// Copyright 2015 The go-ethereum Authors // This file is part of the go-ethereum library. // // The go-ethereum library is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // The go-ethereum library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with the go-ethereum library. If not, see . package fetcher import ( "errors" "math/big" "sync" "sync/atomic" "testing" "time" "github.com/ethereum/go-ethereum/common" "github.com/ethereum/go-ethereum/consensus/ethash" "github.com/ethereum/go-ethereum/core" "github.com/ethereum/go-ethereum/core/rawdb" "github.com/ethereum/go-ethereum/core/types" "github.com/ethereum/go-ethereum/crypto" "github.com/ethereum/go-ethereum/eth/protocols/eth" "github.com/ethereum/go-ethereum/params" "github.com/ethereum/go-ethereum/trie" "github.com/ethereum/go-ethereum/triedb" ) var ( testdb = rawdb.NewMemoryDatabase() testKey, _ = crypto.HexToECDSA("b71c71a67e1177ad4e901695e1b4b9ee17ae16c6668d313eac2f96dbcda3f291") testAddress = crypto.PubkeyToAddress(testKey.PublicKey) gspec = &core.Genesis{ Config: params.TestChainConfig, Alloc: types.GenesisAlloc{testAddress: {Balance: big.NewInt(1000000000000000)}}, BaseFee: big.NewInt(params.InitialBaseFee), } genesis = gspec.MustCommit(testdb, triedb.NewDatabase(testdb, triedb.HashDefaults)) unknownBlock = types.NewBlock(&types.Header{Root: types.EmptyRootHash, GasLimit: params.GenesisGasLimit, BaseFee: big.NewInt(params.InitialBaseFee)}, nil, nil, nil, trie.NewStackTrie(nil)) ) // makeChain creates a chain of n blocks starting at and including parent. // the returned hash chain is ordered head->parent. In addition, every 3rd block // contains a transaction and every 5th an uncle to allow testing correct block // reassembly. func makeChain(n int, seed byte, parent *types.Block) ([]common.Hash, map[common.Hash]*types.Block) { blocks, _ := core.GenerateChain(gspec.Config, parent, ethash.NewFaker(), testdb, n, func(i int, block *core.BlockGen) { block.SetCoinbase(common.Address{seed}) // If the block number is multiple of 3, send a bonus transaction to the miner if parent == genesis && i%3 == 0 { signer := types.MakeSigner(params.TestChainConfig, block.Number(), block.Timestamp()) tx, err := types.SignTx(types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, block.BaseFee(), nil), signer, testKey) if err != nil { panic(err) } block.AddTx(tx) } // If the block number is a multiple of 5, add a bonus uncle to the block if i > 0 && i%5 == 0 { block.AddUncle(&types.Header{ParentHash: block.PrevBlock(i - 2).Hash(), Number: big.NewInt(int64(i - 1))}) } }) hashes := make([]common.Hash, n+1) hashes[len(hashes)-1] = parent.Hash() blockm := make(map[common.Hash]*types.Block, n+1) blockm[parent.Hash()] = parent for i, b := range blocks { hashes[len(hashes)-i-2] = b.Hash() blockm[b.Hash()] = b } return hashes, blockm } // fetcherTester is a test simulator for mocking out local block chain. type fetcherTester struct { fetcher *BlockFetcher hashes []common.Hash // Hash chain belonging to the tester headers map[common.Hash]*types.Header // Headers belonging to the tester blocks map[common.Hash]*types.Block // Blocks belonging to the tester drops map[string]bool // Map of peers dropped by the fetcher lock sync.RWMutex } // newTester creates a new fetcher test mocker. func newTester(light bool) *fetcherTester { tester := &fetcherTester{ hashes: []common.Hash{genesis.Hash()}, headers: map[common.Hash]*types.Header{genesis.Hash(): genesis.Header()}, blocks: map[common.Hash]*types.Block{genesis.Hash(): genesis}, drops: make(map[string]bool), } tester.fetcher = NewBlockFetcher(light, tester.getHeader, tester.getBlock, tester.verifyHeader, tester.broadcastBlock, tester.chainHeight, tester.chainFinalizedHeight, tester.insertHeaders, tester.insertChain, tester.dropPeer) tester.fetcher.Start() return tester } // getHeader retrieves a header from the tester's block chain. func (f *fetcherTester) getHeader(hash common.Hash) *types.Header { f.lock.RLock() defer f.lock.RUnlock() return f.headers[hash] } // getBlock retrieves a block from the tester's block chain. func (f *fetcherTester) getBlock(hash common.Hash) *types.Block { f.lock.RLock() defer f.lock.RUnlock() return f.blocks[hash] } // verifyHeader is a nop placeholder for the block header verification. func (f *fetcherTester) verifyHeader(header *types.Header) error { return nil } // broadcastBlock is a nop placeholder for the block broadcasting. func (f *fetcherTester) broadcastBlock(block *types.Block, propagate bool) { } // chainHeight retrieves the current height (block number) of the chain. func (f *fetcherTester) chainHeight() uint64 { f.lock.RLock() defer f.lock.RUnlock() if f.fetcher.light { return f.headers[f.hashes[len(f.hashes)-1]].Number.Uint64() } return f.blocks[f.hashes[len(f.hashes)-1]].NumberU64() } func (f *fetcherTester) chainFinalizedHeight() uint64 { f.lock.RLock() defer f.lock.RUnlock() if len(f.hashes) < 3 { return 0 } if f.fetcher.light { return f.headers[f.hashes[len(f.hashes)-3]].Number.Uint64() } return f.blocks[f.hashes[len(f.hashes)-3]].NumberU64() } // insertHeaders injects a new headers into the simulated chain. func (f *fetcherTester) insertHeaders(headers []*types.Header) (int, error) { f.lock.Lock() defer f.lock.Unlock() for i, header := range headers { // Make sure the parent in known if _, ok := f.headers[header.ParentHash]; !ok { return i, errors.New("unknown parent") } // Discard any new blocks if the same height already exists if header.Number.Uint64() <= f.headers[f.hashes[len(f.hashes)-1]].Number.Uint64() { return i, nil } // Otherwise build our current chain f.hashes = append(f.hashes, header.Hash()) f.headers[header.Hash()] = header } return 0, nil } // insertChain injects a new blocks into the simulated chain. func (f *fetcherTester) insertChain(blocks types.Blocks) (int, error) { f.lock.Lock() defer f.lock.Unlock() for i, block := range blocks { // Make sure the parent in known if _, ok := f.blocks[block.ParentHash()]; !ok { return i, errors.New("unknown parent") } // Discard any new blocks if the same height already exists if block.NumberU64() <= f.blocks[f.hashes[len(f.hashes)-1]].NumberU64() { return i, nil } // Otherwise build our current chain f.hashes = append(f.hashes, block.Hash()) f.blocks[block.Hash()] = block } return 0, nil } // dropPeer is an emulator for the peer removal, simply accumulating the various // peers dropped by the fetcher. func (f *fetcherTester) dropPeer(peer string) { f.lock.Lock() defer f.lock.Unlock() f.drops[peer] = true } // makeHeaderFetcher retrieves a block header fetcher associated with a simulated peer. func (f *fetcherTester) makeHeaderFetcher(peer string, blocks map[common.Hash]*types.Block, drift time.Duration) headerRequesterFn { closure := make(map[common.Hash]*types.Block) for hash, block := range blocks { closure[hash] = block } // Create a function that return a header from the closure return func(hash common.Hash, sink chan *eth.Response) (*eth.Request, error) { // Gather the blocks to return headers := make([]*types.Header, 0, 1) if block, ok := closure[hash]; ok { headers = append(headers, block.Header()) } // Return on a new thread req := ð.Request{ Peer: peer, } res := ð.Response{ Req: req, Res: (*eth.BlockHeadersRequest)(&headers), Time: drift, Done: make(chan error, 1), // Ignore the returned status } go func() { sink <- res }() return req, nil } } // makeBodyFetcher retrieves a block body fetcher associated with a simulated peer. func (f *fetcherTester) makeBodyFetcher(peer string, blocks map[common.Hash]*types.Block, drift time.Duration) bodyRequesterFn { closure := make(map[common.Hash]*types.Block) for hash, block := range blocks { closure[hash] = block } // Create a function that returns blocks from the closure return func(hashes []common.Hash, sink chan *eth.Response) (*eth.Request, error) { // Gather the block bodies to return transactions := make([][]*types.Transaction, 0, len(hashes)) uncles := make([][]*types.Header, 0, len(hashes)) for _, hash := range hashes { if block, ok := closure[hash]; ok { transactions = append(transactions, block.Transactions()) uncles = append(uncles, block.Uncles()) } } // Return on a new thread bodies := make([]*eth.BlockBody, len(transactions)) for i, txs := range transactions { bodies[i] = ð.BlockBody{ Transactions: txs, Uncles: uncles[i], } } req := ð.Request{ Peer: peer, } res := ð.Response{ Req: req, Res: (*eth.BlockBodiesResponse)(&bodies), Time: drift, Done: make(chan error, 1), // Ignore the returned status } go func() { sink <- res }() return req, nil } } // verifyFetchingEvent verifies that one single event