/* This file is part of go-ethereum go-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. go-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with go-ethereum. If not, see . */ /** * @authors * Gustav Simonsson * @date 2015 * */ /* This abstracts part of a user's interaction with an account she controls. It's not an abstraction of core Ethereum accounts data type / logic - for that see the core processing code of blocks / txs. Currently this is pretty much a passthrough to the KeyStore2 interface, and accounts persistence is derived from stored keys' addresses */ package accounts import ( "bytes" "crypto/ecdsa" crand "crypto/rand" "errors" "sync" "time" "github.com/ethereum/go-ethereum/crypto" ) var ( ErrLocked = errors.New("account is locked") ErrNoKeys = errors.New("no keys in store") ) type Account struct { Address []byte } type Manager struct { keyStore crypto.KeyStore2 unlocked map[string]*unlocked unlockTime time.Duration mutex sync.RWMutex } type unlocked struct { *crypto.Key abort chan struct{} } func NewManager(keyStore crypto.KeyStore2, unlockTime time.Duration) *Manager { return &Manager{ keyStore: keyStore, unlocked: make(map[string]*unlocked), unlockTime: unlockTime, } } func (am *Manager) HasAccount(addr []byte) bool { accounts, _ := am.Accounts() for _, acct := range accounts { if bytes.Compare(acct.Address, addr) == 0 { return true } } return false } // Coinbase returns the account address that mining rewards are sent to. func (am *Manager) Coinbase() (addr []byte, err error) { // TODO: persist coinbase address on disk return am.firstAddr() } func (am *Manager) firstAddr() ([]byte, error) { addrs, err := am.keyStore.GetKeyAddresses() if err != nil { return nil, err } if len(addrs) == 0 { return nil, ErrNoKeys } return addrs[0], nil } func (am *Manager) DeleteAccount(address []byte, auth string) error { return am.keyStore.DeleteKey(address, auth) } func (am *Manager) Sign(a Account, toSign []byte) (signature []byte, err error) { am.mutex.RLock() unlockedKey, found := am.unlocked[string(a.Address)] am.mutex.RUnlock() if !found { return nil, ErrLocked } signature, err = crypto.Sign(toSign, unlockedKey.PrivateKey) return signature, err } func (am *Manager) SignLocked(a Account, keyAuth string, toSign []byte) (signature []byte, err error) { key, err := am.keyStore.GetKey(a.Address, keyAuth) if err != nil { return nil, err } u := am.addUnlocked(a.Address, key) go am.dropLater(a.Address, u) signature, err = crypto.Sign(toSign, key.PrivateKey) return signature, err } func (am *Manager) NewAccount(auth string) (Account, error) { key, err := am.keyStore.GenerateNewKey(crand.Reader, auth) if err != nil { return Account{}, err } return Account{Address: key.Address}, nil } func (am *Manager) Accounts() ([]Account, error) { addresses, err := am.keyStore.GetKeyAddresses() if err != nil { return nil, err } accounts := make([]Account, len(addresses)) for i, addr := range addresses { accounts[i] = Account{ Address: addr, } } return accounts, err } func (am *Manager) addUnlocked(addr []byte, key *crypto.Key) *unlocked { u := &unlocked{Key: key, abort: make(chan struct{})} am.mutex.Lock() prev, found := am.unlocked[string(addr)] if found { // terminate dropLater for this key to avoid unexpected drops. close(prev.abort) zeroKey(prev.PrivateKey) } am.unlocked[string(addr)] = u am.mutex.Unlock() return u } func (am *Manager) dropLater(addr []byte, u *unlocked) { t := time.NewTimer(am.unlockTime) defer t.Stop() select { case <-u.abort: // just quit case <-t.C: am.mutex.Lock() // only drop if it's still the same key instance that dropLater // was launched with. we can check that using pointer equality // because the map stores a new pointer every time the key is // unlocked. if am.unlocked[string(addr)] == u { zeroKey(u.PrivateKey) delete(am.unlocked, string(addr)) } am.mutex.Unlock() } } // zeroKey zeroes a private key in memory. func zeroKey(k *ecdsa.PrivateKey) { b := k.D.Bits() for i := range b { b[i] = 0 } }