valbrief)) s.sponge.Write(key) s.sponge.Write(value) return nil } func (s *spongeDb) NewIterator(prefix []byte, start []byte) ethdb.Iterator { panic("implement me") } // spongeBatch is a dummy batch which immediately writes to the underlying spongedb type spongeBatch struct { db *spongeDb } func (b *spongeBatch) Put(key, value []byte) error { b.db.Put(key, value) return nil } func (b *spongeBatch) Delete(key []byte) error { panic("implement me") } func (b *spongeBatch) ValueSize() int { return 100 } func (b *spongeBatch) Write() error { return nil } func (b *spongeBatch) Reset() {} func (b *spongeBatch) Replay(w ethdb.KeyValueWriter) error { return nil } // TestCommitSequence tests that the trie.Commit operation writes the elements of the trie // in the expected order, and calls the callbacks in the expected order. // The test data was based on the 'master' code, and is basically random. It can be used // to check whether changes to the trie modifies the write order or data in any way. func TestCommitSequence(t *testing.T) { for i, tc := range []struct { count int expWriteSeqHash []byte expCallbackSeqHash []byte }{ {20, common.FromHex("873c78df73d60e59d4a2bcf3716e8bfe14554549fea2fc147cb54129382a8066"), common.FromHex("ff00f91ac05df53b82d7f178d77ada54fd0dca64526f537034a5dbe41b17df2a")}, {200, common.FromHex("ba03d891bb15408c940eea5ee3d54d419595102648d02774a0268d892add9c8e"), common.FromHex("f3cd509064c8d319bbdd1c68f511850a902ad275e6ed5bea11547e23d492a926")}, {2000, common.FromHex("f7a184f20df01c94f09537401d11e68d97ad0c00115233107f51b9c287ce60c7"), common.FromHex("ff795ea898ba1e4cfed4a33b4cf5535a347a02cf931f88d88719faf810f9a1c9")}, } { addresses, accounts := makeAccounts(tc.count) // This spongeDb is used to check the sequence of disk-db-writes s := &spongeDb{sponge: sha3.NewLegacyKeccak256()} db := NewDatabase(s) trie, _ := New(common.Hash{}, db) // Another sponge is used to check the callback-sequence callbackSponge := sha3.NewLegacyKeccak256() // Fill the trie with elements for i := 0; i < tc.count; i++ { trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) } // Flush trie -> database root, _, _ := trie.Commit(nil) // Flush memdb -> disk (sponge) db.Commit(root, false, func(c common.Hash) { // And spongify the callback-order callbackSponge.Write(c[:]) }) if got, exp := s.sponge.Sum(nil), tc.expWriteSeqHash; !bytes.Equal(got, exp) { t.Errorf("test %d, disk write sequence wrong:\ngot %x exp %x\n", i, got, exp) } if got, exp := callbackSponge.Sum(nil), tc.expCallbackSeqHash; !bytes.Equal(got, exp) { t.Errorf("test %d, call back sequence wrong:\ngot: %x exp %x\n", i, got, exp) } } } // TestCommitSequenceRandomBlobs is identical to TestCommitSequence // but uses random blobs instead of 'accounts' func TestCommitSequenceRandomBlobs(t *testing.T) { for i, tc := range []struct { count int expWriteSeqHash []byte expCallbackSeqHash []byte }{ {20, common.FromHex("8e4a01548551d139fa9e833ebc4e66fc1ba40a4b9b7259d80db32cff7b64ebbc"), common.FromHex("450238d73bc36dc6cc6f926987e5428535e64be403877c4560e238a52749ba24")}, {200, common.FromHex("6869b4e7b95f3097a19ddb30ff735f922b915314047e041614df06958fc50554"), common.FromHex("0ace0b03d6cb8c0b82f6289ef5b1a1838306b455a62dafc63cada8e2924f2550")}, {2000, common.FromHex("444200e6f4e2df49f77752f629a96ccf7445d4698c164f962bbd85a0526ef424"), common.FromHex("117d30dafaa62a1eed498c3dfd70982b377ba2b46dd3e725ed6120c80829e518")}, } { prng := rand.New(rand.NewSource(int64(i))) // This spongeDb is used to check the sequence of disk-db-writes s := &spongeDb{sponge: sha3.NewLegacyKeccak256()} db := NewDatabase(s) trie, _ := New(common.Hash{}, db) // Another sponge is used to check the callback-sequence callbackSponge := sha3.NewLegacyKeccak256() // Fill the trie with elements for i := 0; i < tc.count; i++ { key := make([]byte, 32) var val []byte // 50% short elements, 50% large elements if prng.Intn(2) == 0 { val = make([]byte, 1+prng.Intn(32)) } else { val = make([]byte, 