arrive on a fetching channel. func verifyFetchingEvent(t *testing.T, fetching chan []common.Hash, arrive bool) { t.Helper() if arrive { select { case <-fetching: case <-time.After(time.Second): t.Fatalf("fetching timeout") } } else { select { case <-fetching: t.Fatalf("fetching invoked") case <-time.After(10 * time.Millisecond): } } } // verifyCompletingEvent verifies that one single event arrive on an completing channel. func verifyCompletingEvent(t *testing.T, completing chan []common.Hash, arrive bool) { t.Helper() if arrive { select { case <-completing: case <-time.After(time.Second): t.Fatalf("completing timeout") } } else { select { case <-completing: t.Fatalf("completing invoked") case <-time.After(10 * time.Millisecond): } } } // verifyImportEvent verifies that one single event arrive on an import channel. func verifyImportEvent(t *testing.T, imported chan interface{}, arrive bool) { t.Helper() if arrive { select { case <-imported: case <-time.After(time.Second): t.Fatalf("import timeout") } } else { select { case <-imported: t.Fatalf("import invoked") case <-time.After(20 * time.Millisecond): } } } // verifyImportCount verifies that exactly count number of events arrive on an // import hook channel. func verifyImportCount(t *testing.T, imported chan interface{}, count int) { t.Helper() for i := 0; i < count; i++ { select { case <-imported: case <-time.After(time.Second): t.Fatalf("block %d: import timeout", i+1) } } verifyImportDone(t, imported) } // verifyImportDone verifies that no more events are arriving on an import channel. func verifyImportDone(t *testing.T, imported chan interface{}) { t.Helper() select { case <-imported: t.Fatalf("extra block imported") case <-time.After(50 * time.Millisecond): } } // verifyChainHeight verifies the chain height is as expected. func verifyChainHeight(t *testing.T, fetcher *fetcherTester, height uint64) { t.Helper() if fetcher.chainHeight() != height { t.Fatalf("chain height mismatch, got %d, want %d", fetcher.chainHeight(), height) } } // Tests that a fetcher accepts block/header announcements and initiates retrievals // for them, successfully importing into the local chain. func TestFullSequentialAnnouncements(t *testing.T) { testSequentialAnnouncements(t, false) } func TestLightSequentialAnnouncements(t *testing.T) { testSequentialAnnouncements(t, true) } func testSequentialAnnouncements(t *testing.T, light bool) { // Create a chain of blocks to import targetBlocks := 4 * hashLimit hashes, blocks := makeChain(targetBlocks, 0, genesis) tester := newTester(light) defer tester.fetcher.Stop() headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack) bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0) // Iteratively announce blocks until all are imported imported := make(chan interface{}) tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { if light { if header == nil { t.Fatalf("Fetcher try to import empty header") } imported <- header } else { if block == nil { t.Fatalf("Fetcher try to import empty block") } imported <- block } } for i := len(hashes) - 2; i >= 0; i-- { tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) verifyImportEvent(t, imported, true) } verifyImportDone(t, imported) verifyChainHeight(t, tester, uint64(len(hashes)-1)) } // Tests that if blocks are announced by multiple peers (or even the same buggy // peer), they will only get downloaded at most once. func TestFullConcurrentAnnouncements(t *testing.T) { testConcurrentAnnouncements(t, false) } func TestLightConcurrentAnnouncements(t *testing.T) { testConcurrentAnnouncements(t, true) } func testConcurrentAnnouncements(t *testing.T, light bool) { // Create a chain of blocks to import targetBlocks := 4 * hashLimit hashes, blocks := makeChain(targetBlocks, 0, genesis) // Assemble a tester with a built in counter for the requests tester := newTester(light) firstHeaderFetcher := tester.makeHeaderFetcher("first", blocks, -gatherSlack) firstBodyFetcher := tester.makeBodyFetcher("first", blocks, 0) secondHeaderFetcher := tester.makeHeaderFetcher("second", blocks, -gatherSlack) secondBodyFetcher := tester.makeBodyFetcher("second", blocks, 0) var counter atomic.Uint32 firstHeaderWrapper := func(hash common.Hash, sink chan *eth.Response) (*eth.Request, error) { counter.Add(1) return firstHeaderFetcher(hash, sink) } secondHeaderWrapper := func(hash common.Hash, sink chan *eth.Response) (*eth.Request, error) { counter.Add(1) return secondHeaderFetcher(hash, sink) } // Iteratively announce blocks until all are imported imported := make(chan interface{}) tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { if light { if header == nil { t.Fatalf("Fetcher try to import empty header") } imported <- header } else { if block == nil { t.Fatalf("Fetcher try to import empty block") } imported <- block } } for i := len(hashes) - 2; i >= 0; i-- { tester.fetcher.Notify("first", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), firstHeaderWrapper, firstBodyFetcher) tester.fetcher.Notify("second", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout+time.Millisecond), secondHeaderWrapper, secondBodyFetcher) tester.fetcher.Notify("second", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout-time.Millisecond), secondHeaderWrapper, secondBodyFetcher) verifyImportEvent(t, imported, true) } verifyImportDone(t, imported) // Make sure no blocks were retrieved twice if c := int(counter.Load()); c != targetBlocks { t.Fatalf("retrieval count mismatch: have %v, want %v", c, targetBlocks) } verifyChainHeight(t, tester, uint64(len(hashes)-1)) } // Tests that announcements arriving while a previous is being fetched still // results in a valid import. func TestFullOverlappingAnnouncements(t *testing.T) { testOverlappingAnnouncements(t, false) } func TestLightOverlappingAnnouncements(t *testing.T) { testOverlappingAnnouncements(t, true) } func testOverlappingAnnouncements(t *testing.T, light bool) { // Create a chain of blocks to import targetBlocks := 4 * hashLimit hashes, blocks := makeChain(targetBlocks, 0, genesis) tester := newTester(light) headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack) bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0) // Iteratively announce blocks, but overlap them continuously overlap := 16 imported := make(chan interface{}, len(hashes)-1) for i := 0; i < overlap; i++ { imported <- nil } tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { if light { if header == nil { t.Fatalf("Fetcher try to import empty header") } imported <- header } else { if block == nil { t.Fatalf("Fetcher try to import empty block") } imported <- block } } for i := len(hashes) - 2; i >= 0; i-- { tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) select { case <-imported: case <-time.After(time.Second): t.Fatalf("block %d: import timeout", len(hashes)-i) } } // Wait for all the imports to complete and check count verifyImportCount(t, imported, overlap) verifyChainHeight(t, tester, uint64(len(hashes)-1)) } // Tests that announces already being retrieved will not be duplicated. func TestFullPendingDeduplication(t *testing.T) { testPendingDeduplication(t, false) } func TestLightPendingDeduplication(t *testing.T) { testPendingDeduplication(t, true) } func testPendingDeduplication(t *testing.T, light bool) { // Create a hash and corresponding block hashes, blocks := makeChain(1, 0, genesis) // Assemble a tester with a built in counter and delayed fetcher tester := newTester(light) headerFetcher := tester.makeHeaderFetcher("repeater", blocks, -gatherSlack) bodyFetcher := tester.makeBodyFetcher("repeater", blocks, 0) delay := 50 * time.Millisecond var counter atomic.Uint32 headerWrapper := func(hash common.Hash, sink chan *eth.Response) (*eth.Request, error) { counter.Add(1) // Simulate a long running fetch resink := make(chan *eth.Response) req, err := headerFetcher(hash, resink) if err == nil { go func() { res := <-resink time.Sleep(delay) sink <- res }() } return req, err } checkNonExist := func() bool { return tester.getBlock(hashes[0]) == nil } if light { checkNonExist = func() bool { return tester.getHeader(hashes[0]) == nil } } // Announce the same block many times until it's fetched (wait for any pending ops) for checkNonExist() { tester.fetcher.Notify("repeater", hashes[0], 1, time.Now().Add(-arriveTimeout), headerWrapper, bodyFetcher) time.Sleep(time.Millisecond) } time.Sleep(delay) // Check that all blocks were imported and none fetched twice if c := counter.Load(); c != 1 { t.Fatalf("retrieval count mismatch: have %v, want %v", c, 1) } verifyChainHeight(t, tester, 1) } // Tests that announcements retrieved in a