1+prng.Intn(4096)) } prng.Read(key) prng.Read(val) trie.Update(key, val) } // Flush trie -> database root, _, _ := trie.Commit(nil) // Flush memdb -> disk (sponge) db.Commit(root, false, func(c common.Hash) { // And spongify the callback-order callbackSponge.Write(c[:]) }) if got, exp := s.sponge.Sum(nil), tc.expWriteSeqHash; !bytes.Equal(got, exp) { t.Fatalf("test %d, disk write sequence wrong:\ngot %x exp %x\n", i, got, exp) } if got, exp := callbackSponge.Sum(nil), tc.expCallbackSeqHash; !bytes.Equal(got, exp) { t.Fatalf("test %d, call back sequence wrong:\ngot: %x exp %x\n", i, got, exp) } } } func TestCommitSequenceStackTrie(t *testing.T) { for count := 1; count < 200; count++ { prng := rand.New(rand.NewSource(int64(count))) // This spongeDb is used to check the sequence of disk-db-writes s := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "a"} db := NewDatabase(s) trie, _ := New(common.Hash{}, db) // Another sponge is used for the stacktrie commits stackTrieSponge := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "b"} stTrie := NewStackTrie(stackTrieSponge) // Fill the trie with elements for i := 1; i < count; i++ { // For the stack trie, we need to do inserts in proper order key := make([]byte, 32) binary.BigEndian.PutUint64(key, uint64(i)) var val []byte // 50% short elements, 50% large elements if prng.Intn(2) == 0 { val = make([]byte, 1+prng.Intn(32)) } else { val = make([]byte, 1+prng.Intn(1024)) } prng.Read(val) trie.TryUpdate(key, val) stTrie.TryUpdate(key, val) } // Flush trie -> database root, _, _ := trie.Commit(nil) // Flush memdb -> disk (sponge) db.Commit(root, false, nil) // And flush stacktrie -> disk stRoot, err := stTrie.Commit() if err != nil { t.Fatalf("Failed to commit stack trie %v", err) } if stRoot != root { t.Fatalf("root wrong, got %x exp %x", stRoot, root) } if got, exp := stackTrieSponge.sponge.Sum(nil), s.sponge.Sum(nil); !bytes.Equal(got, exp) { // Show the journal t.Logf("Expected:") for i, v := range s.journal { t.Logf("op %d: %v", i, v) } t.Logf("Stacktrie:") for i, v := range stackTrieSponge.journal { t.Logf("op %d: %v", i, v) } t.Fatalf("test %d, disk write sequence wrong:\ngot %x exp %x\n", count, got, exp) } } } // TestCommitSequenceSmallRoot tests that a trie which is essentially only a // small (<32 byte) shortnode with an included value is properly committed to a // database. // This case might not matter, since in practice, all keys are 32 bytes, which means // that even a small trie which contains a leaf will have an extension making it // not fit into 32 bytes, rlp-encoded. However, it's still the correct thing to do. func TestCommitSequenceSmallRoot(t *testing.T) { s := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "a"} db := NewDatabase(s) trie, _ := New(common.Hash{}, db) // Another sponge is used for the stacktrie commits stackTrieSponge := &spongeDb{sponge: sha3.NewLegacyKeccak256(), id: "b"} stTrie := NewStackTrie(stackTrieSponge) // Add a single small-element to the trie(s) key := make([]byte, 5) key[0] = 1 trie.TryUpdate(key, []byte{0x1}) stTrie.TryUpdate(key, []byte{0x1}) // Flush trie -> database root, _, _ := trie.Commit(nil) // Flush memdb -> disk (sponge) db.Commit(root, false, nil) // And flush stacktrie -> disk stRoot, err := stTrie.Commit() if err != nil { t.Fatalf("Failed to commit stack trie %v", err) } if stRoot != root { t.Fatalf("root wrong, got %x exp %x", stRoot, root) } t.Logf("root: %x\n", stRoot) if got, exp := stackTrieSponge.sponge.Sum(nil), s.sponge.Sum(nil); !bytes.Equal(got, exp) { t.Fatalf("test, disk write sequence wrong:\ngot %x exp %x\n", got, exp) } } // BenchmarkCommitAfterHashFixedSize benchmarks the Commit (after Hash) of a fixed number of updates to a trie. // This benchmark is meant to capture the difference on efficiency of small versus large changes. Typically, // storage tries are small (a couple of entries), whereas the full post-block account trie update is large (a couple // of thousand entries) func BenchmarkHashFixedSize(b *testing.B) { b.Run("10", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(20) for i := 0; i < b.N; i++ { benchmarkHashFixedSize(b, acc, add) } }) b.Run("100", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(100) for i := 0; i < b.N; i++ { benchmarkHashFixedSize(b, acc, add) } }) b.Run("1K", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(1000) for i := 0; i < b.N; i++ { benchmarkHashFixedSize(b, acc, add) } }) b.Run("10K", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(10000) for i := 0; i < b.N; i++ { benchmarkHashFixedSize(b, acc, add) } }) b.Run("100K", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(100000) for i := 0; i < b.N; i++ { benchmarkHashFixedSize(b, acc, add) } }) } func benchmarkHashFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) { b.ReportAllocs() trie := newEmpty() for i := 0; i < len(addresses); i++ { trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) } // Insert the accounts into the trie and hash it b.StartTimer() trie.Hash() b.StopTimer() } func BenchmarkCommitAfterHashFixedSize(b *testing.B) { b.Run("10", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(20) for i := 0; i < b.N; i++ { benchmarkCommitAfterHashFixedSize(b, acc, add) } }) b.Run("100", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(100) for i := 0; i < b.N; i++ { benchmarkCommitAfterHashFixedSize(b, acc, add) } }) b.Run("1K", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(1000) for i := 0; i < b.N; i++ { benchmarkCommitAfterHashFixedSize(b, acc, add) } }) b.Run("10K", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(10000) for i := 0; i < b.N; i++ { benchmarkCommitAfterHashFixedSize(b, acc, add) } }) b.Run("100K", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(100000) for i := 0; i < b.N; i++ { benchmarkCommitAfterHashFixedSize(b, acc, add) } }) } func benchmarkCommitAfterHashFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) { b.ReportAllocs() trie := newEmpty() for i := 0; i < len(addresses); i++ { trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) } // Insert the accounts into the trie and hash it trie.Hash() b.StartTimer() trie.Commit(nil) b.StopTimer() } func BenchmarkDerefRootFixedSize(b *testing.B) { b.Run("10", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(20) for i := 0; i < b.N; i++ { benchmarkDerefRootFixedSize(b, acc, add) } }) b.Run("100", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(100) for i := 0; i < b.N; i++ { benchmarkDerefRootFixedSize(b, acc, add) } }) b.Run("1K", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(1000) for i := 0; i < b.N; i++ { benchmarkDerefRootFixedSize(b, acc, add) } }) b.Run("10K", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(10000) for i := 0; i < b.N; i++ { benchmarkDerefRootFixedSize(b, acc, add) } }) b.Run("100K", func(b *testing.B) { b.StopTimer() acc, add := makeAccounts(100000) for i := 0; i < b.N; i++ { benchmarkDerefRootFixedSize(b, acc, add) } }) } func benchmarkDerefRootFixedSize(b *testing.B, addresses [][20]byte, accounts [][]byte) { b.ReportAllocs() trie := newEmpty() for i := 0; i < len(addresses); i++ { trie.Update(crypto.Keccak256(addresses[i][:]), accounts[i]) } h := trie.Hash() trie.Commit(nil) b.StartTimer() trie.db.Dereference(h) b.StopTimer() } func tempDB() (string, *Database) { dir, err := ioutil.TempDir("", "trie-bench") if err != nil { panic(fmt.Sprintf("can't create temporary directory: %v", err)) } diskdb, err := leveldb.New(dir, 256, 0, "", false) if err != nil { panic(fmt.Sprintf("can't create temporary database: %v", err)) } return dir, NewDatabase(diskdb) } func getString(trie *Trie, k string) []byte { return trie.Get([]byte(k)) } func updateString(trie *Trie, k, v string) { trie.Update([]byte(k), []byte(v)) } func deleteString(trie *Trie, k string) { trie.Delete([]byte(k)) } func TestDecodeNode(t *testing.T) { t.Parallel() var ( hash = make([]byte, 20) elems = make([]byte, 20) ) for i := 0; i < 5000000; i++ { rand.Read(hash) rand.Read(elems) decodeNode(hash, elems) } }