random order are cached and eventually // imported when all the gaps are filled in. func TestFullRandomArrivalImport(t *testing.T) { testRandomArrivalImport(t, false) } func TestLightRandomArrivalImport(t *testing.T) { testRandomArrivalImport(t, true) } func testRandomArrivalImport(t *testing.T, light bool) { // Create a chain of blocks to import, and choose one to delay targetBlocks := maxQueueDist hashes, blocks := makeChain(targetBlocks, 0, genesis) skip := targetBlocks / 2 tester := newTester(light) headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack) bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0) // Iteratively announce blocks, skipping one entry imported := make(chan interface{}, len(hashes)-1) tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { if light { if header == nil { t.Fatalf("Fetcher try to import empty header") } imported <- header } else { if block == nil { t.Fatalf("Fetcher try to import empty block") } imported <- block } } for i := len(hashes) - 1; i >= 0; i-- { if i != skip { tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) time.Sleep(time.Millisecond) } } // Finally announce the skipped entry and check full import tester.fetcher.Notify("valid", hashes[skip], uint64(len(hashes)-skip-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) verifyImportCount(t, imported, len(hashes)-1) verifyChainHeight(t, tester, uint64(len(hashes)-1)) } // Tests that direct block enqueues (due to block propagation vs. hash announce) // are correctly schedule, filling and import queue gaps. func TestQueueGapFill(t *testing.T) { // Create a chain of blocks to import, and choose one to not announce at all targetBlocks := maxQueueDist hashes, blocks := makeChain(targetBlocks, 0, genesis) skip := targetBlocks / 2 tester := newTester(false) headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack) bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0) // Iteratively announce blocks, skipping one entry imported := make(chan interface{}, len(hashes)-1) tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { imported <- block } for i := len(hashes) - 1; i >= 0; i-- { if i != skip { tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) time.Sleep(time.Millisecond) } } // Fill the missing block directly as if propagated tester.fetcher.Enqueue("valid", blocks[hashes[skip]]) verifyImportCount(t, imported, len(hashes)-1) verifyChainHeight(t, tester, uint64(len(hashes)-1)) } // Tests that blocks arriving from various sources (multiple propagations, hash // announces, etc) do not get scheduled for import multiple times. func TestImportDeduplication(t *testing.T) { // Create two blocks to import (one for duplication, the other for stalling) hashes, blocks := makeChain(2, 0, genesis) // Create the tester and wrap the importer with a counter tester := newTester(false) headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack) bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0) var counter atomic.Uint32 tester.fetcher.insertChain = func(blocks types.Blocks) (int, error) { counter.Add(uint32(len(blocks))) return tester.insertChain(blocks) } // Instrument the fetching and imported events fetching := make(chan []common.Hash) imported := make(chan interface{}, len(hashes)-1) tester.fetcher.fetchingHook = func(hashes []common.Hash) { fetching <- hashes } tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { imported <- block } // Announce the duplicating block, wait for retrieval, and also propagate directly tester.fetcher.Notify("valid", hashes[0], 1, time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) <-fetching tester.fetcher.Enqueue("valid", blocks[hashes[0]]) tester.fetcher.Enqueue("valid", blocks[hashes[0]]) tester.fetcher.Enqueue("valid", blocks[hashes[0]]) // Fill the missing block directly as if propagated, and check import uniqueness tester.fetcher.Enqueue("valid", blocks[hashes[1]]) verifyImportCount(t, imported, 2) if c := counter.Load(); c != 2 { t.Fatalf("import invocation count mismatch: have %v, want %v", c, 2) } } // Tests that blocks with numbers much lower or higher than out current head get // discarded to prevent wasting resources on useless blocks from faulty peers. func TestDistantPropagationDiscarding(t *testing.T) { // Create a long chain to import and define the discard boundaries hashes, blocks := makeChain(3*maxQueueDist, 0, genesis) head := hashes[len(hashes)/2] low, high := len(hashes)/2+maxUncleDist+1, len(hashes)/2-maxQueueDist-1 // Create a tester and simulate a head block being the middle of the above chain tester := newTester(false) tester.lock.Lock() tester.hashes = []common.Hash{head} tester.blocks = map[common.Hash]*types.Block{head: blocks[head]} tester.lock.Unlock() // Ensure that a block with a lower number than the threshold is discarded tester.fetcher.Enqueue("lower", blocks[hashes[low]]) time.Sleep(10 * time.Millisecond) if !tester.fetcher.queue.Empty() { t.Fatalf("fetcher queued stale block") } // Ensure that a block with a higher number than the threshold is discarded tester.fetcher.Enqueue("higher", blocks[hashes[high]]) time.Sleep(10 * time.Millisecond) if !tester.fetcher.queue.Empty() { t.Fatalf("fetcher queued future block") } } // Tests that announcements with numbers much lower or higher than out current // head get discarded to prevent wasting resources on useless blocks from faulty // peers. func TestFullDistantAnnouncementDiscarding(t *testing.T) { testDistantAnnouncementDiscarding(t, false) } func TestLightDistantAnnouncementDiscarding(t *testing.T) { testDistantAnnouncementDiscarding(t, true) } func testDistantAnnouncementDiscarding(t *testing.T, light bool) { // Create a long chain to import and define the discard boundaries hashes, blocks := makeChain(3*maxQueueDist, 0, genesis) head := hashes[len(hashes)/2] low, high := len(hashes)/2+maxUncleDist+1, len(hashes)/2-maxQueueDist-1 // Create a tester and simulate a head block being the middle of the above chain tester := newTester(light) tester.lock.Lock() tester.hashes = []common.Hash{head} tester.headers = map[common.Hash]*types.Header{head: blocks[head].Header()} tester.blocks = map[common.Hash]*types.Block{head: blocks[head]} tester.lock.Unlock() headerFetcher := tester.makeHeaderFetcher("lower", blocks, -gatherSlack) bodyFetcher := tester.makeBodyFetcher("lower", blocks, 0) fetching := make(chan struct{}, 2) tester.fetcher.fetchingHook = func(hashes []common.Hash) { fetching <- struct{}{} } // Ensure that a block with a lower number than the threshold is discarded tester.fetcher.Notify("lower", hashes[low], blocks[hashes[low]].NumberU64(), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) select { case <-time.After(50 * time.Millisecond): case <-fetching: t.Fatalf("fetcher requested stale header") } // Ensure that a block with a higher number than the threshold is discarded tester.fetcher.Notify("higher", hashes[high], blocks[hashes[high]].NumberU64(), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) select { case <-time.After(50 * time.Millisecond): case <-fetching: t.Fatalf("fetcher requested future header") } } // Tests that announcements with numbers much lower or equal to the current finalized block // head get discarded to prevent wasting resources on useless blocks from faulty peers. func TestFullFinalizedAnnouncementDiscarding(t *testing.T) { testFinalizedAnnouncementDiscarding(t, false) } func TestLightFinalizedAnnouncementDiscarding(t *testing.T) { testFinalizedAnnouncementDiscarding(t, true) } func testFinalizedAnnouncementDiscarding(t *testing.T, light bool) { // Create a long chain to import and define the discard boundaries hashes, blocks := makeChain(3*maxQueueDist, 0, genesis) head := hashes[len(hashes)/2] justified := hashes[len(hashes)/2+1] finalized := hashes[len(hashes)/2+2] beforeFinalized := hashes[len(hashes)/2+3] low, equal := len(hashes)/2+3, len(hashes)/2+2 // Create a tester and simulate a head block being the middle of the above chain tester := newTester(light) tester.lock.Lock() tester.hashes = []common.Hash{beforeFinalized, finalized, justified, head} tester.headers = map[common.Hash]*types.Header{ beforeFinalized: blocks[beforeFinalized].Header(), finalized: blocks[finalized].Header(), justified: blocks[justified].Header(), head: blocks[head].Header(), } tester.blocks = map[common.Hash]*types.Block{ beforeFinalized: blocks[beforeFinalized], finalized: blocks[finalized], justified: blocks[justified], head: blocks[head], } tester.lock.Unlock() headerFetcher := tester.makeHeaderFetcher("lower", blocks, -gatherSlack) bodyFetcher := tester.makeBodyFetcher("lower", blocks, 0) fetching := make(chan struct{}, 2) tester.fetcher.fetchingHook = func(hashes []common.Hash) { fetching <- struct{}{} } // Ensure that a block with a lower number than the finalized height is discarded tester.fetcher.Notify("lower", hashes[low], blocks[hashes[low]].NumberU64(), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) select { case <-time.After(50 * time.Millisecond): case <-fetching: t.Fatalf("fetcher requested stale header") } // Ensure that a block with a same number of the finalized height is discarded tester.fetcher.Notify("equal", hashes[equal], blocks[hashes[equal]].NumberU64(), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) select { case <-time.After(50 * time.Millisecond): case <-fetching: t.Fatalf("fetcher requested future header") } } // Tests that peers announcing blocks with invalid numbers (i.e. not matching // the headers provided afterwards) get dropped as malicious. func TestFullInvalidNumberAnnouncement(t *testing.T) { testInvalidNumberAnnouncement(t, false) } func TestLightInvalidNumberAnnouncement(t *testing.T) { testInvalidNumberAnnouncement(t, true) } func testInvalidNumberAnnouncement(t *testing.T, light bool) { // Create a single block to import and check numbers against hashes, blocks := makeChain(1, 0, genesis) tester := newTester(light) badHeaderFetcher := tester.makeHeaderFetcher("bad", blocks, -gatherSlack) badBodyFetcher := tester.makeBodyFetcher("bad", blocks, 0) imported := make(chan interface{}) announced := make(chan interface{}, 2) tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { if light { if header == nil { t.Fatalf("Fetcher try to import empty header") } imported <- header } else { if block == nil { t.Fatalf("Fetcher try to import empty block") } imported <- block } } // Announce a block with a bad number, check for immediate drop tester.fetcher.announceChangeHook = func(hash common.Hash, b bool) { announced <- nil } tester.fetcher.Notify("bad", hashes[0], 2, time.Now().Add(-arriveTimeout), badHeaderFetcher, badBodyFetcher) verifyAnnounce := func() { for i := 0; i < 2; i++ { select { case <-announced: continue case <-time.After(1 * time.Second): t.Fatal("announce timeout") } } } verifyAnnounce() verifyImportEvent(t, imported, false) tester.lock.RLock() dropped := tester.drops["bad"] tester.lock.RUnlock() if !dropped { t.Fatalf("peer with invalid numbered announcement not dropped") } goodHeaderFetcher := tester.makeHeaderFetcher("good", blocks, -gatherSlack) goodBodyFetcher := tester.makeBodyFetcher("good", blocks, 0) // Make sure a good announcement passes without a drop tester.fetcher.Notify("good", hashes[0], 1, time.Now().Add(-arriveTimeout), goodHeaderFetcher, goodBodyFetcher) verifyAnnounce() verifyImportEvent(t, imported, true) tester.lock.RLock() dropped = tester.drops["good"] tester.lock.RUnlock() if dropped { t.Fatalf("peer with valid numbered announcement dropped") } verifyImportDone(t, imported) } // Tests that if a block is empty (i.e. header only), no body request should be // made, and instead the header should be assembled into a whole block in itself. func TestEmptyBlockShortCircuit(t *testing.T) { // Create a chain of blocks to import hashes, blocks := makeChain(32, 0, genesis) tester := newTester(false) defer tester.fetcher.Stop() headerFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack) bodyFetcher := tester.makeBodyFetcher("valid", blocks, 0) // Add a monitoring hook for all internal events fetching := make(chan []common.Hash) tester.fetcher.fetchingHook = func(hashes []common.Hash) { fetching <- hashes } completing := make(chan []common.Hash) tester.fetcher.completingHook = func(hashes []common.Hash) { completing <- hashes } imported := make(chan interface{}) tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { if block == nil { t.Fatalf("Fetcher try to import empty block") } imported <- block } // Iteratively announce blocks until all are imported for i := len(hashes) - 2; i >= 0; i-- { tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), headerFetcher, bodyFetcher) // All announces should fetch the header verifyFetchingEvent(t, fetching, true) // Only blocks with data contents should request bodies verifyCompletingEvent(t, completing, len(blocks[hashes[i]].Transactions()) > 0 || len(blocks[hashes[i]].Uncles()) > 0) // Irrelevant of the construct, import should succeed verifyImportEvent(t, imported, true) } verifyImportDone(t, imported) } // Tests that a peer is unable to use unbounded memory with sending infinite // block announcements to a node, but that even in the face of such an attack, // the fetcher remains operational. func TestHashMemoryExhaustionAttack(t *testing.T) { // Create a tester with instrumented import hooks tester := newTester(false) imported, announces := make(chan interface{}), atomic.Int32{} tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { imported <- block } tester.fetcher.announceChangeHook = func(hash common.Hash, added bool) { if added { announces.Add(1) } else { announces.Add(-1) } } // Create a valid chain and an infinite junk chain targetBlocks := hashLimit + 2*maxQueueDist hashes, blocks := makeChain(targetBlocks, 0, genesis) validHeaderFetcher := tester.makeHeaderFetcher("valid", blocks, -gatherSlack) validBodyFetcher := tester.makeBodyFetcher("valid", blocks, 0) attack, _ := makeChain(targetBlocks, 0, unknownBlock) attackerHeaderFetcher := tester.makeHeaderFetcher("attacker", nil, -gatherSlack) attackerBodyFetcher := tester.makeBodyFetcher("attacker", nil, 0) // Feed the tester a huge hashset from the attacker, and a limited from the valid peer for i := 0; i < len(attack); i++ { if i < maxQueueDist { tester.fetcher.Notify("valid", hashes[len(hashes)-2-i], uint64(i+1), time.Now(), validHeaderFetcher, validBodyFetcher) } tester.fetcher.Notify("attacker", attack[i], 1 /* don't distance drop */, time.Now(), attackerHeaderFetcher, attackerBodyFetcher) } if count := announces.Load(); count != hashLimit+maxQueueDist { t.Fatalf("queued announce count mismatch: have %d, want %d", count, hashLimit+maxQueueDist) } // Wait for fetches to complete verifyImportCount(t, imported, maxQueueDist) // Feed the remaining valid hashes to ensure DOS protection state remains clean for i := len(hashes) - maxQueueDist - 2; i >= 0; i-- { tester.fetcher.Notify("valid", hashes[i], uint64(len(hashes)-i-1), time.Now().Add(-arriveTimeout), validHeaderFetcher, validBodyFetcher) verifyImportEvent(t, imported, true) } verifyImportDone(t, imported) } // Tests that blocks sent to the fetcher (either through propagation or via hash // announces and retrievals) don't pile up indefinitely, exhausting available // system memory. func TestBlockMemoryExhaustionAttack(t *testing.T) { // Create a tester with instrumented import hooks tester := newTester(false) imported, enqueued := make(chan interface{}), atomic.Int32{} tester.fetcher.importedHook = func(header *types.Header, block *types.Block) { imported <- block } tester.fetcher.queueChangeHook = func(hash common.Hash, added bool) { if added { enqueued.Add(1) } else { enqueued.Add(-1) } } // Create a valid chain and a batch of dangling (but in range) blocks targetBlocks := hashLimit + 2*maxQueueDist hashes, blocks := makeChain(targetBlocks, 0, genesis) attack := make(map[common.Hash]*types.Block) for i := byte(0); len(attack) < blockLimit+2*maxQueueDist; i++ { hashes, blocks := makeChain(maxQueueDist-1, i, unknownBlock) for _, hash := range hashes[:maxQueueDist-2] { attack[hash] = blocks[hash] } } // Try to feed all the attacker blocks make sure only a limited batch is accepted for _, block := range attack { tester.fetcher.Enqueue("attacker", block) } time.Sleep(200 * time.Millisecond) if queued := enqueued.Load(); queued != blockLimit { t.Fatalf("queued block count mismatch: have %d, want %d", queued, blockLimit) } // Queue up a batch of valid blocks, and check that a new peer is allowed to do so for i := 0; i < maxQueueDist-1; i++ { tester.fetcher.Enqueue("valid", blocks[hashes[len(hashes)-3-i]]) } time.Sleep(100 * time.Millisecond) if queued := enqueued.Load(); queued != blockLimit+maxQueueDist-1 { t.Fatalf("queued block count mismatch: have %d, want %d", queued, blockLimit+maxQueueDist-1) } // Insert the missing piece (and sanity check the import) tester.fetcher.Enqueue("valid", blocks[hashes[len(hashes)-2]]) verifyImportCount(t, imported, maxQueueDist) // Insert the remaining blocks in chunks to ensure clean DOS protection for i := maxQueueDist; i < len(hashes)-1; i++ { tester.fetcher.Enqueue("valid", blocks[hashes[len(hashes)-2-i]]) verifyImportEvent(t, imported, true) } verifyImportDone(t, imported) }